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Abstract

Malaria distribution is known to be geographical and temporal heterogeneous, with

cases fluctuating across space and time, and climatic conditions are largely con-

nected with regard to malaria occurrence, both temporally and spatially. Millions

of dollars have been spent on malaria control in Namibia to achieve the goal of

reducing malaria incidence from 13 to less than 1 malaria case per 1000 population

in 2016 and becoming malaria free by 2020. However, malaria still remains a major

public health challenge in Namibia, primarily in the Kavango West and East, Ohang-

wena, and Zambezi regions. The primary purpose of this research was to fit a spatial

model to profile spatial variation in malaria incidence (MoHSS) and to investigate

possible associations between disease risk and environmental factors in these areas.

To explain disease trends, identify malaria risk factors, and locate malaria hotspots,

the INLA package in R software was used to fit a range of models, including non-

spatial, spatial, and spatio-temporal models. Malaria data for 2018 to 2020 were

obtained from the Ministry of Health and Social Services, while monthly weather

data for 2018 to 2020 were obtained from SASSCAL, and population estimates for

each constituency were used to project the population for 2018 to 2020. Since more

than 96% of the 2018-2019 reported malaria cases were from the Kavango East and

West, Zambezi, and Ohangwena regions, and more than 80% in 2020, this study was

restricted to those areas. A hierarchical Bayesian CAR model was fitted to these

datasets to investigate climatic and other related factors that could explain the spa-

tial/temporal variation of malaria infection in Namibia. Average rainfall received on

an annual basis and maximum temperature were found to have a significant spatial

and temporal variation on malaria infection. Every mm increase in annual rainfall

in a specific constituency in each year increases annual mean malaria cases by 0.6%

in that constituency. Also, for every one ◦C increase in annual maximum tempera-

ture in a certain constituency, it will increase the annual mean cases of malaria by
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0.6%. The posterior means of the time main effect (year t) showed a visible slightly

increasing global trend from 2018 to 2020. Constituencies in the Kavango outskirts

East and West regions revealed a high spatial risk and posterior relative risk (RR: 1.57

to 1.78). Both unstructured random effects (spatial and temporal) as well as temporal

structured random effects revealed a significant variation of malaria. Future studies

should consider examining all possible putative sources of malaria transmission in-

cluding travel histories and networks, and treatment seeking behavior and should

mostly focus on finding and mapping potential anopheles mosquito habitat that

was missed in this study due to a lack of information in the datasets on anopheles

mosquito breeding locations (e.g., irrigated agriculture).
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CHAPTER 1

INTRODUCTION

1.1 Background

Malaria is the most lethal protozoan illness, killing over 750,000 people in Africa

each year, the majority of whom are children and pregnant women, with 435,000

deaths occuring among children bellow the age of five (Greenwood, 2012; Hussein,

2020; WHO, 2021; Tseha, 2021) and every two minutes, a child under the age of five

dies as a result of this disease (Organization, 2016).

Malaria affects more than half of the world’s population (Hamza et al., 2015) and an

estimated 3.2 billion people globally are still at risk of contracting malaria (WHO,

2016). The World Health Organization reports that roughly 214 million new cases of

malaria were reported in 2014, resulting in 428,000 fatalities worldwide. In 2015, the

WHO African Region reported 88% of malaria cases, the WHO South-East Region

reported 10%, and the WHO Eastern Mediterranean Region recorded 2% (WHO,

2016). In 2018, there were around 228 million cases of malaria and 405,000 deaths

worldwide, with Africa having the largest number of cases and fatalities (Hussein

et al., 2020). Malaria killed an estimated 409 000 million people worldwide in 2019,

with African countries bearing the brunt of the toll (Aborode, 2021). Young children

(children under the age of five) are the most prone to malaria, accounting for 67%

(274 000) of all malaria fatalities globally in 2019. The WHO’s African Region bears

a disproportionately substantial amount of the world’s malaria incidence. In 2019,

the region was responsible for 94% of malaria infections and deaths (Abel, 2021).
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Malaria is also one of the top ten primary causes of illness and mortality in the ma-

jority of Sub-Saharan African nations, including Namibia (WHO, 2016). According

to the World Health Organization (WHO) estimates from 2018, there were around

228 million cases of malaria and 405,000 deaths worldwide, with Africa having

the largest number of cases and fatalities (Hussein et al., 2020). Malaria killed an

estimated 229 million people worldwide in 2019, with African countries bearing

the brunt of the toll (Aborode, 2021). In 2019, there were an estimated 229 million

cases of malaria all across the world, with an estimated 409 000 malaria fatalities

(WHO, 2021). Young children (those under the age of five) are the most susceptible

to malaria accounting for 67% (274 000) of all malaria fatalities globally in 2019. The

WHO’s African Region bears a disproportionately substantial amount of the global

malaria burden. In 2019, the region was responsible for 94% of malaria infections

and deaths (Abel, 2021). This is due to climate ideal for the Anopheles mosquitoes

that transmit malaria parasites e.g., warm temperatures, humid conditions, and high

rainfall. The sickness is the result of parasites that are spread to humans through the

bites of infected female Anopheles mosquitos (Turner et al., 2013). Malaria affects

both men and women of all ages, with children under the age of five and pregnant

women being the most vulnerable (Lamb, 2012).

Futheremore, malaria’s economic impact in Africa was estimated to cost approxi-

mately $ 12 billion per year, which has a negative impact on business because the

disease is responsible for employee absenteeism, increases in healthcare expendi-

ture/spending, and decreases in productivity, all of which can have a negative im-

pact on a company’s reputation (Worrall, Rietveld, and Delacollette, 2004). Malaria

is also to blame for the consequences of poor economic growth, which contributes to

an increase in malaria cases, mortality, and morbidity rates in Namibia, particularly

in the north (Union, 2006).

When it comes to country malaria transmission risk, Namibia is divided into three

zones and among the three zones, zone 1 and 2 are still at risk of malaria where

zone 1 is classified to be areas with moderate/high malaria transmission, zone 2

is classified to be areas with low malaria transmission and zone 3 is classified to
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be areas that are free from malaria (MoHSS, 2018), see Figure 1.1. Alegana et al.

(2013) confirmed that more cases of malaria are found in Namibia’s northern regions

bordering Angola, Zambia, and Botswana, primarily in areas near lakes, rivers, and

forests, particularly in the Kavango West and East, Ohangwena, and Zambezi region

although some cases have also been reported in the central region and occasionally

in the South. The peak malaria season in Namibia usually occurs between January

to May following the rainy season (McCreesh et al., 2018).

The Namibia Malaria Indicator Survey (MIS) was carried out in 2009, along with

a national malaria plan that was executed from 2010 to 2016, with the intention of

lowering malaria cases from 13 to 10 cases per 1000 people by 2013 and to less than 1

case per 1000 population by 2016 (Alegana et al., 2013). In 2010 and 2014, the number

of malaria cases was reduced by 37%. However, the number of reported cases began

to rise again from 2016, with 2017 being the worst year yet (Table 1.1).

FIGURE 1.1: Namibia malaria transmission map (MoHSS, 2014)

In Namibia, there was an unusually high number of malaria cases reported between

2001 and 2003. Despite the fact that the number of cases was rapidly decreasing from

396 579 in 2005 to 3 163 in 2012, it increased to 16 128 in 2014 and then decreased to

12 045 in 2015. Furthermore, from 2016 to 2018, the number of cases increased from

3



12 045 to 66 141 before decreasing to 36 451 in 2018 (Table 1.1) and this information

was retrieved from the malaria annual report of 2018.

TABLE 1.1: OPD and IPD reported cases and death cases for Malaria
in Namibia from 2001 to 2020 (MoHSS, 2018)

YEAR OPD REPORTED CASES IPD REPORTED CASES DEATH CASES
2001 521067 41636 1747
2002 439760 23984 1030
2003 418146 20295 1094
2004 559324 36043 1734
2005 396579 23339 1137
2006 319676 27690 612
2007 102381 4242 181
2008 119711 4907 174
2009 70807 1864 64
2010 22359 1505 45
2011 15774 984 36
2012 3163 50 4
2013 4727 102 21
2014 16128 787 61
2015 12045 561 43
2016 24879 94 94
2017 66141 1969 331
2018 36451 1754 82
2019 2154 836 7
2020 11539 968 40

OPD: Outpatient Diagnosis
IPD: Inpatient Diagnosis

From 2014 to 2018, the Kavango West and East regions reported the highest number

of malaria cases in Namibia, followed by the Zambezi region and the Ohangwena

region (Haiyambo et al., 2019) (Table 1.1). Furthermore, Out of 68 110, and 38 205

malaria cases reported in Namibia in 2017 and 2018 respectively, the same four re-

gions contributed about 96% of the total cases reported, with Kavango leading with

81%, followed by Zambezi with 10%, and Ohangwena with 5%, with the remaining

regions accounting for only 4% of the total cases reported. Still, from the descriptive

statistics of the total malaria cases reported in 2019 and 2020, the four contributed

more than 90% of the total reported cases (MoHSS, 2019) (Table 1.2). Moreover, look-

ing at the trend analysis of malaria cases reported from 2001 to 2020, it is clear that

more research on malaria is needed, as the total number of malaria cases reported
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annually continues to rise and fall (Table 1.1).

1.2 Problem statement

Malaria transmission remains unstable in most of the high and moderate en-

demic malaria nations where climatic factors are known to be mostly associated

with malaria incidence from temporal and spatial perceptive (Alemu et al., 2011).

Namibia is among the countries that intend to achieve the third Sustainable Devel-

opment Goal (SDG 3), which calls for the end/elimination of the malaria outbreak by

2030. Malaria has been eradicated in several countries. However, over the previous

decade, most African countries, including Namibia, have seen an increase in malaria

cases (Newby et al., 2016; Feachem et al., 2019). Millions of dollars have been spent

on controlling malaria in Namibia so that the goal of reducing malaria incidence

from 13 to less than 1 malaria case per 1000 population by 2016 and be malaria free

by 2020 could be achieved. In 2017, the country needed N$ 1.2 billion to eliminate

malaria and the government was able to commit 65% of the funding. However,

malaria remains a major public health concern in Namibia, mostly in Kavango West

and East, Ohangwena and Zambezi region (Table 1.2), although it is preventable and

curable. Complete datasets on malaria cases and environmental/climatic data that

explain seasonal characteristics are being recorded. However, these datasets were

never fully merged for them to be analysed and, to the best of our knowledge, no

in-depth studies on spatial modelling of malaria incidences have been done consid-

ering a bigger sample size of a population at risk using climatic variables to estimate

accurate overall malaria incidence at constituency level.

The distribution of malaria is known to have a spatial and temporal heterogeneity

where cases vary through space and time, and most of the time climatic factors are

known to be mostly associated with malaria incidence from temporal and spatial

perspectives. Hence, it is important to describe the geographic variation of malaria

risk, identify possible risk factors/covariates that might explain spatial variation,

identify high-risk malaria significant areas (hot spot areas) through the Bayesian
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conditional autoregression approach so that appropriate actions may be taken, and

to assess health inequalities for a better allocation of health care resources.

TABLE 1.2: Reported OPD malaria cases by region, 2010 - 2018
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2010 2929 13258 1505 68 3078 747 250 58 19 10 337 94 6 22359
2011 2434 11546 729 132 441 152 138 51 37 7 69 36 2 15774
2012 1274 948 410 49 196 67 97 45 12 2 42 18 3 3163
2013 2564 1454 161 48 236 43 35 85 4 14 34 43 6 4727
2014 1549 12959 477 112 505 158 38 221 58 0 21 11 19 16128
2015 479 10513 378 56 280 99 44 79 28 6 45 30 8 12045
2016 3154 14980 1584 293 3091 873 265 266 97 36 175 49 16 24879
2017 5085 52044 1470 331 5095 1057 171 437 130 24 211 70 16 66141
2018 3629 29617 152 131 1706 699 53 318 52 15 0 60 19 36451

Legends
High Cases

Moderate Cases
Low Cases
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1.3 Objectives of the study

1.3.1 Main objective

The primary goal of this research was fitting a spatial and spatio-temporal model

that examines the effects of climatic variables and determine the spatial, and tem-

poral pattern of malaria as well as risk factors/covariates that might explain spatial

variation malaria infection in North Namibia.

1.3.2 The specific objectives

The study’s key objectives were as follows:

(i) To explore covariates factors associated with malaria in North Namibia;

(ii) To simulate the link between malaria incidence and risk variables in North

Namibia;

(iii) To ascertain the spatial and temporal pattern of malaria as well as risk covari-

ates that might explain the spatial/temporal variation of malaria infection in

North Namibia; and

(iv) To identify and map high-risk constituencies in North Namibia (hot spot ar-

eas).

1.4 The significance of the study

This study made use of areal/lattice malaria data that has a spatial structure, hence

it employed Bayesian hierarchical Conditional Auto-Regressive (CAR) models in-

troduced by Besag (Besag, 1974). These techniques anticipate risk in places where

data are not collected while flattening variability in areas where the population

is small (Gelfand and Vounatsou, 2003). The study fitted the Besag York Mollié

(BYM) model which is a lognormal Poisson model which incorporates both an In-

trinsic Conditional Auto-Regressive (ICAR) component (subclass of CAR models)

for spatial smoothing, and a conventional random-effects component for non-spatial

heterogeneity (Morris et al., 2019). Hence, results of the study may help public
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health experts and policy makers to easily recognize the geographical distribution

of malaria, identify risk hazards related to the disease, forecast epidemics in regions

where such dangers exist, and identify vulnerable populations (malaria hot spot

areas) for better guidance on monitoring and planning resources needs at all levels

of health care and designing appropriate interventions to areas or communities de-

serving closer inspection by carefully using the available limited resources. These

could help Namibia meeting Sustainable Development Goal 3 (SDG3) that aimed at

ending malaria by 2030.

1.5 Thesis structure

This thesis consists of five sections. The first chapter provides a summary of the

malaria history before delving into the study’s problem statement, aims, and sig-

nificance. The second chapter discusses prior work on malaria modeling as well as

other techniques to disease mapping, such as malaria. The third chapter discusses

the study technique, starting with an area study and study design, then moving on

to the study population and sample size, data, and finally model description. We

started with descriptive findings in Chapter 4, then moved on to model results (non-

spatial, spatial, and spatio-temporal outcomes), and finally to results discussion.

The conclusion and suggestions section of the study (Chapter 5) is then transcribed.

Appendix A contains the R code used in the study.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Previously, it was thought that malaria was caused by stale air (Hempelmann and

Krafts, 2013). In 1880, Alphonse Laveran, who was looking for a bacterial cause of

malaria, discovered the blood parasites that cause malaria. Malaria is a parasitic dis-

ease caused by the protozoan Plasmodium, and it is still an endemic and significant

public health issue in many countries, including Namibia. Plasmodium falciparum,

Plasmodium vivax, Plasmodium knowlesi, and Plasmodium malaria are four Plas-

modium species that cause malaria in humans, with Plasmodium falciparum being

the deadliest (Parham and Michael, 2010). According to previous reports, malaria

prevention and control measures have resulted in a 29% reduction in global mor-

bidity and mortality rates since 2010, but millions of malaria cases are still reported

annually in Africa (Parham and Michael, 2010).

According to the literature, malaria risk infection groups primarily include rural

populations, people living near bodies of water (mosquito breeding sites), people

living at low altitudes, poor and less educated people, and people working in farm-

ing and fishing areas, particularly pregnant women, breast-feeding women, young

children (less than 5 years), and HIV-infected people, mostly those who are not on

treatment (National Malaria Elimination Strategic Plan 2017-2021, 2017).

The reproduction of the anopheles mosquito depends on environmental factors like

rainfall, temperature, and humidity in connection with vegetation cover and hy-

drology, especially water bodies (Sipe and Dale, 2003). The malaria parasite cannot
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develop below 18 °C and over 40 °C hence the highest percentage of vectors that

survive the incubation period are found at temperatures ranging from 28 °C to 32

°C (Alemu et al., 2011). High rainfall has an impact on mosquito breeding sites, but

too much rain can wreak havoc on breeding grounds (Parham and Michael, 2010).

