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This paper concerns a family of generalized collocation multistep methods that evolves the numerical 
solution of ordinary differential equations on configuration spaces formulated as homogeneous 
manifolds. Collocating the general linear method at skforxx kn ,...1,0== + , we obtain the discrete 
scheme which can be adapted to homogeneous spaces. Varying the values of k in the collocation 
process, the standard Munthe-Kass (k = 1) and the linear multistep methods (k = s) are recovered. Any 
classical multistep methods may be employed as an invariant method and the order of the invariant 
method is as high as in the classical setting. In this paper an implicit algorithm was formulated and two 
approaches presented for its implementation. 
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INTRODUCTION 
 
Geometric integration and in particular integration me-
thods on lie groups and homogeneous spaces, has re-
ceived much attention the last few years. Most of the 
development has been related to generalization of 
Runga-Kutta and other one step methods, in the setting 
of homogeneous manifolds and lie groups. Consider the 
equation below 
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and in the vectorised form   
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where  
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is called a system of ivps. 

The general k--step method (classical multistep me-
thod) for solving (1)-(2) above may be written in  the  form 
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where α j and �j, j = 0,1…..,k are given constants that are 
independent of the differential equation to be solved, the 
step size h and n, that is, the parameters 
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βα defines the particular method. It may 

be assumed that α k = 1. If �k=0 then the method is expli-
cit whilst if �k�0 then a non-linear equation must be 
solved to determine kny +   and the method is termed 
implicit. Iserles, (1997) and Budd and Iserles (1999) 
showed that the methods in the family defined by 
equation (3) only can retain linear invariants. In this pa-
per, a reformation of the multistep methods in the setting 
of lie groups and homogeneous spaces is considered 
and it shows that the method respects the configuration 
space of the problem when implemented in a correct 
way.  
 
 

Definition 1  
 

A manifold  
 

In a neighborhood of nRa ∈  a manifold is given by 
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( ) }0:{ =∈= ygUyM                                            (4)   
 

When nRUg →:  is differentiable, g(a) = 0 and )(ag ′  
has full rank m. 
 
 
Definition 2 
 
Differential equation on manifolds 
 
Let M be an (n-m) dimensional sub-manifold of Rn. 
The problem   
 

( )yfy =
.

                                                                     (5) 

        
is a differential equation on the manifold (1.4) satisfying 

( ) MTyf a∈  for all My ∈  

{ }n
a RVMT ∈=  there exist a differentiable path 

( ) nR→∈⋅∈−:γ with ( ) Mt ∈γ for all t,  
   

( ) ( ) Va == 0,0
.

γγ  (6)                                                     
 
Differential equations on manifolds arise in a variety of 
applications, and their numerical treatment has been the 
subject of many research reports. A naïve approach for 
the numerical solution of a differential equation on mani-
fold M would be to apply a method to the problem (5) 
without taking care of the manifold M, and to hope that 
the solution stays close to the manifold. A foremost 
requirement on a numerical integrator is that the nume-
rical approximation lies exactly on the manifold. But, if the 
exact flow on the manifold has certain geometric pro-
perties, it is natural to ask for numerical methods that 
preserve them. Hairer (2002) gave 2 illustrative examples 
(that is, the mathematical pendulum problem and the 
Toda Lattice problem) which show that the trapezoidal 
method preserves the structures of the original equations. 
He later presented the projection methods using one step 
numerical integrators, thus yielding the approach of 
geometric integration. See also Calvo et al. (2007), for 
more details. 
 
 
METHODS 
 
Explicit multistep algorithms based on rigid frames were 
proposed by Crouch and Grossman (1993). This method 
assume that smooth vector fields E1…,Ed on a diffe-
rentiable manifold M are available such that the diffe-
rential equation can be written in the form:          
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Where  the fi are   real  analytic   functions   on   Μ×ℜ .  

 
 
 
 
The numerical schemes are defined in terms of vector 
fields with coefficients frozen relative to the frame vector 
fields, that is,  
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The k-step Crouch-Grossman methods may now be 
written as: 
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Letting ,2=l  this scheme becomes 
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and it is clear that if 10
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algorithm reduces to the classical Adams Bashforth 
method in the Euclidean case: 
  

�
−

=
−−+−++ +=

1

0
11 )(

k

i
ikniknkn yFhyy α  (10)   

 

The k-step Crouch-Grossman method evolves the nume-
rical approximation by composing flows of vector fields on 
M. Computing flows of vector fields are very time con-
suming operations and it may be advantageous to consi-
der methods that combined frozen vector fields and com-
pute the flow of the resulting vector field at the end of 
each step only. Lopez (1997), discussed the analogous 
on matrix manifolds. 

Munthe-Kass et al (1999) improved on this by making 
an assumption that there exists a Lie algebra g with a Lie 
bracket [.,.], a left Lie algebra action defined as follows: 
Let  MMG →×Λ : be a left Lie group action. We get 
a left Lie algebra action 

),,(),(.: )( pepvbyMMg vΛ=→× λλ  where 

Gg → is the matrix exponential when G is a matrix 
group. 

A function gMf →×ℜ:  such that the ordinary 

differential equation for Mty ∈)( can be written in the 
form:  

.)0();))(,((),( MpyyytfytFy ∈=∗==′ λλ   (11)  



 
 
 
 
Equation (11) is the canonical form of an ordinary diffe-
rential equation on manifold. We assume that 

My ∈0 and it follows that yy TMwhereTMy ,∈′ is 

the tangent space of M at My ∈  . 
It is proved in H. Munthe-Kass (1999), that the solution 

of (11) is given for sufficiently small t, as 
)),(()( ptuty λ= , with y(0)=p, where u(t)∈g satisfies the 

differential equation 
  

guputfdufu u ∈===′ − 0)0()));,(,((exp)( 1 λ   (12)1     
.                              
It is important to note that  
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and hence  
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Where � is the Baker-Campbell-Hausdorff formula. 
 