They will prefer an environment with tall grasses, weeds, wet ground, and forest

(Hardy et al., 2019). Mosquitoes prefer low-altitude environments because of the

high temperature and humidity (Tuyishimire et al., 2016). Furthermore, environ-

mental changes such as deforestation, vegetation clearance for crop prodution and

marshland conversion, and people living near mosquito breeding areas are thought

to be at high risk of contracting malaria (Tuyishimire et al., 2016).

Malaria patients experience symptoms such as fever, nonstop headache, sweats,

muscle aches, and chills, as well as signs such as vomiting, yellowing of the skin and

eyes, diarrhea, bleeding problems, shock, kidney, and liver failure. Malaria weakens

the body to the point where an employee cannot go to work at times, and the disease

can lead to death if a patient is not treated promptly (McKenna, 2008.)

2.2 Review of related studies

Disease mapping research has become a common application method used by bio-

statisticians, medical demographers, and epidemiologists to understand the geo-

graphical distribution of a disease, which is typically analysed in the formulation

of a Bayesian hierarchical model with the primary goal of investigating the spatial

distribution of malaria.

Several studies on malaria spatial modeling have been conducted in African coun-

tries using various approaches in the analysis of malaria spatial variation and its

relationship with environmental, socio-demographic, and economic factors. The

different types of analysis considered included spatial analysis, and Bayesian spa-

tio–temporal analysis. These employed different methods/tools of analysis such as

Global and local Moran I statistics, Point pattern analysis, SaTScan Techique, and
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Getis Ordi (Gi*) spatial statistics. Some reseahers have applied Bayesian hierarchi-

cal approach using the Markov chain Monte Carlo (MCMC) method in Win BUGS

programme or the INLA package in R software. Some other methods included

Bayesian hierarchical conditional auto regression (CAR) model in Win BUGS soft-

ware , Bayesian hierarchical generalised linear mixed model in the INLA package

in R software, Bayesian Poisson regression approach, GIS-based spatial modeling

techniques, Leroux model, Dean Model, Besag-York-Mollié (BYM) model, Bayesx

model, BYSTAR model and many more (Sipe, 2003; Guerra et al., 2006; Kazembe,

2007; Victor, 2009; Tuyishimire 2016; Joao, 2018).

The majority of the epidemiological studies on spatial modeling of malaria risk fac-

tors conducted in Africa focused on the ecology of the vector (Turner et al., 2013), the

effectiveness of control measures (Guerra, Snow, and Hay, 2006), and spatial disease

modeling (Guerra, Snow, and Hay, 2006). Ealier studies have revealed that malaria

is influenced by three factors: environmental, demographic, and economic. Some of

the previous are presented as follows.

Tuyishimire (2016) conducted a study on spatial modeling of malaria risk factors

in Ruhuha sector in the east of Rwanda using Getis and Ord spatial statistics to

simulate malaria risk factors geographically in largely rural areas of Southeastern

Rwanda. The author’s results revealed that malaria prevalence increases were asso-

ciated with the proximity to irrigated farmland, housing quality and household size

where lower housing quality for instance mud houses, earth floor and unburnt brick

walls were associated with a high risk of malaria infection. The author concluded

that irrigated farmlands are the main anopheles mosquito breeding sites in Rwanda

and suggested that people should not only live far away from irrigated farmlands,

which are thought to be the primary anopheles mosquito breeding places, but hous-

ing quality should also be addressed.

Ferrao (2018) also studied mapping and modeling malaria risk in Mozambique by

using GIS-based spatial modeling techniques. The findings of the author showed
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that distance to water bodies, mean temperature, precipitation, altitude, slope, dis-

tance to the road, land use and land cover, and population density were associated

with malaria risk in Mozambique.

Another study on spatial modeling and risk factors of malaria incidence in north-

ern Malawi was done by Kazembe (2007). The author applied a Bayesian Poisson

regression model assuming different spatial structures to model malaria risk factors

in Malawi. Altitude and precipitation were found to be associated with malaria risk

in northern Malawi. The author’s results revealed that the geographical variation in

malaria risk was caused by a combination of observed and unseen environmental

factors and highlighted the overall effect of these factors using a map (Kazembe,

2007).

2.3 Types of spatial data

The application of data or information to determine the geographic proximity of the

earth’s features and boundaries to represent an object’s location, size, and shape,

such as lakes, flat ground, and township, is referred to as spatial data analysis.

Spatial data can be mapped, normalcy can be stored as coordinates, and topology

can be stored. There are three types of spatial data (DiMaggio, 2012):

I. Spatial point processes (Point data)

A point data set is a discrete unit of information that is typically derived from mea-

surement and can be represented numerically or graphically. This means that the

spatial point process is a d-dimensional random pattern of points (where d = 2 or

d = 3 in applications) (DiMaggio, 2012).

Point processes are assumed to follow a probability distribution and they are fre-

quently described as Poisson processes. Spatial points can be associated with covari-

ates where analyses may include assessing the role of covariates in finding intensity

or controlling for covariates effects when assessing the interaction between points
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(Morris et al., 2019). As a result, a point process is used for the analysis of observed

point patterns, where the points denote the locations of some research object, such

as disease cases.

II. Areal (Lattice) data

These data are associated with population surveys such as census and health statis-

tics, and were originally referred to individuals located in specific points of space to

submit information on the size, distribution, composition, and other social and eco-

nomic characteristics of the population, as well as household amenities and housing

circumstances (Stevenson, 2003).

Lattice data includes socioeconomic data pertaining to administrative regions (e.g.,

census, administration), climate model predictions as aggregates across regions, and

health data pertaining to hospital wards. Lattice data is used to calculate proportions

or risks based on count data (Anselin, 1998).

Exploratory methods for point data such as Kernel density estimation, can be used

to investigate the process under investigation, whereas different methods for larger

units, such as standardized mortality ratio (SMR), Bayesian smoothing, and auto-

correlation statistics, can be used (Wilesmith et al., 2003).

III. Continuous data (Geo-statistical data)

Continuous data consists of point samples drawn from a continuous spatial distri-

bution such as temperature readings taken at various point locations. They typically

observe a complete collection of data points generated on data interpolated to un-

seen points on a continuous surface in a regular or irregular manner as a function of

distance (Wilesmith et al., 2003).

Furthermore, this data is estimated from a set of field samples that can be distributed

regularly or irregularly and results from natural resources such as air pollution,
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rainfall, soil mineral concentrations, humidity, and variables that can be measured

at all possible locations (Wilesmith et al., 2003).

2.4 Review on statistical methods of spatial data analysis

2.4.1 Cluster analysis

A set of objects is grouped into clusters in cluster analysis so that an object in one

group is homogeneous. Cluster analysis is divided into two categories: global clus-

ter analysis, which assumes that the risk surface is clustered, implying that areas

of similar elevated risk exist, and local cluster analysis, which provides enough

information about where clusters exist. These are indicators that show local patterns

and measure local instabilities and are useful for identifying specific clusters in a

data set (Gangnon and Clayton, 2003). In the absence of actual examination using

different clustering scenarios such as hot spot clustering, local clustering assumes

the presence of spatial clustering.

Due to the assumption of zero neighbourhood criteria, a hotspot analysis is defined

as an area/location where people have a higher-than-average risk of victimisation.

In other words, it is an area or location that possesses a higher-than-average inci-

dence of the event under consideration in a cluster. Furthermore, hotspot analysis

utilizes vectors to identify statistically significant hotspots (high) and cold spots

(low) in data by forming polygons or converging points that are close to one another

based on a measured distance. Moran’s and Getis – Ord General (Getis – Ord Gi*)

are two methods used in hotspot analysis to retain values such as z-score and, when

combined, will indicate whether or not clustering exists in the data (Achu and Rose,

2016). Getis –Ord Gi* examines each feature in the dataset, and not all high-value

features can be statistically significant hotspots.

A feature with a substantial hotspot is indicated by a high z-score and a low p-

value, whereas a feature with a low negative z-score and a low p-value indicates

a significant cold spot. The more intensive the clustering, the higher or lower the

z-score, and if the z-score is close to 0, no spatial clustering exists (Zuur, Ieno and
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Saveliew, 2017).

The Getis –Ord local statistics are given as follows:

G∗
i =

å
n
j=1 wijxj − X̄ån

j=1 wij

s
√

nån
j=1 wij

2−(ån
j=1 wij)2

n−1

, (2.1)

where xj is the attribute value for feature j, wij is the special weight between features

I and j, n is the total number of features, X̄ is the mean of the x variable, and s is the

standard deviation.

2.4.2 Spatial autocorrelation

The correlation of a variable with itself over space is quantified by spatial auto-

correlation. To estimate the spatial effect of the region being studied (e.g., re-

gion/constituency), the neighbourhood information is computed using the bound-

aries of that constituency. A neighbouring structure at the constituency level, as well

as an adjacency matrix and a contiguity weight matrix (W) with elements of 1 and 0,

are created with varying distance lags.

W =



1 w11 w12 w13 . . . w1k

1 w21 w22 w23 . . . w2k

1 w31 w32 w33 . . . w3k

. . . . . . . .

. . . . . . . .

. . . . . . . .

1 wn1 wn2 wn3 . . . wnk



, (2.2)

where k is the number of locations (constituencies) under the study, Wij is the ele-

ment of W representing a weight for (i, j)th constituency i, j = 1, 2, 3, ..., n and W is
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constructed using the following 3 description types (Dessie, 2017).

(i) The rook continuity description considers common edge shared objects by let-

ting Wij = 1 for constituencies that share common edge with the constituency

of interest otherwise Wij = 0.

(ii) Descriptions of the contiguousness of the bishop consider objects that share a

common vertex as neighbours, Wij = 1 for entities that share common vertex

with the region of Wij = 0 and

(iii) A queen contiguousness description integrates both the rook and bishop de-

scription as any object sharing either a common edge or common vertex to be

considered as a neighbour, Wij = 1 for entities that share common edge or

vertex with constituency of the interest otherwise Wij = 0.

The distance and inverse distance square between the centers of areas or points are

used to define the location contiguity matrix in Cartesian space.

Wij =
1

dij
or Wij =

1
d2

ij
or Wij =

 1, if dij < r

0, if dij > r

where dij is the distance between center of ith and jth location and r is prespecified

radious distance.

Spatial autocorrelation is crucial in geographical analysis where Moran’s I is a corre-

lation coefficient that measures the data set’s overall (global) spatial autocorrelation.

Global measures of spatial autocorrelation determine whether or not the data shows

spatial autocorrelation against H0, as well as the magnitude and direction (positive

or negative) of any spatial autocorrelation. If the data is globally spatially correlated,

the specific observations that are auto correlated with neighbouring observations

of the variable of interest as well as strength and direction must be identified by

considering local spatial autocorrelation.
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In this case, Moran I scatter plots are plotted so that one can be able to picture the

linear correlation between the spatial lag y and Wy. In detail, Wy is plotted against

Y and the slope of the regression curve is defined by the Moran’s I value where: W

is the non-zero elements of the spatial weight matrix and y is the weighted sum or a

weighted average of the neighbouring values.

Moran’s I

Moran’s I test is based on deviations from the mean as a cross-product and is used to

detect global spatial autocorrelation. It is computed for n observations on a variable

x at various locations and is defined as:

I =
n
S0

åi åj wij (xi − X̄)
(
xj − X̄

)
åi (xi − X̄)

2 , (2.3)

where S0 is the sum of the elements of the weight matrix: S0 = åi åj wij, wij are the

weight matrix entries, and X̄ is the mean of the x variable.

Moran’s I is related to, but not the same as a correlation coefficient. In the absence of

autocorrelation, it differs from −1 to +1, and regardless of the stated weight matrix,

the expectation of Moran’s I statistic, independent of the provided weight matrix, is

−1/ (n − 1), which decreases to zero as the sample size increases. The normalizing

factor S0 = n for a row-standardized spatial weight matrix, and the statistic is sim-

plified to a spatial cross product to variance ratio. Positive spatial autocorrelation

is indicated by Moran’s I coefficient greater than −1/ (n − 1) , whereas negative

spatial autocorrelation is indicated by Moran’s I coefficient less than −1/ (n − 1).

This means that Moran’s I = 1 value close to 0 indicates perfect positive spatial au-

tocorrelation, whereas Moran’s I value close to 0 indicates no spatial autocorrelation

(De Jong, Sprenger, and Van Veen, 1984; Assuncao and Reis, 1999; Li, Calder, and

Cressie, 2007 ).
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Local indicators of spatial association (LISA)

At each observation, the local indicator of spatial association provides a signal of

strong spatial clustering of related values surrounding that observation. The sum

of LISA is proportional to global indicators. The following is a definition of local

Moran’s I statistics.

Ii (d) = (xi − x̄)
n

å
j=1

wij (d)
(
xj − x̄

)
, j ̸= i, (2.4)

where xi and xj denote the number of count cases at constituency i and j, respec-

tively, and wij denotes the spatial weight matrix based on the defined distance lags

between constituency i and j (most of the time lags are in kilometers). If the distance

between constituency i and constituency j is less than d, wij (d) = 1; otherwise,

wij (d) = 0.

Geary’s C

Geary’s C statistic (Geary, 1954) is calculated by comparing the variations in re-

sponse to each other’s observations. See the following equation:

C =
n − 1
2S0

åi åj wij
(
xi − xj

)2

åi (xi − X̄)
2 (2.5)

Geary’s C spans from 0 (maximal positive autocorrelation) to a positive number

when there is a lot of negative autocorrelation. In the absence of autocorrelation

and regardless of the weight matrix provided, its expectation is 1 (Sokal and Oden,
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1978). If Geary’s C is smaller than just 1, it suggests that there is positive spatial

autocorrelation (De Jong, Sprenger, and Van Veen, 1984).

2.5 Generalized Linear Models

2.5.1 Introduction

Generalized linear models (GLMs) in statistics are a versatile generalisation of or-

dinary linear regression that permits response variables to have error distribution

models that are not the normal distribution. The GLM improves on linear regression

by allowing the linear model to be connected to the response variable through a link

function, and the variance of each measurement is a function of its projected value

(Dey, Ghosh, and Mallick, 2000; Guisan, Edwards Jr, and Hastie, 2002; Hedeker,

2005; Hardin et al., 2007).

In GLM, each dependent variable’s outcome y is considered to be generated by a

specific distribution in an exponential family e.g., Normal, Binomial, Poison and

gamma distribution where in both the mean, m, of the distribution depending on

the independent factors, x (Dey, Ghosh, and Mallick, 2000; Guisan, Edwards Jr, and

Hastie, 2002; Hedeker, 2005; Hardin et al., 2007). The exponential family:

f (yi|qi,Æ, wi) = exp
(

yiqi − b(qi)

Æ

)
wi + c(yi,Æ, wi), (2.6)

where qi is the natural parameter of the exponential family, Æ is a dispersion param-

eter shared by all observations, wi is a weight, and b (.) and c (.) are functions that

vary depending on the exponential family.

The expectation E (yi|ui,g) = mi is linked to the linear predictor hi by mi = g (hi)

and hi = mi
′
g, where g is a known response function and g are unknown regression
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coefficients ( Belitz et al., 2009; Mwahi, 2014).

For example, let consider a Poisson regression model that expresses explana-

tory/covariates that have a statistically significant effect on the response variable.

This model predicts dependent variable (yi, ) where yi is the count of people that

tested malaria positive in constituency i, and it consists of one or more independent

variables and the measure of the effects of the given predictors is expressed in terms

of incidence rate.

Let Yi ~poisson (mi), where mi is the expected count of yi. The general Poisson model

is given by:

logE (yi) = log (mi) = b0 + b1x1i + b2x2i + · · ·+ bkxki, (2.7)

where b0 is the intercept, b1, b2, . . . , bk are parameters and x1, x2, . . . , xk are ex-

planatory variables (fixed effects) that are included in the model which sometime

is known as covariates and log E (yi) is the mean expected value of the outcome

being a case for subject i.

Exponentiating eq. 3.1 we obtain a multiplicative model for the mean itself:

E (yi|xi) = mi = exi
Tb, (2.8)

where i is an obsevation, xi
T is a set of independent variables including an intercept,

b = (b0, b1, b2, . . . , bk)
T are a set of coefficients.

2.5.2 Generalized Linear Mixed Models (GLMMs)

Generalized linear mixed models (GLMMs) are a type of linear mixed model that

has been extended. GLMMs can also be thought of as a generalized linear model

(e.g., logistic regression) that estimate both fixed and random effects (hence mixed

models) and are especially useful when the dependent variable is binary, ordinal,
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count or quantitative but not normally distributed. The general form of the linear

mixed model (in matrix notation) is given as:

y = Xb+ Zu + e, (2.9)

where y is a N × 1 column vector, the outcome variable; X is a N × p matrix of

the p predictor variables; b is a p × 1 column vector of the fixed effects regression

coefficients (the bs); Z is the N ×q design matrix for the q random effects (the random

complement to the fixed X); m is a q × 1 vector of the random effects (the random

complement to the fixed b; and e is a N × 1 column vector of the residuals, that part

of y that is not explained by the model, Xb+ Zu.

The difference between Linear Mixed Model (LMMs) and Generalized Linear Mixed

Model (GLMMs) is that in GLMMs, aside from gaussian distributions, the response

variables might come from any distribution. In addition, rather then modeling the

responses directly, a link function, such as a log link, is sometimes used.

Let the linear predictor, h , be the combination of the fixed and random effects ex-

cluding the residuals.

h = Xb+ Zg, (2.10)

The generic link function is called g(.), the link function relates the outcome y to

the linear predictor h. Hence, the conditional expectation of y (conditional because

it is the expected value depending on the level of the predictors) is denoted as:

g(E(y)) = h. The expectation of y can also be modelled: E(y) = g(h) = m, with

y = g(h) + e.

21



In simple notatation, adding random effects to the Poisson regression model Eq.(2.7),

the model is rewritten as follows:

ln(E(yi|mit) = xit
Tb = b0 +

k

å
k=1

bkxkit + mi, (2.11)

where yit is the count of people tested malaria postive in constituency i at time t,

mit is the random effect for constituency i assumed to follow a normal distribu-

tion with mean 0, and variance (s2) and each independent variable, k, is is mul-

tiplied by a coefficient bk and is added to a constant, b0. In more familiar notation,

ln(E(yit|mit) = In(mit) = b0 + b1x1it + b2x2it + . . . + bkxkit + mit. The parameters

(b0, b1, . . . , bk) are estimated by maximum likelihood estimators (MLEs) using it-

erative algorithms such as Newton-Raphson (NR) and iteratively re-weighted least

square and the goodness fit of the model is checked using Pearson chi-square statis-

tic c2.

2.5.3 Conditional Autoregressive Regression models (CARs)

Generally, GRMs do not account for non-linear effects of the covariates as well as the

spatial and temporal structure of the data. Therefore, Conditional Autoregressive

Regression models (CARs) are considered. CAR models are the most often used

spatial analytic models for describing spatial autocorrelation in data relating to a

group of non-overlapping areal units, assessing how quantities of interest fluctuate

with factors, and locating hot spot clusters. These models are often stated in a hier-

archical Bayesian framework, with Markov chain Monte Carlo (MCMC) simulation

used for inference or Integrated Nested Laplace approximation (INLA) (Lee and

Kim, 2008).

In spatial analysis of disease mapping, in a hierarchical Bayesian model, CAR mod-

els are quantified as a prior distribution for a series of random effects to study the

patterns of diseases (Lee and Mitchell, 2013).
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2.5.4 Bayesian Hierarchical approach

Fully Bayesian in disease mapping is important because fully bayesian posterior

standard deviations of small-area relative risks are more reflective of the uncertainty

associated with the relative risk estimation (Ugarte, Militino, and Goicoa, 2008). The

Bayesian approach provides samples of the entire posterior distribution of incidence

rates or relative rates for each area by providing more information than a single

point estimate where all parameters are allocated to cope with their likely volatility

prior to distribution and this can be achieved through Markov chain Monte Carlo

(MCMC) or Integrated Nested Laplace approximation (INLA).

The parameters in Bayesian modeling have distributions that regulate their shape

and are specified by the investigator based on their prior beliefs about their behavior.

(Lawson, 2018).

2.5.5 The Likelihood Function

The likelihood function describes the observed data’s joint probability as a function

of the statistical model’s parameters (Luerken, 2009).

Let yi, i = 1, 2, 3, ..., n be a random variable with probability density function f (yi|q),

where q = q1, q2, ..., qp is a p is a length vector of relative risk parameters, then the

likelihood of yi is defined as:

F(y|q) =
n

å
i=1

f (yi|q), (2.12)

with the assumption that y = y1, y2, ..., ym given q are independent, making it possi-

ble to take the product of individual contribution of f (yi|q) (Lawson, 2018).
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Poisson counts Likelihood

Poisson regression is used to model response variables (Y-values) for small area

count data. Poisson explains which explanatory variables have a statistically sig-

nificant effect on the response variable. The model assume that count variable yi

have a mean mi and is independently distributed as yi ~poisson (mi).

The likelihood function is denoted as:

L(mi) =
n

Õ
i=1

f (xi; mi) =
n

Õ
i=1

mxi
i e−mi

xi!
=

mi åi xienmi

x1!x2!x3! . . . xn!
. (2.13)

The expectation is E(yi) = mi = Eiqi, where Ei is the expected rate for the ith area

and qi is the relative risk for the ith area.

2.5.6 Prior Distributions

Generally prior distribution represents belief about the true value of a parameter q

before observing the data yi. For example, given parameter q, the prior distribution

can be denoted by p(q) , while for a parameter vector u, the joint distribution is

denoted as p(u). There are different types of priors:

Uniformed priors

Uniformed priors describe that there is no prior knowledge. The distribution of

an uninformed prior is believed to add no information to Bayesian inference. For

example, a Uniform(0,1) distribution might be regarded an uninformed prior when

estimating a probability since it states that before collecting any data, we consider

every feasible value for the true probability to be equally likely.

Condjugate priors

A parametric distribution that can be easily apdated. The prior in models with

conjugate priors is the same shape as the likelihood. If the likelihood is a Gaussian

with known precision, then the conjugate prior on the mean is also a Gaussian. This
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ensures that the mean’s posterior distribution is also Gaussian.

For example, let yi be a set of observations {yi}n
i=1 that follow a Gaussian distribu-

tion:

yi|m, t ∼ N (m, t) , (2.14)

,

where m is the unknown mean and t is the known precision.

Then the prior on m can be a Normal distribution with mean m0 and precision t0 :

m ∼ N (m0, t0 ) . (2.15)

The posterior distribution of m|data y ∼ N (m1, t1),

where

m1 = m0
t0

t0+tn
+ ȳ tn

t0+tn

and,

t1 =t0+ tn.

Subjective priors

In subjective priors, a distribution is constructed from an expert’s opinion to de-

scribes the informed opinion of the value of a parameter prior to the collection of

data.

25



Improper priors

Improper priors distribution does not normalize to unity. If prior distributions are

given an improper uniform prior, p(q) µ 1, then the posterior distribution is propor-

tional to the likelihood,

p(q|y) µ p(y|q)p(q) µ p(y|q) (2.16)

yet, a prior distribution p(q) is an improper when it is not a probability distribution,

meaning,

∫
p(q)dq = ¥ (2.17)

Perhaps the most common improper distribution is an unbounded uniform distri-

bution, p(q) µ 1 for −¥ < q < ¥. These priors can used, because in some cases, the

posterior distribution can still be proper even if the prior is not.

Informed priors

Informed priors a description of the level of knowledge you have. The distribution

of an informed prior provides information to the Bayesian inference. It’s either

the outcome of a previous statistical study of other data that provided you with

knowledge about the parameter (example) or it was built from an expert’s estimate

of the parameter. These priors can be modeled in a number of different ways. If

the parameter values produce a distribution that differs from an uninformed prior,

the conjugate prior is an informed prior. For example, a Beta(1, 1) distribution is

usually considered an uninformed prior when estimating a binomial probability

because it assigns equal weight to all values of p between 0 and 1. Thus, a Beta(4, 2)

distribution, for example, is an informed prior because its shape is different: it peaks

at 0.75.
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2.5.7 Posterior Distributions

The posterior distribution, also known as the posterior, is the conditional distribu-

tion of a set of unknown parameters, latent variables, or otherwise missing variables

of interest in Bayesian research. The posterior distribution uses the current data to

update previous information about that parameter, which is referred to as a prior.

Essentially, the prior distribution gives information about the parameter based on

prior beliefs or assumptions, whereas the probability uses facts to provide infor-

mation. The product of the likelihood and the prior distribution is then called the

posterior distribution where Bayes’ theorem is used to derive a posterior distribution

(p(q|x)),

P (q|x) = p (x|q) P (q)

p(x)
=

p (x|q) P (q)∫
P (x|q) p(q)d(q)

, (2.18)

where q is the unknown parameter(s) and x is the current data, t probability of the

data given the parameter P (q|x) is the likelihood L (q|x), The prior distribution,

p(q), is user specified to represent prior knowledge about the unknown parame-

ter(s), and the last piece of Bayes’s theorem, the marginal distribution of data,p(x),

is computed using the likelihood and the prior.

2.5.8 Integrated Nested Laplace approximation (INLA)

According to the literature, the most often used approach for implementing Ap-

proximate Bayesian Inference is Integrated Nested Laplace Approximation (INLA)

(Akerkar, Martino and Rune, 2020). Although the INLA methodology focuses on

models defined as Latent Gaussian Markov random fields (GMRF), it incorporates

a vast family of models that are employed in reality (Akerkar, Martino, and Rune,

2020).

A Latent GMRF model is a hierarchical model in which a distributional for the ob-

servables y is found at the first stage given some latent parameters h and, optionally,

some extra parameters q1.
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p (y|h, qi) = Õ
j
p (yi|hi, qi) (2.19)

The latent parameters h are a subset of the wider latent random field x, which is the

second level of our hierarchical model. The latent field x is modelled as a GMRF

with the assistance of a precise matrix Q that varies with several hyperparameters

q2.

p(x|q2) µ exp
{
− 1

2
(x − u)TQ(x − u)

}
(2.20)

(Akerkar, Martino, and Rue, 2010; Gómez-Rubio, 2020)

The prior distribution for the hyperparameters q = (q1, q2) is the model’s third and

final stage.

The INLA method presents a method for quick Bayesian inference utilising realistic

approximations to p (q|y) and p (xi|y) , i = 0, . . . , n the hyperparameter marginal

posterior densities and the latent variable posterior marginal densities.

28



CHAPTER 3

DATA AND METHODOLOGY

3.1 Study area

Namibia has 14 regions 35 health districts and 122 constituencies in total with

malaria prevent in Northen regions mainly Kavango West and East, Zambezi and

Ohangwena Region and this four regions consist only 34 of the 122 constituencies

and hundreds of clinics that keeps records of individuals that tested malaria that

could be agreagated at constituency level (Maina et al., 2019).

3.2 Study design

After discovering that malaria elimination demands a robust surveillance system

for early detection of malaria infections and allow for a quick and efficient reac-

tion, the World Health Organization and Global Fund promoted the use of a health

information system, and the majority of developing countries, including Namibia,

have implemented the District Health Information Software (DHIS), which records

information on all people who have tested malaria positive (Dehnavieh et al., 2019).

This program is a free and open-source platform for everyday health information

management, with a primary focus on creating health statistics.

Although Polymerase Chain Reaction (PCR) is most useful for confirming the

species of malaria parasite after the diagnosis has been established by either smear

microscopy or Rapid Diagonisis Test (RDT). This study have used secondary

malaria data collected throug a passive surveillance case detection that was car-

ried out among people who visited any of Namibia’s health facilities reporting
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fever/suspected of having malaria and were tested for malaria using the Rapid

Diagonisis Test (RDT) screening and this might have effect on the accurancy of con-

firmed cases. All individuals who tested positive as per RTD test were given a Rapid

Case Notification form (Malaria Case Investigation form) to fill out, which contains

more information about the patient, and the aggregated information of people who

tested malaria positive on a daily basis was recorded in the weekly surveillance as

aggregated data.

The form provided information such as the date the patient tested positive for

malaria, the region, the health district, the health facility center, the patient’s home

village/town, the patient’s age, gender, pregnant status, occupation, malaria symp-

toms, travel history, use of mosquito nets, home sprayed in the previous 12 months,

case classification (i.e., local or imported/non-local), nationality, and many more.

The filled-out forms are then transferred from health facility centers to health dis-

tricts for active surveillance. Malaria positive people were followed up at their

homes one week after having tested positive for malaria so that the geo-coordinates

of breeding sites areas could be recorded. All members of each household and their

immediate neighbours within a 100-meter radius were also tested for malaria.

Malaria-positive individuals were treated immediately, and those who were seri-

ously ill (malaria severe) were transported to the nearest hospital. Some in-depth

investigation was carried out in villages where more people tested positive during

the tracing, and they were also given the active malaria form to fill out. During

household visits, some additional vector control research was conducted at the com-

munity level. The information of all people who tested positive for malaria using

RDT was then entered into an electronic database known as District Health Infor-

mation Software 2 (DHIS2) and this is kept as confidential data for future use.

Therefore, a cross sectional study was employed using two different datasets: 2018

to 2020 malaria weekly surveillance data (complete aggregated dataset) and 2017 to

2020 individual records of malaria confirmed cases by Rapid Diagnostic Test (RDT)
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in the four regions that were entered on the DHIS system at the time (incomplete

dataset). The Ministry of Health and Social Services provided both datasets.

3.3 Data

Malaria has been linked to climatic factors such as temperature, rainfall, wind speed,

humidity, altitude, and soil wetness in studies conducted in some African and Asian

countries (Kazembe, 2007; Wu et al., 2016; Ferrao et al., 2018; Umer et al., 2019). As

a result, the study looked at both climatic variables, as well as some other potential

factors based on the literature, such as population density, age, gender, occupation,

use of mosquito bed nets, and material used for house walls (i.e. sticks, grass, mud,

cow dung, wood, brick, cement, corrugated iron sheets, etc.) and roof material (i.e.

grass, sticks, corrugated iron sheets, asbestos) by utilising a combination of datasets

from various data sources that comprised 2018 to 2020 malaria weekly surveillance

data (aggregated complete dataset), 2017 to 2019 individual malaria tested positive

by RTD dataset, 2017 to 2020 monthly meteorological/weather/climate data, 2017

to 2020 projected population, and Namibia shape files for the constituencies. The

following is a description of the dataset used in the study.

3.3.1 Population at risk

The Ministry of Health and Social Services’ malaria annual report for 2018/2019,

indicates that more cases of malaria were recorded in the four regions (Kavango East

and West, Zambezi, and Ohangwena), as they had been for years. As a result, and to

avaid too many errors, since the survialence dataset recorded malaria case per clinic

not as per constitutuecy, the study primarily targeted the population living in the

four northern risk malaria transition constituencies (Kavango East & West, Zambezi

and Ohangwena region). These include approximately 645 518 people in 2018, 657

589 people in 2019, and 669 820 people in 2020.

These 4 regions are made up of 34 constituencies: 14 in each of the two Kavango

regions, 12 in Ohangwena, and 8 in the Zambezi region. All of these constituencies
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FIGURE 3.1: Map of the 4 regions (Kavango West and East, Zambezi
and Ohangwena)

cover an area of 120 110 square kilometers, with Mashare being the largest at 9104

square kilometers and Rundu Urban being the smallest at 18 square kilometers.

More specifically, in Kavango West and East regions, there are 4 health districts with

29 heath facilities (1 hospital, 2 heath centers and 26 primary health care clinics)

while in Ohangwena region there are 3 heath districts with 36 heath facilities centers

(3 hospitals, 2 health centers and 32 primary health care clinics and 144 outreach ser-

vices points) and in Zambezi region there is one health district with a total number

of 29 health facilities (1 hospital, 3 health centers and 25 primary health care clinics).

The map in Figure 3.2 depicts the 34 constituencies in the 4 regions studied.