McLaren and Quispel (2004) discussed using the dis-
crete gradient method, and by bootstrapping repeatedly 
the order of accuracy can be improved and the first inte-
grals can be preserved. 

In this paper, we follow the same approach of Crouch-
Grossman (1993) and we blend with Hairer (2002) to 
formulate an implicit multistep method following the spirit 
of trapezoidal rule which is known to be structure pre-
serving in geometric integration. 
 
 
RESULTS 
 
The new implicit multistep methods 
 

In this approach we consider 0≠kβ  in (1.3), then we  
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Letting ,2=l  the new scheme becomes 
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Hence we have that if ki
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algorithm reduces to the classical Adams Moulton implicit 
method in the Euclidean case: 
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To solve the problem (11) using a multistep method, 
there to transform the previous information in the k-1 
steps to the new coordinate system in each step so as to 
preserve the geometric structures. 

In the spirit of Munthe-Kass et al. (1999), if we let ti   to 
be equidistant time points and )( ii tyy ≈ . At step n of the 

new algorithm the r.h.s. kny +  is obtained, by using a 
coordinated chart centered at 

gLetyp n
ikn ∈= −+

)(
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to Gy in ∈+ at step n, that is,  
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If )(),( n

iiii andytff ω=  are known for 

knythenki +−= ,1,...,0 can be found by the 
following multistep algorithm: 
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Using the following transformation for 
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which gives the solution of (11) from time 

knkn ttot +−+ 1  defining an equation system for the 
unknowns  
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Theorem (1)   
 

If ,1,...,0,)),(,( −=×∈+++ kigMytfy ininin then the 

Algorithm (19) - (22) generates an element My kn ∈+ . If 
the classical multistep method defined by the coefficients 

kiand ii ,...,0, =βα is of order q, then the order 

of approximation of )( knkn tytoy ++ is q. 
 
 
Proof 
 

We observe  that  1,...,0,)()( −= kifand n
i

n
iω   as 
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well as )(n

kf  are elements of g. Solution of (20) yields an 

element .)( gn
i ∈ω The first part of the theorem now fol-

lows, since MyMgy ∈∀→:λ . 

Using a classical multistep method of order q to 
integrate (12), we observe that the Baker Campbell-
Hausdorff formula B, introduces an order O(hq+1) 
modification of 2,...,0,)( −= kin

iω , and that 
1

)(exp−
n

i
d ω introduces an O(hq+1) modification of 

2,...,0,1 −=+ kifn , thus the second part of the 
theorem follows by noting that the pullback vector field 

f
~

in (12) correct to order q (Munthe-Kass, 1999). 
It is a requirement and natural to impose a Lipschitz 

condition on the problems in order to ascertain the 
existence of solutions of the problems within the space of 
consideration. Thus we state the following basic result for 
the differential equations on manifold M. 
 
 
Theorem (2)  
 
Assume that the lie algebra g is a Banach space and that 

f
~

is Lipschitz with constant L. Then the iteration 
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for the implicit multistep algorithm converges provided 
that 1<Lh kβ . 
 
Proof  
 

Let 
g

. be a norm on g. Consider )(ˆ l
kω  defined by the 

iteration (24) with initial condition .ˆ )0()0(
kk ωω ≠  Thus we 

get that: 
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Since 1<Lh kβ , this is a contraction and there exists a 
unique fixed-point of iteration (24) in the complete space 
g. 
 
 
Procedures for implementing the implicit multistep 
methods on manifolds 
 
2 approaches are proposed here. First, the use of pre-
dictor- corrector approach as in Munthe-Kass (1999). Se-
condly  we   shall   use   the   self   starting   algorithm  of  

 
 
 
 
Onumanyi and Fatokun (2008) and Fatokun (2007). This 
is done by using the idea of block methods as illustrated 
below: 
Let 
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The corresponding D (Collocation matrix) is given as  
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Where D is invertible DC = I and hence we obtain 
explicitly )(ξy  in (26) with  
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Evaluating )(ξy  at 
2
3,1 ++ == rr xxxx  and 2+= rxx  we 

obtain three discrete schemes 
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Solving the equations (28) - (30) simultaneously as an A-
stable integrator for 

2
3,1 ++ rr zz  and 2+rz  give the following 

first derivative FD approximation schemes 
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Now we put (31) and (33) respectively in the following 
algorithm: 
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to obtain the final algorithm to solve (11). 
 
 
Numerical experiment 
 
Munthe-Kass et al. (1999) used an example by Zanna 
(1996) which is a first order differential equation on 
manifold. Let the manifold M = G be a matrix Lie group 
with lie algebra (g,[.,.]). The action of the Lie algebra on G 
is given by ,: GGg →×λ  where pvpv ).exp(),( =λ . 
This reduces equation (11) to a first order differential 
equation 
  

Gywithyytfy ∈=′ )0().,(                               (36)
        
This was conveniently solved as in Munthe-Kass et al. 
(1999). 
 
 
CONCLUSION AND DISCUSSION OF RESULTS 
 
We have seen the theoretical framework of integrating 
differential equations on manifolds. In this paper we con-
sider using implicit algorithms, which theoretically is more 
accurate than the explicit types described by Munthe-
Kass (1999). The geometric integration methods are 
generally more expensive than the classical methods.  

In a follow-up paper, we shall consider some second 
order differential equations on manifold and use the self-
starting approach described in this work. This is hoped to 
be a breakthrough in the geometric integration approach 
and giving due respect to the configuration space of the 
problem as compute the numerical solutions. 
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