Concerns about the potential long-term effects of any disease as well as other demo-

graphic trends, have heightened interest in the accuracy of population projections

(Reed et al., 2002). As a result, the Namibia annual population growth rate was

used to project the population of each constituency from 2012 to 2020 using the 2011

population data from the shapefiles.

(https://www.statista.com/statistics/510201/population-growth-in-namibia/)
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FIGURE 3.2: Map of all constituencies in the 4 regions

3.3.2 Malaria data

Malaria statistics from the Ministry of Health and Social Services from 2010 to 2018

revealed a high number of malaria cases in the 4 Northern regions (Kavango East

and West, Zambezi, and Ohangwena) (Table 1.2). According to Table 1.2, Namibia

recorded 66 141 malaria cases, 62 204 of which were from the 4 Northern regions

(Kavango East and West, Zambezi and Ohangwena). Again, out of 36 451 malaria

cases reported in 2018, the same 4 regions contributed 96% (34 9552 malaria cases) of

the total cases, with Kavango leading the way with 81%, Zambezi with 10 percent,

Ohangwena with 5%, and only 4% reported from the other regions.

The sample data included in this study was, therefore, all 2018 – 2020 malaria weekly

surveillance recorded cases and 2017 – 2019 individual malaria records that were

available on the DHIS2 system of patients from these 4 regions because these are

the regions with the highest malaria transmission among all Zone 1 regions. More

specifically, the individuals satisfying the following criteria:

✓ The individual has visited any of the health service center (i.e., hospital or

clinic) located anywhere in the 4 regions from 2017 to 2019

✓ The individual suspected to have malaria after visiting the clinic or hospital

✓ The individual tested malaria positive through RDT
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✓ The individual who was willing to complete the Malaria Case Investigation

form

✓ The individual information was entered on the DHIS2 system

2018 - 2020 complete aggregated malaria dataset(malaria weekly surveil-

lance dataset)

The Ministry of Health and Social Services maintains a summarised statistic (malaria

weekly surveillance data/aggregated data) that includes a summary of all malaria

daily fever and suspected cases, as well as reported tested malaria positive by RTD

cases per clinic. Every day, all people who visit any of the nearest health facility

centers reporting fever or suspected of having malaria were recorded in this dataset

after testing malaria positive by the Rapid Diagnosis Test (RDT).

This dataset has been identified as a complete malaria dataset. However, because

the data is too summarised, the dataset does not provide all detailed information of

people who tested positive for malaria, as it does on the active malaria form. This

dataset was then obtained in excel format from the MoHSS.

In 2018 – 2020, a total of 44 570 cases of malaria were recorded in the 4 regions, 34

952 in 2018, 2 990 in 2019, and 10 678 in 2020 and this made-up the total sample size

of 44 570 (Table 3.1). The following are statitistics of all malaria reported cases for

the 3 years (2018 - 2020) .
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TABLE 3.1: Total cases of malaria per year per region and health dis-
tricts (2018 – 2020)

Year Region Health districts Malaria cases

Kavango E & W

Andara 4971

2018

Nankudu 8933
Nyangana 3 355
Rundu 9 249
Total 26298

Ohangwena
Eenhana 592
Engela 615
Okongo 502
Total 1709

Zambezi Katima Mulilo 3402
Total 31619

Kavango E & W

Andara 122

2019

Nankudu 374
Nyangana 3 127
Rundu 1 268
Total 1891

Ohangwena
Eenhana 183
Engela 464
Okongo 136
Total 783

Zambezi Katima Mulilo 316
Total 2 990

Kavango E & W

Andara 1 694

2020

Nankudu 2 356
Nyangana 660
Rundu 1 1 203
Total 5913

Ohangwena
Eenhana 855
Engela 487
Okongo 791
Total 2133

Zambezi Katima Mulilo 1998
Total 10035

Grand Total 44644
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2017 – 2019 Individual malaria tested positive by RTD dataset

Individuals who tested positive for malaria using a rapid diagnostic test (RDT) were

provided an active case malaria detection questionnaire/form to fill out, and this

questionnaire is kept at health facility centers for future histories (Smith et al., 2017;

McCreesh et al., 2018; Hsiang et al., 2020). According to the literature, the question-

naire provides more information about the individual that may influence malaria,

such as age, gender, place of residence, use of mosquito net, occupation, household

sprayed in the past 3 months, ownership of mosquito bed nets, slept under mosquito

bed net in the past 3 days, and many other factors.

The MoHSS then introduced the DHIS2 tool in 2014, where they began entering

the information provided in the active case malaria form for everyone who tested

malaria positive at any of Namibia’s health facilities, and entering the cases for mul-

tiple purposes, including achieving goal 3.3 by 2030. Individual datasets of people

who tested positive for malaria using RTD data in the 4 regions of Kavango East

and West, Zambezi, and Ohangwena from 2017 to 2018 were then extracted from

the DHIS2 system in Microsoft Excel format after permission from the Ministry of

Health and Social Services. When people began capturing data on the DHIS2, some

forms were missing, resulting in an incomplete individual dataset.

All individuals who tested positive by RDT among people suspected of having

malaria from all 8 health districts in the 4 regions (Kavango East and West, Ohang-

wena, and Zambezi) when they visited any of the health centres from 2017 to 2019

were recorded. The study then included the information from the active case de-

tection form of individuals who tested malaria positive was entered on the DHIS2

system from the 4 regions.

All confirmed and entered 2017 to 2019 malaria cases on DHIS2 system were 55 261

malaria cases and this was considered as the sample for individual data (Table 3.2)
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TABLE 3.2: Sample size for Individual dataset 2017 to 2019

Region Number of malaria cases

Kavango E & W 49905
Ohangwena 5105
Zambezi 251
Grand Total 55261

3.3.3 Environmental/weather /climatic data of the constituency (2017 -

2020)

Weather forecasting is provided by the Southern African Science Service Cen-

tre for Climate Change and Adaptive Land Management (SASSCAL) Net page

"http://www.sasscalweathernet.org/in- dex.php MIsoCode=NA" and this used to

obtain average monthly weather data from 12 weather stations in towns or close

towns to the constituencies in the 4 regions with the assistance of the Namibia Me-

teorological Service Windhoek’s climate and data section, whereas constituencies

without a weather station used monthly weather data from the nearest weather sta-

tion. The 12 weather stations were: Alex Muranda Livestock Development Centre,

Bagani, Dudukabbe, Hamoye, Kalimbeza, Kanovlei, Mashare, Ngoma, Okalongo,

Okashana, Omafo, and Sachinga.

The list of datasets used in the study, as well as the variables of interest from each

dataset, are shown in Table 3.3. The study merged all the 4 datasets listed in Table 3.3

into one data to attain all the objectives of the study considering varieties of variables

from the 4 listed datasets. Basically, individual data set was analysed to determine

some of the non-climatic variables thought to influence malaria through fitting a

poison non-spatial model while malaria aggregated datasets that was merged with

climatic as well as population data was used in attaining all the study objectives

through fitting a non-spatial, spatial and spatial-temporal models.
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TABLE 3.3: List of merged datasets

MERGED DATASET VARIABLE OF INTEREST

1. 2018 – 2020 Malaria
Monthly surveillance
data (complete
aggregated data)

1. Region and constituency (spatial effect)
2. Year (time effects)
3. Season
4. Total number of people tested malaria positive by
RDT in each constituency (dependent variable)
5. Expected cases (offset)

2. Monthly
meteorologi-
cal/weather/climatic
data of the
constituency (2018-
2020)

5. Temperature (average, minimum and maximum)
6. Amount of rainfall recieved
7. Average wind speed
8. Average soil temperature
9. Humidity
10. Average leaf wetness
11. Altitude in meters

3. Population data 12. Population and Human population density per
constituency

4. Individual dataset
(2017 - 2019) extracted
from DHIS2 system

13. Gender
14. Age group
15. Place of residence
16. Type of health facility where the individual tested
malaria positive
17. Occupation
18. Slept under mosquito bed net in the past 3 days
19. Home sprayed in the past 12 months

3.4 Ethical considerations

The Namibia University of Science and Technology (NUST) Research Ethical Com-

mittee, as well as the Ministry of Health and Social Services Research Ethics Commit-

tee, provided ethical approval for the use of RDT-positive malaria cases as secondary

data for malaria cases in Namibia’s four most malaria-transmitting regions. The data

will be treated confidentially and will not be used for any other purpose other than

academic research.

3.5 Data management

3.5.1 Data cleaning

Data cleaning was performed on all datasets prior to analysis. Monthly climatic vari-

ables and population of each constituency were aggregated for 2018 - 2020, and the
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proportion of some other possible factors from the individual dataset, such as age,

gender, material used for wall, roof, and floor, were then computed per constituency

(Table 4.4 and 4.5).

Before the analysis, the data was cleaned, variables for both datasets were aggre-

gated per constituency e.g., mean of malaria positive cases (dependent variable), the

mean population of each constituency, constituency mean for all climatic valuables

included in the model as possible factors/covariates (fixed effects), and proportion

for the possible factors from the individual dataset e.g., age, gender, material used

for wall, roof and floor were computed per constituency (Tables 4.4 and 4.5).

Several models (non-spatial, spatial, and spatio-temporal) were fitted. The spatio-

temporal analysis only considered the entire 2018 – 2020 constituency yearly ag-

gregated data. R-statistical software was used for non-spatial, spatial, and spatio-

temporal data analysis, with the INLA package being used to explain disease pat-

terns, identify malaria risk factors, and constituencies at high risk (malaria hot-spot).

R-code used for the analysis were presented in Appendex A.

3.5.2 Standardised Incidence Ratio (SIR)

Before fitting the modeles, SIR a straightforward measure of disease risk in a specific

population each year was computed. The Standardised Incidence Ratio is used to

determine whether the occurrence of any disease is high or low in a relatively small

population. SIR values can indicate whether the number of observed cases in each

geographic area is higher or lower than predicted based on the population of the

community. SIR is 1 if the observed number of instances equals the expected number

of cases. The SIR will be more than one if there are more cases than predicted; if there

are fewer cases than expected, the SIR will be less than one (Disease Control, Pre-

vention et al., 2008). SIR (Standardized Incidence Ratio) was calculated as follows:

Let yijt be the observed malaria case in constituency i(i = 1, 2, 3, . . . , n) , season

j(j = 1, 2, 3, and 4) and year t(t = 1, 2, and 3), then we define SIR as the ratio
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of observed cases yijt to the number of expected cases Eijt in the ith constituency, j

season at time t:

SIR = RR = qijt =
yijt

Eijt
(3.1)

With the expected number of malaria cases estimated as the constituency overall

mean rate in the year t multiplied by the population of the constituency:

Eijt = meanratet × populationijt (3.2)

In addition, malaria annual incidence rate of each constituency’s per 1000 popula-

tion was also computed by using the projected population: Incidence rate = (number

of cases/population at risk) × 1000

IRijt =
yijt

Pijt
× 1000 (3.3)

Small areas, on the other hand, may exhibit extreme SIRs in many situations due to

small population sizes or small sample sizes. SIRs may be misleading and insuffi-

ciently reliable for reporting in these cases. As a result, it is preferable to estimate

disease risk using Bayesian hierarchical models, which allow for information bor-

rowing from neighbouring areas and the incorporation of covariates, resulting in

the smoothing or reduction of extreme values (Moraga, 2019).

3.6 Model building for count data

Although count data can be approximated by a normal distribution and reason-

ably described using a linear model, count data are most typically modeled using

a generalised linear model with a Poisson distribution or a negative binomial distri-

bution (GLM). Poisson and negative binomial distributions are discrete probability

distributions with two fundamental properties: they only contain zero and positive

integers, and the variance is a function of the mean (Gardner, Mulvey, and Shaw,

1995; Sellers and Shmueli, 2010).
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This study used the sum and mean of malaria tested positive as the dependent

variable, so count models were used to achieve the study’s objectives using both

individual and aggregated malaria dataset. The following is detailed information

on count models.

3.6.1 Poisson regression model (non-spatial model)

Poisson regression model expresses explanatory/covariates that have a statistically

significant effect on the response variable. This model is defined such that the

observed number of malaria cases (yijt) in constituency j, season j in year time

t, with associated expected counts Eijt could be treated as one realization of poi-

son random variables with means mijt, i.e., yijt|Eijt, qijt ~poisson(Eijtqijt), where

mijt(m1, m2, m3, ..., mn) = Eijt × qijt is a function of the effecects of k covariates xkijt

as well as as spatial and temporal random effects. Then general Poisson model is

given by:

E(yijt|Eijt, qijt) = ln(mijt) = exp(xijt
Tb+ Eijt). (3.4)

(Cameron and Trivedi, 2001; Lord et al., 2006; Greene, 2008; Hilbe, 2011; Cameron

and Trivedi, 2013). In familiar notation this could be rewritten as:

ln(E(yijt|Eijt, qijt)) = (mijt) = b0 + b1xijt1 + b2xijt2 + b3xijt3 + · · ·+ bkxijtk + o f f set(Eijt),

(3.5)

where mijt is the expected value of the outcome variable yijt for subject in this

case mijt is the expected number of malaria cases, b0 is an intercept that explain

the iverall mean incidence, b1, b2, . . . , bk are estimated parameters regression co-

efficients) and xij1, xij2, xij3 . . . xijk, are the explanatory/independent variables with

corresponding estimated parameters bk , and Eijt is the added offset. The parame-

ters (b0, b1, . . . , bk) are estimated by maximum likelihood estimators (MLEs) using

iterative algorithms such as Newton-Raphson (NR) and iteratively re-weighted least

square and the goodness fit of the model is checked using Pearson chi-square statis-

tic c2.
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Interpretation of the Poisson regression parameter

For a binary explanatory variable denoted by an indictor variable, let xi = 1 be the

variable in category 1 (if the factor is present) and xi = 0 be the variable in category

0 ( if factor is absent) and rate ratio: RR =
E(yijt|present)
E(yijt|absent) = ebi . If xk is continuous, a

one-unit increase will result in a multiplicative effect of ebk on the rate m, eb0 is the

rate for the observation being studied if all xi = 1, 2, 3, . . . , n are equal to zero.

Model assumption

(i) Poisson model assumes that the dependent variable (response) consists of

count data (i.e. count yijt) which is either a zero or greater (nonnegative in-

teger). For one to run a Poisson regression model, the minimum value of yijt

must be 0. In this study yijt is defined to be the count of people who tested

malaria positive by RTD in constituency i at time j and t.

We can test this by computing the expected counts and plot them with the

observed counts to see if they are related but in this case one cannot clearly see

how these are related. Hence the best way is to use a formal hypothesis test,

known as a chi–squared
(
c2) goodness–of–fit test. For instance, if one thinks

our data might follow Poisson distribution, the null hypothesis (Ho) can be

formulated as alternative Hypothesis (H1) for example, Ho: The data follows

a Poisson distribution and H1 : The data does not follow a Poisson distribution.

For the goodness–of–fit test to work, all expected frequencies must be ≥ 5; to

achieve this, adjacent categories can be “pooled” and we reject Ho if p – value

is less than a, level of siginificane.

(ii) The information (data) should include at least one or more independent vari-

ables that can be measured on a continuous, ordinal, or nominal scale. Ordi-

nary, nominal, or continuous explanatory variables should be used.

(iii) The observation should be independent. Meaning that the occurrences of a

random event in an interval of time are independent. In other words, one
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observation cannot provide any information on another observation or to say

there is no relationship between the observations in each group or between

the groups themselves. This assumption can also be checked by comparing

standard model-based errors versus robust errors to see whether there are any

significant differences.

Goodness of fit testing

The Wald test statistics could be used to measure the model’s quality of fit (named

after Abraham Wald). The Wald test assesses statistical parameter constraints by

calculating the weighted distance between the unrestricted estimate and its expected

value under the null hypothesis, where the weight represents estimate precision.

Wald test statistics is denoted as follows:

W =
b̂i − b̂0

ŝeb̂i
(3.6)

3.6.2 Negative binomial regression

If the data failed the premise of equidispersion, it is usually a good idea to look

for "apparent Poisson Overdispersion." As a result, if the assumption is still broken,

various changes must be made to the Poisson distribution. model to confirm if it is

overdispersed (Hilbe, 2011; Swartout et al., 2015).

(i) Ensuring that all relevant variables are included in the model;

(ii) Checking if the data have some outliers;

(iii) Checking if the model included all relevant interaction terms;

(iv) Checking if one of the variables needs to be transformed;

(v) Checking if the data is sufficient for the model or the data is too sparse, for

example if there are many gaps present in the data being recorded, and

(vi) If there are missing values that are not missing at random.
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After testing poisson assumptions, the data failed the premise of equidispersion

assumption, as a result, Negative binomial regression a variant of Poisson regression

that lowers the Poisson model’s restrictive constraint that variance equals mean can

be utilised (Hilbe and Greene, 2007; Collins, Waititu, and Wanjoya, 2020; Leckie

et al., 2020) was considered. Negative Binomial regression a special case of Pois-

son–gamma mixture assesses the significance of variability in the incidence ratio by

modeling Poisson heterogeneity with a gamma distribution and log link function. In

this study, the number of cases (yijt) was assumed to follow a poisson distribution

in the negative binomial model, while the mean (mijt) follows a Gamma distribution

(Cameron and Trivedi, 2001; Lord et al., 2006; Greene, 2008; Hilbe, 2011; Cameron

and Trivedi, 2013).

The negative binomial distribution is denoted as follows:

p (y) = p (Y = y) =
G
(
y + a−1)

G (y + 1) G (a−1)

(
1

1 + am

)a−1 (
am

1 + am

)y

, (3.7)

where m > 0 is the mean incidence rate of Y per unit of exposure (e.g., population

size area, distance, or time) and a > 0 is the heterogeneity parameter.

let b = (b0, b1, b2, b3 . . . bk)
T the predictor data is then compiled into a design matrix

X, as shown below.:

X =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x11 x12 x13 . . . x1k

1 x21 x22 x23 . . . x2n

1 x31 x32 x33 . . . x3k
...

...
...

...
. . .

...

1 xn1 xn2 xn3 . . . xnk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Designating the ith raw of x to be xijt and exponentiating the negative binomial

model Eq (3.12), the negative binomial distribution can be rewritten as follows:

p
(
yijt
)
=

G
(
yijt + a−1)

G
(
yijt + 1

)
G (a−1)

(
1

1 + aexijtb

)a−1 (
aexijtb

1 + aexijtb

)yijt

, (3.8)
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where i = 1, 2, . . . , n and the parameters a and b are estimated using maximum

likelihood estimation and the likelihood function is denoted as follows:

0

L (a, b) =
n

Õ
i=1

p
(
yijt
)
=

n

Õ
i=1

G
(
yijt + a−1)

G
(
yijt + 1

)
G (a−1)

(
1

1 + aexijtb

)a−1 (
aexijtb

1 + aexijtb

)yijt

,

(3.9)

And the likelihood function is given by:

lnL (a, b) = å
n
i=1
{

yit ln a+ yit (xit.b)−
(
yit + a−1) ln

(
1 + aexit.b

)
+ G

(
yit + a−1)− G (yi + 1)− G

(
a−1)}

(3.10)

The value of a and b that maximize lnL (a, b) is the maximum likelihood estimate

The negative binomial model can be expressed as a Poisson-gamma mixture. Let

yijt|Eijt, qijt ∼ Poisson(mijt), the Poisson mean mijt is structured as follows:

E(yijt|Eijt, qijt) = mijt = exp(xijt
Tb+ seijt + Eijt). (3.11)

(Cameron and Trivedi, 2001; Lord et al., 2006; Greene, 2008; Hilbe, 2011; Cameron

and Trivedi, 2013). In familiar notation this could be rewritten as:

ln(E(yijt|Eijt, qijt)) = ln(mijt) = b0 + b1xijt1 + b2xijt2 + b3xijt3 + · · ·+ bkxijtk + seijt + o f f set(Eijt),

(3.12)

where sei is the disturbance model error that is independent of all covariates, and

exp(ei) is assumed to have a gamma distribution with a mean equal to 1 and a

smaller variance.

3.6.3 Model specification (spatial model and spatial temporal)

Bayesian hierarchical modelling

Bayesian hierarchical modeling is a statistical model with numerous levels (a hierar-

chical model) that employs the Bayesian approach to estimate the parameters of the
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posterior distribution (Allenby and Rossi, 2006). The hierarchical model is formed

by combining the sub-models, and the Bayes’ theorem is applied to integrate them

with observed data and account for any uncertainty (Allenby and Rossi, 2006). As

further evidence on the previous distribution is acquired, the posterior distribution,

also known as the updated probability estimate, is the consequence of this integra-

tion (Allenby and Rossi, 2006).

Bayesian hierarchical modeling is a statistical model created in several levels (a hi-

erarchical model) that employs the Bayesian approach to estimate the parameters

of the posterior distribution (Allenby and Rossi, 2006).The submodels are merged

to form a hierarchical model, and the Bayes’ theorem is applied to integrate them

with observed data and account for all uncertainty. (Allenby and Rossi, 2006). The

posterior distribution, also known as the updated probability estimate, is the result

of this integration as more data on the previous distribution is collected (Allenby

and Rossi, 2006).

Bayesian hierarchical model components

A Bayesian hierarchical model is made up of three parts: the data model, which

describes the data distribution given the parameters, the process model, which de-

scribes the underlying spatial trend, as well as the parameter model, which describes

the prior distribution of the parameters to be estimated ( Lesaffre and Lawson, 2012).

Data model: Spatial

Let yit be the observed number of malaria case in each constituency i(i =

1, 2, 3, . . . , n) at time t (t = 1, 2, and 3 ), Eit be the expected cases, and qit be the

relative risk in constituency i at time t.

Then the observed yit in n counties could be treated as one realisation of Negative Bi-

nomial random variables, that follows a Negative Binomial distribution with mean

mit which is a function of k covariates (xkit) as well as spatial random effects. Then:

yit|Eit, qit ∼ NB (Eitqit). This can be rewritten as: yit ∼ NB (mit)
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Data model: Spatio-temporal

The Besag, York, and Mollie’s (BYM), model model developed by Besag, York, and

Mollie is a popular hierarchical Bayesian model. When working with area/lattice

data, this model (BYM), is known to be the best model for modeling the spatial and

temporal effects (Moraga, 2019). As a result, the BYM spatial model was fitted on the

3 years’ combined (aggregated) dataset, whereas the BYM spatio-temporal model

was fitted on the 2018 to 2020 disaggregated malaria complete data. This model

incorporates random effects resulting from unstructured and spatially structured

heterogeneity into the log-linear model for relative risk, allowing smoothing relative

risks at both the global and local levels.

Let yit be the observed malaria case in each constituency i(i = 1, 2, 3, . . . , 102) at time

t(t = 1, 2, and 3), Eit be the expected cases in constituency i at time t , qit =
yit
Eit

be the

relative risk in constituency i at time t.

The observed yit in the 102 counties could be treated as one realisation of Poisson

random variables, that follows a Poisson distribution with mean mit (m1 . . . mn) =

Eit × qit which is a function of k covariates (xkit) as well as spatial and temporal ran-

dom effects. Then, yit|Eit, qit ∼ NB (Eitqit). This can be rewritten as, yit ∼ NB (mit)

Process model and the parameter model

The relative risk structure’s underlying structure is described by the process model.

We employed the spatial model’s spatio-temporal extension (Besag-York-Mollie)

model, which is a CAR convolution model with two random effects, one spatially

organized area-specific random impact and one unstructured area-specific random

influence (Besag, 1991).
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I. Spatial model

ln (E(yit| qit) = ln (mi) = b0 + b1xit1 + b2xit2 + b3xit3 + . . . + bkxitk + o f f set(Eit) + seit + ui + vi,

(3.13)

This model is an extenstion of non-spatial model Eq. (3.12), where ui is the spatial

structured random effects and, vi spatially unstructured random effects that account

for spatial dependence.

Priors for the spatial random effecrs were set to follow log gamma distribution with

mean = 0, precision = 0.001 that corresponds to large variance because the study

used a Negative Binomial model which is a generalisation of the Poisson model,

while the default prior assigned to the associated coefficients (and the intercept) was

a Gaussian distribution since there was no enough information available to fully

specify a precise prior.

II. Spatio-temporal model

The spatial Besag-York-Mollie (BYM) spatial model (Eq. (3.13)) is extended to allow

for a temporal component:

ln (E(yit| Eit, qit) = ln (mit) = b0 + b1x1it + b2x2it + b3x3it + . . . + bkxkit + seit + ui + vi + Temporalt(bt),

(3.14)

with t = 1,2,and 3. On Temporalt(bt), a parametric or nonparametric structure can

be specified to present a parametric trend for the temporal component and nonpara-

metric trend for the temporal component respectively (Blangiardo and Cameletti,

2015).

The linear predictor of parametric trend (parametric model with fixed covariates

and time component)
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From the spatial Besag-York-Mollie (BYM) spatial model Eq.(3.13), (b+ di) × t de-

noting the main spatial effect was added to Eq. (3.13) to accommodate for temporal

component:

ln (E(yit| Eitqit) = ln (mit) = b0 + b1x1it + b2x2it + b3x3it + . . . + bkxkit + seit + ui + vi + (b+ di)× t,

(3.15)

where , b is the main linear trend that represents the global time effect, and di be the

differential trend that characterizes the interaction of time and space.

The linear predictor of non-parametric trend:

ln (E(yit| qit) = ln (mit) = b0 + b1x1it + b2x2it + b3x3it + . . . + bkxkit + seit + ui + vi + gt + ft,

(3.16)

where gt represent the structured temporally effect modelled dynamically using

random walk of order 1 or 2 while ft represent the unstructured temporally effect

III. Full spatio-temporal extension of the spatial Besag-York-Mollie (BYM) model,

which is the CAR convolution model with two random effects, one spatially struc-

tured and one unstructured area-specific random effect

Full spatio-temporal extension of the spatial Besag-York-Mollie (BYM) model is a

extenstion of Eq.(3.16) where dit was introduced to allow for a spatial-temporal inter-

action, which would explain variances in the time trend of malaria cases for various

constituencies.

ln (E(yit| qit) = ln (mit) = b0 + b1x1it + b2x2it + b3x3it + . . . + bkxkit + seit + ui + vi + gt + ft + dit,

(3.17)

where g t is a random term representing between time (year) variation and was

assumed to be an autoregressive process, ui is a spatially organised, area-specific
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random effect that allows for smoothing between adjacent areas, namely:

ui|uj ∼ N
(
m̄di, su

2

ndi

)

with di , be the set of neighbours and ndi be the number of neighbours for a specific

area i. The unstructured component vi is modelled using as a Gaussian process.

vi ∼ N
(
0, su

2)
To account for increased variation in counts caused by unobserved (and geograph-

ically unstructured) risk variables, the gt term that represents the temporally struc-

tured effect was modelled dynamically using random walk of order 2 (RW of order 2)

defined as:

gt|gt−1,gt−2 ∼ N(2gt−1 + gt−2, s2).

While ft term is specified using a Gaussian exchangeable prior, which is defined as:

ft ∼ N
(

0, 1
tft

)

To allow time and space to communicate with one another, which explains differ-

ences in the time trend of malaria risk for different constituencies, the parameter dit

has a Gaussian distribution with a precision matrix provided by tdRd where td is

an unknown scalar and Rd is the structure matrix specifying the type of temporal

and/or spatial dependence between the elements of d.

Rd may be factored as the Kronecker product of the structural matrix of interacting

primary effects. The structure matrix can be defined in four ways (Blangiardo and

Cameletti, 2015).

The fitted spatio–temporal model considered three different types of interactions

(see Table 3.4.)

50



TABLE 3.4: List of interaction considered in the study

Interaction Parameter Inter-
acting

Rank

I. Nonspatially or Temporally
structured interaction

vi and ft nT

II. Temporally structured interac-
tion

vi and gt n(T − 2) f or RW2

III. Spatially structured interaction ft and ui (n-1)T

I. Nonspatially or Temporally structured interaction

This interaction assumes that the unstructured spatial effects (vi) is interacting with

the unstructured temporal effect (ft) and the structure matrix is denoted as follows:

Rd = Ru
⊗

Rf = I
⊗

I = I

Since we assumed not spatial neither temporal structure on this interaction I, then:

dit ∼ N
(

0, 1
td

)

This means that the interaction (I) can be viewed as unobserved independent factors

for each constituency and year combination, resulting in no structure (López-Quılez

and Munoz, 2009). However, if the model includes spatial and temporal main ef-

fects, this interaction effect simply suggests independence in deviations from them

(López-Quılez and Munoz, 2009). Due to the main effects, contributions to malaria

risk in neighbouring constituencies or in subsequent years (e.g., 2018, 2019, and

2020) can still be highly connected. As a result, this is a global space-time hetero-

geneity effect that is typically modelled as white noisez.

Again, interaction (I) can refer to any non-permanent factor that can induce a mi-

nor rise or decrease in malaria rates in a given constituency-year, allowing for

random–independent–oscillations around the expected rates (López-Quılez and

Munoz, 2009).

51



II. Temporally structured interaction

This interaction assumes that the unstructured spatial effect (vi) is interacting with

the structured temporal effect(gt) and the structure matrix is denoted as follows:

Rd = Rv
⊗

Rg ,

where Rv = I and Rg is the neighbouring structure defined through second – order

random walk (RW2). This results in the assumption that for the ith constituency, the

parameter vector {d1i, . . . , diT} has a time-dependent autoregressive structure com-

ponent which does not depend from the ones of the other constituencies (Orford,

2001).

In this interaction, each zone (constituency) has its own structure that is dis-

tinct/independent from nearby constituencies, and the evolution structure for each

constituency can take on as many forms as the temporal main impact itself. How-

ever, this does not imply that each constituency evolves independently of the others,

as they may have a similar temporal main effect. Independence has little effect on

deviations from the global trend (López-Quılez and Munoz, 2009).

From literature, this interaction is best when it comes to fitting diseases models to

identify risk factors in specific areas e.g., constituencies as well as bringing devia-

tions from the global trend to provide a good balance between fit and complexity

(López-Quılez and Munoz, 2009).

III. Spatially structured interaction (last fitted interaction)

This Interaction assumes that the unstructured temporal effects (ft) is interacting

with the structured spatial effect (ui) and the structure matrix is denoted as follow:

Rd = Rf
⊗

Ru,

where Rf = I and Ru is the neighbouring structure defined by the second – order
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random walk (RW2) algorithm. This leads to the presumption that the ith (year) time

point t = dt, . . . , dnt has a spatial structure distinct from the previous time points

(Orford, 2001).

Similarly, each period of the interaction can be regarded to have its own spatial

structure, irrespective of previous periods (its neighbours in time). For example,

spatial clustering effects is classically modelled with a CAR distribution for each

year (Orford, 2001). This interaction can also yield to interaction I (non-spatially or

temporally interaction) because of the insertion of a spatial term for heterogeneity

(such as in the BYM specification) (Orford, 2001).

As a result, it is expected that each unique region may deviate somewhat from the

global trend, but that this divergence will be similar to that of neighbouring regions

while remaining independent of the prior or subsequent period of time.

This is also one of the important interactions to address in spatial temporal mod-

elling because it depicts instances in which an unobserved regional factor affects an

area including two or more nearby zones but is not persistent in time (Orford, 2001).

For other parameters e.g., b0, we allocated previous distributions to scaled precision

matrix parameters based on their diagonal marginal standard deviations. The prior

distribution follows a weakly informative prior with zero-mean Gaussian distribu-

tion with a large variance which is usually an appropriate prior in most of the cases

since there is always not enough information available to fully specify a precise prior.

A variety of models were run, and the model with the lowest DIC value was deemed

the most effective.
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3.7 Parameters estimation, spatial autocorrelation, and best

model selection criteria

Parameters estimation

We defined a queen nb neighbourhood as adjacent counties with adjacency weights

Wij = 1 if constituency i and j share a common boundary and Wij = 0 otherwise.

The parameters were estimated using the Integrated Nested Laplace approximation

(INLA), which takes considerably less time than the Markov Chain Monte Carlo

Methods (MCMC) (Gómez-Rubio, Bivand, and Rue, 2021). The priors for all param-

eters were set to follow log gamma distribution because the study used negative

binomial model which is a generalisation of the Poisson model with mean = 0 and

very low precision = 0.001 that corresponds to a large variance. Sensitivity analysis

was performed on all the models due to the inherent challenges that arise with each

formulation.

The same priors were considered to fit another model BYM2. This model improves

parameter control by allowing the parameters to be seen independently of one an-

other, as opposed to BYM, which does not allow the spatially organised component

to be seen independently of the unstructured component (Orford, 2001).

Spatial autocorrelation testing

Several R packages were used in the analysis. Moran’s I was used to test the data

for global spatial autocorrelation. Malaria occurrence clusters were then identified

using local Moran and Getis and Ord spatial statistics. The mean population of

each constituency from 2018 to 2020, as well as the constituency mean for all cli-

matic valuables included in the model as possible factors/covariates (fixed effects),

were also computed using yearly data from 2018, 2019, and 2020. According to the

literature, disease mapping considers the sum of cases as the dependent variable in

spatial and spatial temporal analysis (Orford, 2001). In this study, the sum and mean

of all confirmed malaria positive cases for three years (2018, 2019, and 2020) was
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computed and used as the dependent variable for disaggregated and aggregated

data respectively. There was a unique identification code (object ID) for all records in

the dataset for spatial analysis purposes, where total malaria cases per constituency

were cross-linked to constituency names by a unique identification code, allowing

constituency analysis to be performed.

The Moran I Index was calculated to determine whether there is a global spatial

autocorrelation in the data/malaria case clusters in Namibia. Moran’s I statistical

test’s null hypothesis was that the incidence of malaria observed in constituency i

is independent of that observed in the neighbouring constituency (j), which was

defined by linking each constituency to its immediate neighbour. The local moran

statistic and local G maps were then used to determine where there is high/low

clustering.

Best model selection

Using the malaria data, all of the Poison Regression assumptions were tested, and

the equidispersion assumption was violated, indicating that the data is dispersed.

As a result, in the non–spatial, spatial, and spatial temporal final models, a Negative

binomial (Poisson–gamma mixture) distribution was considered to allow the mod-

elling of Poisson heterogeneity through gamma distribution and log link function to

assess the significance of variability in the incidence ratio.

Preliminary analysis of univariate and multivariate associations of covariates con-

sidered, and incidence rate were obtained from both Poison and Negative Binomial

non–spatial models, and the result from the Negative Binomial non–spatial model

conspired to explain the effects better (low AIC value) than the result from the Poison

non-spatial mode.
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TABLE 3.5: List of Analysis performed in the study

ANALYSIS DESCRIPTION
Analysis 1 Descriptive analysis
Analysis 2 Poison non-spatial modelling (using 2018-2020 agreg-

gated dataset)
Analysis 3 Negative Binomial non-spatial modelling (using both

2018-2020 agreggated dataset and 2017-2019 individ-
ual dataset)

Analysis 4 Negative Binomial spatial modeling (using both
2018-2020 agreggated dataset and 2017-2019 individ-
ual dataset)

Analysis 5 Negative Binomial spatial-temporal model (using
2018-2020 disagreggated dataset)

Table 3.5 have summarized the analysis performed in this study.

3.8 Model selection criterion

3.8.1 Akaike Information Criterion (AIC)

The AIC is a statistical approach to assess how well a non-spatial model fits the datait

was generated from. In statistics, AIC is used to compare different possible models

and determine which one is the best fit for the data. It is generated using the number

of independent variables examined in the model and the model’s highest likelihood

estimate (how well the model reproduces the data).

AIC = 2k − 2ln(L), (3.18)

where k represents the number of parameters in the statistical model and L repre-

sents the maximum likelihood function value for the estimated model.

The best-fit model according to AIC is the one that explains the greatest amount

of variation using the fewest possible independent variables. Several models are

computed from the same dataset, and the model with the lower AIC is deemed the

optimal model, explaining the largest amount of variation with the fewest potential

independent variables (Moffatt, 2017). The phrase 2k refers to a penalty for overfit-

ting, and it discourages the use of too many variables in models, which always leads
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to a decreased likelihood.

3.8.2 Bayesian Information Criterion (BIC)

Schwarz (1998) proposed the BIC as a model selection criterion which is similar to

AIC in that it is based on empirical log-likelihood functions. When fitting a model,

adding parameters might enhance the likelihood, but this can lead to overfitting. As

a result, the BIC addresses this issue by incorporating a penalty term for the amount

of parameters in the model. The penalty term in BIC is higher than in AIC, and the

model with the lowest BIC value is the best fit.

The BIC is given by:

BIC = kln(n) − 2ln( L̂), (3.19)

(Coban and Sayil, 2019), where

L̂ = is the model’s likelihood function’s maximum value, and

k = the number of free parameters to be approximated n = the number of observa-

tions, or, more precisely, the sample size

3.8.3 Deviance Information Criterion (DIC)

This is a hierarchical generalisation of the AIC and BIC, which are commonly used

in spatial and spatio-temporal model selection, such as Bayesian model selection

using MCMC simulation. Although this is not always true, the derivation of DIC

assumes that the genuine model is included by the stated parametric family of prob-

ability distributions that generate future data. In DIC, the observed data are used to

evaluate the estimated models. As a result, DIC prefers models that are over-fitted.

Nonetheless, the best model is the one with the lowest DIC value. The definition of

DIC is as follows:

D(q) = 2 log( f (y)) − 2log(p(y|q)), (3.20)
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(Wikipedia contributors, 2021; Celeux et al., 2006 ; Bürkner, 2017), where y are the

data, q are the unknown parameters of the model, and p(y|q) is the likelihood func-

tion.

The model’s effective number of parameters is calculated as follows:

pD = D(q)− D(q̄), (3.21)

(Wikipedia contributors, 2021; Bürkner, 2017), where q̄ is the expectation of q and

pD is the effective number of parameters.

Then, DIC is then calculated as:

DIC = pD − D̄ (3.22)

Models are also penalised by the value of D̄, which promotes a strong fit.
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CHAPTER 4

RESULTS

The obtained results are displayed and discussed in this chapter. Sections have

been created from the received results. The initial portion offeres more extensive

information about the data (descriptive analysis), which is followed by additional

sections, such as results from non-spatial, spatial, and spatial-temporal models.

4.1 Description and distribution of 2018 to 2020 malaria in-

cidence rate in Kavango E and W, Zambezi and Ohang-

wena region

The description and distribution of 2018 to 2020 malaria incidence rate in Kavango E

and W, Zambezi and Ohangwena region is displayed in Table 3.1. Results obtained

from 2018 to 2020 aggregated malaria data show that a total of 31 619 people in the

4 regions (Kavango East and West, Ohangwena, and Zambezi region) tested malaria

positive by RTD in 2018, while in 2019 and 2020, the total number of people who

tested malaria positive was 2 990 and 10 035 respectively, for a total of 44 644 malaria

positive cases reported over a three-year period from 2018 to 2020 (Table 4.1). Fur-

thermore, for all the years, most cases were reported during Autumn (March, April,

and May) and Summer (December, January, and February) (Figure 4.1 and Table 4.1).

Namibia’s peak malaria season typically occurs between January and May following

the rainy season, as most cases were reported during this period in Autumn (March,

April, and May) and also Summer (December, January, and February), which is also

the season with the highest rainfall in the three years stretching from 2018 to 2020
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(Figure 4.1 and Table 4.1).

Malaria cases transmission were found to be highly seasonal (Figures 4.1 and 4.3).

Figure 4.1 shows that the number of malaria cases observed is directly proportional

to the amount of rainfall received. The more rain there was, the more malaria cases

there were.

FIGURE 4.1: Trend analysis of malaria (2018-2020)
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TABLE 4.1: Total number of people suspected to have malaria and
tested positive per region per season

Year Region Season Suspected
malaria
cases

Positive
malaria
cases

Kavango E & W

Autumn 63834 17103

2018

Spring 34079 380
Summer 30854 5103
Winter 52504 3712
Total 181271 26298

Ohangwena

Autumn 20556 664
Spring 15001 44
Summer 13413 869
Winter 18085 132
Total 67055 1709

Zambezi

Autumn 8991 2214
Spring 4439 31
Summer 5147 880
Winter 7333 277
Total 25910 3402

2018 Total 274236 31619

Kavango E & W

Autumn 22438 828

2019

Spring 26805 98
Summer 22732 793
Winter 30010 172
Total 101985 1891

Ohangwena

Autumn 10805 172
Spring 16911 92
Summer 12341 384
Winter 21102 135
Total 61159 783

Zambezi

Autumn 4667 126
Spring 6179 20
Summer 4227 143
Winter 6382 27
Total 21455 316

2019 Total 184599 2990

Kavango E & W

Autumn 32841 4757

2020

Spring 13713 45
Summer 19220 897
Winter 16410 214
Total 82184 5913

Ohangwena

Autumn 16304 1131
Spring 4401 8
Summer 11432 955
Winter 5240 39
Total 37377 2133

Zambezi

Autumn 7454 2266
Spring 2700 30
Summer 3567 270
Winter 2335 66
Total 16056 2632

2019 Total 135617 10035
Grand Total 594452 44644

61



Maps of malaria incidence rates 2018 to 2020

The non–predicted malaria incidence rate, defined as the number of new cases of

malaria (incident number) in the population over a certain period was calculated by

dividing the total number of malaria cases in each constituency by the population at

risk at the time:

✓ Average malaria incidence rate = Average number of malaria cases in each

constituency for the 3 years (2018– 2020)/Average predicted population of the

3 years in each constituency.

✓ Annual malaria incidence rate = Total number of malaria cases in each con-

stituency per year/Total number of the predicted population in each con-

stituency per year.

The map with constituency names depicted in the Figure below aids in identifying

at-risk constituency names (Figure 3.2).

FIGURE 4.2: Constituency names in the 4 regions map

The maps of malaria incidence rates obtained are shown below in Figure 4.3. The

maps reveal that several constituencies had an average malaria incidence rate of

more than 140 per 1000 population for the three years (2018–2020). Mpungu con-

stituency had the highest average malaria incidence of 137 cases per 1000 popula-

tion, followed by Tondoro, Rundu urban, and Rundu rural (79, 78, and 58 cases per

1000 population, respectively) (Figure 4.3). These were the same populations that

faced the greatest malaria risk in 2018 and 2019. Aside from that, most seats in the

Ohangwena region, including the Ncamangolo and Ncuncuni constituencies in the

Kavango region, as well as the Judea Lyaboloma constituency in the Zambezi region,
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had the lowest average incidence rate (Figure 4.3).

FIGURE 4.3: Malaria Incidence rate per 1000 population at con-
stituency level
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TABLE 4.2: Summary of the 11 constituency that revealed the highest
malaria incidence rate per 1000 population in 2018, 2019, and 2020

2018 2019 2020
Constituency IR Constituency IR Constituency IR
Mpungu 335 Rundu Urban 24 Tondoro 70
Rundu Urban 195 Rundu Rural 20 Mpungu 67
Kapako 168 Okongo 15 Mukwe 51
Tondoro 164 Mpungu 15 Ndiyona 49
Musese 135 Linyanti 11 Okongo 37
Rundu Rural 116 Engela 6 Omundaungilo 33
Ndiyona 110 Ndiyona 6 Musese 27
Ncamagoro 80 Tondoro 6 Katima Mulilo Urban 26
Linyanti 79 Mashare 5 Kongola 25
Kabbe South 64 Eenhana 4 Linyanti 23
Mukwe 50 Musese 3 Katima Mulilo Rural 21
IR: Incidence rate per year

Table 4.2 shows the 11 constituencies with the highest malaria incidence per 1000

inhabitants during the three years (2018 – 2020). Mpungu, Rundu Urban and Rural,

Linyanti, Tondoro, Kapako, Mukwe, Engela, Mukwe, Okongo, Ndiyona, Mashare,

Kongola, Kabbe south, Ncamagoro, and Eenhana constituencies had the highest

malaria incidence rate in the study’s 34 constituencies (Table 4.2).



FIGURE 4.4: Annual average malaria incidence rate per 1000 popula-
tion per season

Furthermore, the Autumn and Summer seasons had a higher average malaria inci-

dence rate when compared to other seasons (Figure 4.4). During the spring months

(September, October, and November), only Mpungu had an average of 3 cases per

1000 people, while the rest (33 constituencies) had an average of 1 case per 1000

people, indicating that few malaria cases are reported during those months (Figure

4.4).
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TABLE 4.3: Summary of computed malaria incidence per year

Year Estimated
population

Number of
cases

Mean rate IR/1000
population
(Namibia)

IR/1000
population
in 4 regions

2018 -2020 2494579 14881 0.00597 6 23
2018 2448301 31619 0.01291 12 49
2019 2494530 2990 0.00120 1 5
2020 2540905 10035 0.00395 4 15
IR: Incidence rate per 1000 population

The mean incidence rate was calculated at the country level using Namibia’s current

population of 2,594,488 as of Thursday, September 2, 2021, as compiled by Worl-

dometer from the most recent United Nations data, excluding the less than 5% of

cases recorded in the other ten regions of the country.

(https://worldpopulationreview.com/countries/namibia-population).

The three-year average incidence rate (2018-2020) was found to be 6 cases per 1000

population, with 12 cases per 1000 population in 2018. In 2019, the incidence rate

was 1 case per 1000 people, then increased to 4 cases per 1000 people in 2020 (See

Table 4.3).



FIGURE 4.5: Malaria risk map (unpredicted)

Individuals in Mpungu were found to be at higher risk, followed by those in Ton-

doro and Rundu Urban constituencies for both years (Figure 4.5). The number of

constituencies at high risk of malaria increased in 2020, with Ndiyona and Mukwe

in the East of Kavango becoming one of them (Figure 4.5).
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4.2 Non-spatial examination of malaria risk variables in

Namibia (Non-spatial modelling)

One of the study’s objectives was to identify risk factors/covariates associated with

malaria. As a result, for both datasets (aggregated dataset 2018-2020 and individual

dataset 2017-2019), a variety of models were fitted using R statistical software by

adding and removing variables, and the model was chosen using the AIC value,

with the model with the lowest AIC value considered the best model (See R-code

presented in Appendix A).

Variables added to the non-spatial model from the malaria aggregate dataset are

listed in Table 4.4, whereas variables added to the non-spatial model from the

malaria individual dataset are listed in Table 4.5.



TABLE 4.4: Variable considered for non–spatial Negative Binomial
regression model (aggregated data 2018-2020)

Variable code Variable name
Region Region of the individual tested malaria positive by RTD

Constituency Constituency of the individual tested malaria positive
ConstID constituency ID

Population Total number of people living in that constituency divided by 1000 (offset)
Season Season (Autumn, Summer, Winter and Spring)

PosRDT Annual mean of people tested malaria positive by RTD (Depended variable)
HPD human population density of the constituency

T (avg) Annual average temperature (mean)
T (min.) Annual minimum temperature (mean)
T (max.) Annual maximum temperature (mean)

RF Annual total rainfall (mean)
WS (avg) Annual average wind speed (mean)
ST (avg) Annual average soil temperature (mean)

LW (avg) Annual average leaf wetness (mean)
H Annual Humidity (mean)

TABLE 4.5: Variable considered for non–spatial Negative Binomial
regression model (Individual data 2017-2019)

Variable code Variable name
District Region of the person tested malaria postive

Constituency Constituency
ConstID constituency ID
PosRDT Total number of people tested malaria positive by RTD

p3 proportion of household made with sand, dung, wood, planks, palm, polished wood and others as floor material in the constituency
P4 proportion of household made with vinyl ceramic tiles, cement and carpet as floor material in the constituency
p5 proportion of household made with cane, truck reed, stone with mud as wall material in the constituency
p6 proportion of household made with cement stone with lime cement, wood, planks and bricks as wall material in the constituency
p7 proportion of female in the constituency
p8 proportion of male in the constituency
p9 proportion of people less than 5 years in the constituency

p10 proportion of people aged 5 to 19 years in the constituency
p11 proportion of people aged 20 to 39 years in the constituency
p12 proportion of people aged 40 to 59 years in the constituency
P13 proportion of people aged 60 and above years in the constituency
p15 proportion of children Leaners and Students in the constituency
p20 proportion of people that are employed in the constituency
p22 proportion of people who does not own mosquito net not owning a mosquito bed net in the constituency
p32 proportion of houses sprayed in the past 12 months in the constituency

Population Total number of people living in that constituency divided by 1000 (offset)

Note: For each constituency, all environmental variables represent the annual aver-

age
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TABLE 4.6: Comparisons of the non-spatial implemented models
(2018 – 2020 aggregated data)

(Model 1) (Model 2)
Poisson
model

NBM

Null deviance 155190 786.11
Residual deviance 53857 448.92
degrees of freedom 385 385
AIC 55350 3148.8
NBM: Negative Binomial model

Models fitted using aggregated data only looked at environmental factors, whereas

models fitted with individual elements looked at several other probable malaria

factors thought to have an effect on malaria (Tables 4.4 and 4.5). The resulting non-

spatial model is illustrated in Table 4.6 and it found the non-sppatial Negagative

Binomial model to be the best model since it had a lower AIC value (3148.8) than the

non-spatial Poisson model (55350).

The residual deviance indicates how well the model predicts the response (total

number of malaria cases) when the predictors are included. The lower the resid-

ual deviance (Model 2), the better the goodness of fit. Over-dispersion can also be

determined by dividing the residual (scaled) deviance by the degrees of freedom; if

the result is not close to one, the data is dispersed. This implies that the negative

binomial distribution produces significantly better (more accurate) results, although

only a few variables were found to be significant at a= 0.05 in Model 2 versus Model

1 (Table 4.6).
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As a result, the Negative Binomial model was chosen as the final best model for

this study based on the accuracy of the results, an offset was added to the model

(population/1000). Ignoring the structured and unstructured spatial effects, the

results revealed that when all predators in the model were excluded, the estimated

mean rate of malaria was 10 cases per 1000 population (Table 4.7). At the 95 percent

confidence level, season, region, and maximum temperature were found to be sig-

nificantly associated with the effect of malaria. While holding all other variables in

the model constant, every single ◦C increase in maximum temperature in a specific

constituency increases the estimated rate ratio by 0.0018 (0.18 percent), and there

was enough evidence to conclude this at a = 0.05 (Table 4.7). This means that con-

stituencies with high maximum temperatures have a slightly higher incidence rate

of malaria than others (Table 4.7)

Keeping other variables constant, for every unit increase in the total amount of

rainfall received it will decrease the estimated incidence rate ratio of malaria by

0.0006 (0.6%) and one unit increase in humidity will increase the estimated rate by

0.13 (13%). This implies that a constituency with high rainfall and high humidity is

likely to have a low malaria incidence rate although there was not enough evidence

to conclude this (Exp(b) = 0.9994, p-value = 0.2405 and (Exp(b) = 1.0130, p-value

=0.8573 respectively) (Table 4.7).

Controlling for other variables, the estimated incidence rate per 1000 population

in Ohangwena region is 61% less as compared to Kavango region. This implies

that people living in Kavango region were 41% more likely at risk than the people

living in Ohangwena region (Exp(b) = 0.3866, p-value < 0.001). Moreover, the inci-

dence rate in Zambezi region were found to be 0.3% less as compared to Kavango

region. This implies that the estimated incidence rate in the two regions (Zambezi

and Ohangwena ) was more less and there was enough evidence to conclude this

(Exp(b) = 0.9997, p-value < 0.001) (Table 4.7). Furthermore, when all other variables

were held constant, the incidence rate was lower in the spring and winter than in the

autumn ((Exp(b)= 0.0348, p-value =0.0000 and (Exp(b)) = 0.1568, p-value =0.0000),

respectively (see Table 4.7).
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TABLE 4.8: Negative Binomial regression non-spatial model (Individ-
ual data 2017–2019)

Results of the individual dataset
Parameters b̂ P-value 95% CI
Intercept 0.032 0.000 -3.577, -3.298
Gender
Male 1.089 0.001 0.035, 0.136
Female (Ref) 1.000
Age Group
5 to 19 1.236 0.000 0.136, 0.289
20 to 39 1.112 0.018 0.018, 0.195
40 to 59 1.027 0.636 -0.083, 0.135
60 and above 0.881 0.056 -0.258, 0.002
0 < 5 years (REF) 1.000
Place of Residence
Village 1.030 0.307 -0.027, 0.088
Town (Ref) 1.000
Type of Health Facility

Health Centre 1.088 0.029 0.008, 0.160
Hospital 1.130 0.000 0.063, 0.182
Clinic (Ref) 1.000
Occupation

mosquito-infested employees 0.705 0.000 -0.476, -0.225
Professionals 0.689 0.000 -0.571, -0.182
Small Business 0.898 0.004 -0.181, -0.035
Unemployed 0.894 0.001 -0.181, -0.043
Youth (REF) 1.000
Slept under mosquito bed net in the last 3 night
yes 1.404 0.000 0.266, 0.414
no (Ref) 1.000
Home sprayed in past 12 months Yes 0.990 0.718 -0.062, 0.043

no (Ref) 1.000
District

Eenhana 1.132 0.115 -0.033, 0.276
Engela 0.847 0.087 -0.361, 0.020
Katima – Mulilo 1.010 0.931 -0.215, 0.223
Nankudu 2.083 0.000 0.646, 0.821
Nyangana 2.055 0.000 0.629, 0.811
Okongo 1.106 0.356 -0.120, 0.309
Rundu 1.383 0.000 0.246, 0.403
Andara (Ref) 1.000
Season

Spring 0.808 0.046 -0.428, -0.010
Summer 0.998 0.946 -0.058, 0.054
Winter 0.829 0.000 -0.269, -0.107
Autumn 1.000
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From Table 4.8

mosquito-infested em-

ployees:

Farmers, Fishers, Cleaners, Security guards,

Police officers, Truck drivers, Cattle header, and

Road construction workers

Youth: Children, leaners and students

Small Business: Small market sales, traders, and other manual

labourers

Using the non-spatial approach indicated earier, we fitted a non spatial model us-

ing individual data from 2017 to 2019. As can be observed from Table 4.8, the

variables gender, age group, place of residence, type of health facility, occupation,

employment status, sleeping under mosquito bed nets, and district were found to be

significantly associated with malaria incidence. More specifically, males were found

to be 1.089 times more likely than females to have malaria after controlling other

variables (95% CI, and p- value < 0.001 individuals aged 5 to 19 years were found

to be 1.236 times more likely than individuals aged less than 5 years, and this was

significant at 5% level of significance. The rate of testing positive for malaria in a

villager was found to be 3% higher than in a town dweller, but there was insufficient

evidence to conclude this at 5% level of significance (Table 4.8).

4.3 Modeling spatial patterns of malaria

Using the spatial approach indicated earier to identify spatial clusters, several mea-

sures of spatial correlation were performed, including global and local measures

of spatial autocorrection as well as Getis-Ord approach measures of spatial auto-

correction. A neighbourhood structure at the constituency level was created in R,

along with an adjacency matrix and a weight matrix through queens contiguity but

one could also consider comparing different neighbourhood matrix structure e.g.,

queen with rook neighbourhood structure. One constituency was discovered to have

one neighbour (least connected constituency) and 5 constituencies were discovered

to have 5 neighbourhoods (most connected constituency), 10 constituencies with 3
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neighbourhoods, another 10 with 4 neighbourhoods, and 8 with 2 neighbourhoods

(Figure 4.6).

FIGURE 4.6: Neighbourhoods at constituency level

According to the literature, the Global Moran’s is the most powerful and widely

used spatial autocorrelation tool for determining the overall strength of spatial de-

pendence in data (Rezaeian et al., 2007; Lai, So, and Chan, 2008; Holowaty et al.,

2010; Gruebner et al., 2011). At a = 0.05, the Global Moran’s I test was used to

test the null hypothesis H0 of no significance clustering of malaria incidence within

constituencies. Moran’s I statistics value for aggregated data 2018 – 2020 was 0.1863

(p – value = 0.0429) with a variance of 0.0159, whereas Moran’s I for 2017 – 2019

individual dataset was 0.3003 (p – value = 0.005) with a variance of 0.0159.

The mean value of Moran’s I was positive and the p value for the two Morans’ I

was statistically significant at a = 0.05. This indicates that there was spatial auto-

correlation in the data at the constituency level, indicating that malaria is spatially

clustered in North Namibia. Values in neighbouring constituencies tend to cluster,

with high values clustering next to other high values and low values clustering next

to other low values. As a result, the findings encourage one to continue using the

local Moran and Local G Statistics to determine where high/low clustering occurs

(hot spot and cold spot of malaria in the 4 regions).
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FIGURE 4.7: Moran’s I scatter plot
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Figure 4.6 shows a standardised malaria incidence scatter plot of a constituency in

the x-axis versus the spatial lag of the constituency’s standardised malaria incidence

rate, which disaggregates the spatial autocorrelation into four types of association.

The first association is known as (HH): these are points in Quadrant I that show a lo-

cation (constituency) with a high malaria incidence surrounded by another location

(constituency) with a high malaria incidence. The second association is (LL): these

are points in Quadrant II that show a low malaria incidence location (constituency)

surrounded by a low malaria incidence location (constituency). The third association

is (HL): these are points in Quadrant III that show a location (constituency) with a

high malaria incidence surrounded by a location with a low malaria incidence. The

final association is (LH): these are Quadrant IV points that show a location (con-

stituency) with low malaria incidence surrounded by a location (constituency) with

high malaria incidence.

FIGURE 4.8: Local Moran’s I statistics map (2018 -2020).

FIGURE 4.9: Getis - Ord Gi statistic cluster map I significant cluster
map (2018 - 2020)
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FIGURE 4.10: Local Moran’s I significant cluster map (2018 - 2020)

A Moran’s statistics map and Gi statistics revealed a spatial clustering across con-

stituencies. Because most of the constituencies had a positive value for local Moran’s

I, it follows that most of the constituencies were surrounded by constituencies with

high values, and constituencies in Kavango West and Ohangwena revealed a high

spatial clustering (highlighted in dark green) when compared to others (Figure 4.8).

Local Gi statistics (Figure 4.9), represented as a Z-score, also revealed a high clus-

tering of malaria cases across all constituencies, with most cases concentrated in

Kavango West and East.

All of the constituencies highlighted in dark green and blue (Figures 4.8 and 4.9)

were malaria hotspot areas, with Mpungu, Tondoro, Rundu urban, and Rundu rural

in Kavango West being the significant malaria hotspots as highlighted in red (Figure

4.10), while the rest of the constituencies revealed a non-significant clustering as

highlighted in white (Figure 4.10).

4.3.1 Results of the spatial model

A sensitivity analysis is one of the most critical components for completely un-

derstanding Bayesian results in an applied research situation. Priors can have a

significant impact on the posterior distribution, according to the simulation study.

It is impossible to separate the impact of the prior from the role of the data in the

model estimate phase without a sensitivity analysis. A sensitivity analysis can aid
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the researcher in determining the impact of the prior vs the impact of the data. To put

it another way, this approach can assist determine how much theory [via informed

theory or lack of theory (e.g., diffuse priors)] influences the final model findings and

how much the results are driven by patterns in the sample data (Depaoli, 2020). In

this study, senstitivity analysis was not performed as Priors for the spatial random

effecrs were set to follow log gamma distribution with mean = 0, precision = 0.001

(since it was a negative binomial model), while the default prior assigned to the

associated coefficients (and the intercept) was a Gaussian distribution and this is

assumed to have a smaller variance as per literature.

The findings of a spatial model using malaria aggregated data (2018-2020) are pro-

vided in the tables below. According to Table 4.9, adding covariates to the Negative

Binomial geographic model increased its fit to the smaller DIC value (493.17), mak-

ing it fit the data better than the Negative Binomial spatial model without covariates

(516.85).
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TABLE 4.9: Comparisons of the spatial implemented models (2018 –
2020 aggregated data)

(Model 3) (Model 4)
NBSM
(without
covariates)

NBSM
(with
covariates)

DIC (NoEP) 516.85
(1.77)

493.17
(10.51)

(1/overdispersion) 0.42 0.782
NBSM: Negative Binomial spatial model

TABLE 4.10: Pearson’s correlation between sum of positive tested
malaria cases with human population density as well as climatic vari-

ables included in the spatial model (aggregated data 2018 – 2020)

PosRDT HPD T
(avg)

T
(min.)

T
(max.)

RF WS
(avg)

ST
(avg)

H

HPD -.048 1
T (avg) .791** .152 1
T (min.) .457** .279 .693** 1
T (max.) .342* .260 .591** .924** 1
RF .751** .148 .968** .764** .712** 1
WS (avg) .518** -.05 .621** .683** .498** .594** 1
ST (avg) .443** .177 .657** .501** .597** .710** .279 1
H .637** .257 .901** .734** .743** .925** .502** .751** 1
LW (avg) .343* .118 .646** .525** .663** .745** .188 .875** .761**
**. Correlation is significant at the 0.01 level (2-tailed)
*. Correlation is significant at the 0.05 level (2-tailed)
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TABLE 4.11: log scale Parameter for the Negative Binomial BYM
model (aggregated data 2018 - 2020)

M3 (Spatial model without covariates) M4 (Spatial model with covariates)
Quantiles Quantiles

Parameter P
mean

SD 25 50 75 P
mean

SD 25 50 75

Intercept 1.376 0.268 0.884 1.363 1.99 -53.3 11.8 -78.47 -52.61 -31.98
HPD _ _ _ _ _ 0.000 0.001 -0.002 0.000 0.003
ST (avg) _ _ _ _ _ 0.011 0.014 -0.017 0.012 0.038
T (avg) _ _ _ _ _ 0.982 0.491 0.040 0.972 1.978
T (min.) _ _ _ _ _ 0.053 0.187 -0.299 0.047 0.438
T (max.) _ _ _ _ _ 0.840 0.198 0.524 0.812 1.296
RF _ _ _ _ _ 0.058 0.026 0.011 0.057 0.113
WS (avg) _ _ _ _ _ 1.068 0.253 0.658 1.037 1.645
H _ _ _ _ _ -0.089 0.036 -0.162 -0.088 -0.020
LW (avg) _ _ _ _ _ -0.015 0.006 -0.028 -0.015 -0.004
PoNB 0.42 0.08 0.30 0.41 0.58 0.782 0.166 0.498 0.768 1.15
ui 1190 1204 111 838 4366 828.0 753.8 61.3 614.6 2857.2
vi 1219 1232 112 858 4457 931.5 859.6 76.0 688.2 3182.4
P mean (Posterior mean )
SD (standard deviation )
PoNB (Parameter of Negative binomial)
ui (structured random effect)
vi (unstructured random effect)

Using the spatial approach indicated earier, all of the fixed effects variables in the

spatial Negative Binomial BYM model revealed a relationship with the malaria

constituency annual mean (Table 4.10). Annual monthly average temperature

(mean), annual monthly maximum temperature (mean), annual monthly total rain-

fall (mean), and annual monthly average wind speed (mean) all had a significant

positive effect on annual mean malaria incidence, whereas annual monthly average

humidity (mean) and annual average leaf wetness (mean) had a significant negative

effect (Table 4.11). However, annual monthly soil temperature (mean) and annual

monthly minimum temperature (mean) were both found to be positively related

to malaria annual mean incidence rate, but this was not significant, and human

population density was found to have no effect on malaria incidence rate in Namibia

(Table 4.11).

If the positive and negative posterior mean effects were exponentiated, they would

be interpreted as decreases and increases in relative risks, respectively. For example,

e0.058 = 1.06(0.06) and this means that for every one mm increase in annual monthly
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total rainfall (mean) it will increase the mean incidence rate of malaria by 6%. Also,

for every one unit increase in annual monthly average temperature (mean), annual

monthly maximum temperature (mean), and annual monthly average wind speed

(mean), it will increase the log mean of malaria by 0.011, 1.015, 0.763, and 0.988,

respectively (Table 4.11).

Malaria incidence mean was estimated to decrease by 8.52% , e−0.089 = 0.9148 (0.0852)

for every one % increase in annual monthly humidity (mean). Also, annual monthly

leaf wetness was found to decrease the mean incidence of malaria by 1.39%, e−0.014

= 0.986 (0.0139) (Table 4.11).

The proportion of males who tested positive for malaria, the proportion of indi-

viduals aged less than 5 years, 5 to 19 years, 20 to 39, 40 to 59, and 60 and above,

the proportion of individuals who live in villages, the proportion of individuals

who were employed, and many other variables (Table 4.5) were examined using the

malaria individual dataset (2017-2019) to run a spatial model. The results obtained

are as follows:
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TABLE 4.12: Comparison of the two models (Individual data 2017-
2019)

Model 5 Model 6
NBSM (without covari-
ates

NBSM (with covari-
ates)

WAIC ((NoEP) 468.72 465.05
DIC ((NoEP) 468.7 (1.57) 463.06 (5.18)
(1/overdispersion) 0.275 0.38
NBM: Negative Binomial modely, NBSM: Negative Binomial spatial model

NoEP:Number of Effective Parameters

Using the malaria individual data, it was still discovered that adding some of the

other possible factors such as age group proportion, gender, and so on, as well as

climatic factors, improved model estimates much better than just considering ran-

dom effects, as the DIC value of the model with both spatial effects and some other

possible factors revealing a lower DIC: 463.06 with a greater number of effective

parameters (5.18), as compared to a model with only spatial effects (Table 4.12).

A spatial model was fitted using malaria individual data. All variables included

such as human population density, proportion of people aged 5 to 19 years in

the constituency, proportion of people employed in the constituency, proportion

of houses sprayed in the past 12 months in the constituency, proportion of people

whose households are made with cement, stone with lime cement, wood, planks,

and bricks as wall material in the constituency. Both structured and unstructured

random effects revealed a significant positive effect on malaria cases’ posterior

means of 1295 and 1252, respectively (Table 4.13).

4.4 Modelling spatial and time patterns of malaria

Creating a smoothed space-time malaria incidence graph, maps are critical for deci-

sion making when it comes to the malaria endemic in Namibia. This study exam-

ined malaria cases data from a spatiotemporal perspective using Bayesian models

with temporal random effects and space-time interaction terms to identify signifi-

cant predictors associated with malaria incidence risk and to generate contemporary

smoothed maps of disease risk in Namibia’s northern risk constituencies.
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TABLE 4.13: log scale Parameter for the Bayesian Negative Binomial
BYM model (Individual data 2017 - 2019)

Results of the individual dataset (2017 -2019)
M5 (Spatial model without covariates) M6 (Spatial model with covariates)

Quantiles Quantiles
Parameter P

mean
SD 25 50 75 P

mean
SD 25 50 75

Intercept 1.33 0.30 0.70 1.28 2.00 -0.02 1.24 -2.45 -0.02 2.41
P3 _ _ _ _ _ -0.005 0.01 -0.03 -0.01 0.02
p5 _ _ _ _ _ 0.00 0.01 -0.02 0.00 0.03
p8 _ _ _ _ _ -0.05 0.05 -0.14 -0.05 0.04
p9 _ _ _ _ _ -4.02 4.56 -12.29 -4.26 5.61
p10 _ _ _ _ _ 1.55 2.16 -2.65 1.57 5.70
p11 _ _ _ _ _ -5.38 3.74 -12.43 -4.29 2.24
p12 _ _ _ _ _ 2.71 9.66 -15.11 2.48 22.87
p13 _ _ _ _ _ 12.97 15.14 -16.71 12.95 42.74
p20 _ _ _ _ _ 4.55 3.61 -2.77 4.64 11.41
p32 _ _ _ _ _ 1.50 1.50 -1.40 1.48 4.50
PoNB 0.28 0.05 0.19 0.27 0.38 0.32 0.06 0.22 0.64 0.99
ui 502 451 24 370 3640 1252 1414 115 829 4961
vi 1231 1007 182 964 3255 1295 1445 116 863 5076
p3 = household made with sand or dung as floor material,
p4= household made stone with mud as wall material,

p8 = proportion of male, p9 = proportion of people less than 5 years, p10 = of people aged 5 to 19 years,
p11 = people aged 20 to 39 years, p12 = people aged 40 to 59 years, p13 = people aged 60 and above ,
p13 = people aged 60 and above years, p20 = people that are employed, and
p32 = houses sprayed in the past 12 months
NB: all variables in this table were proportion
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4.4.1 Results of the spatio–temporal model

Variables that were found to have a significant relationship with malaria in the

previous spatial analysis (Table 4.11) were added to the spatio-temporal model Eq.

(3.14 and 3.15) extension of the spatial Besag-York-Mollie (BYM) model Eq. (3.9)

with Negative binomial family since the data was dispersed to disclose both spatial

and temporal trend pattern/trend of malaria. Added variables are monthly average

and maximum mean temperature, mean of monthly total rainfall received, mean of

monthly average wind speed, humidity mean, and monthly average leaf wetness.

The model in Eq.(3.9) was a Conditional Autoregressive (CAR) convolution model

with two random impacts, one spatially organised area-specific random impact and

one unstructured area-specific random impact, and the term reflected the temporally

structured effect gt in Eq. (3.15), was dynamically simulated using a random walk

of order 2 to account for extra heterogeneity in the counts due to unseen (spatially

unstructured effects) risk factors. The outcomes obtained are as follows:

i. Results of the parametric spatio–temporal model

Results obtained from the spatio-temporal model are displayed as follows:
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TABLE 4.14: Comparison of the spatio-temporal models (aggregated
data 2018-2020)

Model 7 Model 8 Model 9 Model 10
Parametric
trend
model

Unstructured
interactive
model

Temporal
structured
interactive
model

Spatial
structured
interactive
model

WAIC (NoEP) 1218.73 1101.78 1107.32 1109.65
DIC (NoEPNoEP) 1219.83

(8.65)
1099.71(33.27) 1103.55

(65.86)
1107.77
(33.34)

(1/overdispersion) 0.398 1.51 1.95 1.427
NoEP: Number of effective parameters

TABLE 4.15: Log scale parameter for the Bayesian Negative Binomial
(BYM) unstructured interactive spatio–temporal model with added
significant climatic variables from spatial model using 2018-2020 ag-

gregated dataset

Model 8

Quantiles
Parameters P mean SD 25 50 75
Intercept 0.436 0.661 -0.826 0.423 1.77
T (avg) 0.000 0.000 0.000 0.000 0.000
T (max.) 0.006 0.006 0.005 0.005 0.017
RF 0.006 0.003 0.000 0.005 0.011
WS (avg) -0.003 0.003 -0.009 -0.003 0.004
H 0.002 0.004 -0.006 0.002 0.009
LW (avg) -0.001 0.001 -0.002 -0.001 0.001
T (avg), T (max), RF, WS (avg), H, and LW (avg) were the same variable as in Table 4.11

The spatio-temporal model with unstructured interaction was considered as the best

model since it had the smallest DIC value (Table 14). Results sow that annual aver-

age rainfall was found to have a significant effect on malaria through space and time.

For every one mm increase in annual rainfall in a certain constituency it will increase

the annual mean cases of malaria by 0.6%. Annual average maximum temperature

was also found to be significantly associated with malaria. For every one ◦C increase

in annual maximum temperature in a certain constituency it will increase the annual

mean cases of malaria by 0.6%. The rest of the variables revealed a non-significant

relationship with malaria from spatial and temporal perspectives at 95% confidence

intervals.
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FIGURE 4.11: Global linear temporal trend for malaria (spatio tempo-
ral model with added covariates)

The solid line in the middle represents the posterior mean for the main linear trend

bt while the dotted line represents the 95 percent credibility interval, and the model

discovered a global time effect. The plot of the posterior mean of the main time effect

(years) clearly showes a slight increase in global trend as time passes, for example, a

high estimate of malaria was observed from 2018 to 2020 (Figure 4.11).
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Moreover, x = ui + vi the posterior mean of the spatial (structured and unstructured)

effects was obtained. Figure 4.12 shows the obtained results.

FIGURE 4.12: Spatial main effect and differential temporal maps of
the spatiotemporal model 3 (posterior mean obtained using a random

walk of order 2)

The results of the model with added annual average rainfall received monthly as

a fixed factor revealed a greater spatial effect in constituencies located on the out-

skirts of Kavango East and Kavango West. Regrettably, the two regions on the east

and west sides of the Kavango, two in the middle of the Kavango, and two in the

Ohangwena region showed a higher differential trend than the average (Figure 4.12).



ii. Results of the spatio–temporal interaction model

INLA allows for the definition of linear combinations on various latent effects, as

well as the estimation of their posterior marginals. It is worth noting that these linear

combinations have no effect on the model’s fit (as the use of a predictor matrix did).

The option lincomb is supplied to the inla() function to represent linear combina-

tions. Controlling the argument is also important. Lincomb can be used to specify

the parameters that govern how the posterior marginals of linear combinations are

calculated.

The two effects space and time was then combined through linear combination using

inla.make.lincombs before fitting the final model of the study “spatio–temporal in-

teraction model (Eq. 3.17)”. For each year, a linear combination: I × gt + I × ft was

obtained by combining the rth element of the two-diagonal matrix one for structured

and one for unstructured temporal parameters (Elliott, Wakefield, Best, & Briggs,

2001). We then added lincomb = lcs to the model Eq. (3.17) to allow for interaction

between space and time effects, which explained the differences in the time trend of

malaria cases across different constituencies.

The study also looked at three interactions. The first interaction involved unstruc-

tured spatial effects interacting with unstructured temporal effects, the second was

the unstructured spatial effects interacting with structured temporal effects and the

last interaction was between unstructured temporal effects interacting with struc-

tured special effects. Figure 4.13 shoows the results of Eq. (3.17).
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FIGURE 4.13: Posterior mean for malaria incidence (Nonspatially or
Temporally interaction) of the non-parametric spatio-temporal model

using RW2 with added covariate effect

In 2018 and 2020, a pattern of positive significant unstructured random effects (spa-

tial and temporal) was observed, primarily in the west of Kavango and constituen-

cies bothering Kavango East with Zambezi region. Furthermore, an increase in the

number of constituencies having turned black (positively significant) was observed

between 2018 and 2020. However, in some of the Kavango and Ohangwena con-

stituencies, a negative significant unstructured random effect was detected (negative

posterior mean in light grey) (Figure 4.13).



FIGURE 4.14: Posterior mean for malaria incidence (Temporally
Structured interaction) of the non-parametric spatio-temporal model

using RW2 with added covariate effect

In addition, a pattern of temporal structured random effects was observed in both

years. Even though most malaria hotspots were detected in the East and Middle of

Kavango constituencies in 2018, the East and Middle of Kavango constituencies still

had the highest posterior estimates (malaria hotspots) in 2019 and 2020. Further-

more, there were no changes in the constituencies at risk of malaria in 2019 and 2020

(Figure 4.14).
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FIGURE 4.15: Posterior mean for malaria incidence (Spatially Struc-
tured interaction) of the non-parametric spatio-temporal model using

RW2 with added covariate effect

Figure 4.15 revealed that both negative and positive spatial structured variations

were observed throughout the four regions where constituencies with negative sig-

nificant spatial trends to cluster. However, a positive significant spatial structured

random effect (highlighted in black) in both regions was visible in 2020 .



CHAPTER 5

DISCUSSIONS, CONCLUSIONS AND

RECOMMENDATIONS

5.1 Discussions

The four regions (Kavango East and West, Ohangwena, and Zambezi) reported a

total of 44644 malaria cases over a three-year period, with 31 619 instances reported

in 2018, 2 990 in 2019, and 10 035 in 2020, and this accounted for an average of ap-

proximately 90% of all reported malaria cases in Namibia throughout the last three

years (2018-2020). The maralia epidemic has been a major challenge in Kavango

West and East, Zambezi and Ohangwena regions for many years now compared to

other regions (Table 3.1 and Figure 4.1). Namibia was indeed expected to have 0

cases per 1000 population in 2020. However, ignoring a few percentages of cases

recorded in other regions, a 92% incidence rate decrease was achieved in 2019 as the

incidence decreased from 12 cases per 1000 population in 2018 to 1 case in 2019, but

unfortunately, the incidence rate increased again from 1 case in 2019 to 4 cases per

1000 population in 2020 (Table 4.3) with high malaria transmission still in Kavango

West and East, Ohangwena and Zambezi constituencies.

Due to complicated data, where malaria cases were recorded as weekly clinic

cases, to avoid many errors during data cleaning since the dataset needed to be

re-aggregated per constituencies for easy mapping due to unavailability of some

clinic shapefiles, the study was limited to constituencies located in the four high

reported malaria transmission for the past 3 years which is Kavango West and East,

Ohangwena and Zambezi region. Constituencies in the two Kavangos (East and
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West) produced 77% of the 44644 malaria cases reported in the four regions in 2018-

2020, followed by constituencies in the Zambezi region with 13% and constituencies

in Ohangwena region with 10%. Most of the cases were reported during Autumn

and Summer as represented by 61% and 26% respectively (December to May) and

this is the period the country reported high average rainfall mostly in constituencies

that reported a high number of malaria cases (Table 3.1).

After computing the Standardized Incidence Ratio (SIR), which is a simple measure

of disease risk in a specific population each year, Mpungu constituency recoreded

the highest malaria incidence rate with an annual average of 137 cases per 1000

population, followed by Tondoro, Rundu urban, and Rundu rural constituencies

(descriptive statistics). This means that these are the constituencies that observed an

average of more malaria cases than expected as per the descriptive statistics while

the majority of the Ohangwena constituencies revealed less malaria risk (Figure 4.5).

When comparing the two malaria risk maps (malaria risk computed using the

SIR method and presented in Figures 4.5) and malaria risk predicted from spatio-

temporal models (Figure 4.13 & 4.15), they both observed an increase in the number

of constituencies having turned black (high malaria risk) in the east of Kavango in

2020 compared to 2018 and 2019.

In addition, the spatio-temporal unstructured interactive model predicted high

malaria risk in some of the Zambezi constituencies eg., Kongola, Katima Mulio ur-

ban, Katima Mulio rural, and Sibbinda in 2020 that could not be detected by the SIR

methods because of high rainfall and temperature together with some unstructured

spatial and random interactions in those constituencies.

The spatio-temporal spatial structured interactive model also predicted high malaria

risk in some of the Kavango and Zambezi constitueciecies including Ongenga, En-

gela, Ondobe, Omulonga, and Epembe constituecy in Ohangwena region in 2020

(Figures 4.13 and 4.15), although the unstructured interactive risk map (Figure 4.13)

explains the malaria risk better than the temporal structured interactive risk map
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(Figure 4.15).

This suggests that there is a greater need to be done in recognised malaria risk con-

stituencies (hotspots) from both analyses SIR techniques and risk maps anticipated

by the model (Figure 4.2, 4.13,4.14, and 4.15). For example, offering full-service

malaria control and implementing programmes in schools and communities to teach

people about battling this endemic disease (malaria) as a way to achieve the malaria-

targeted plan to eliminate malaria in Namibia by 2030.

Figures C.1, C.2, and C.3 (Appendix C) depict the results of the spatio-temporal

models without the addition of covariates. Ignoring rainfall as malaria fixed effects

will have an effect on mapping malaria risk through space and time. Comparing

the two figures (Figures 4.12 and C.1), Figure C.1 could not detect all the malaria

hotspot as compared to Figure 4.12 that considered the amount of rainfal received in

a specific constituency. This evidenced that rainfall has an effect on the distribution

of malaria through space and time. The map of non-spatial or temporally interaction

map before adding fixed effects (climatic factors) did not uncover strong spatial ef-

fects as compared to the non-spatial or temporally interaction map with added fixed

effects (Figures C.2 and 4.13). Moreover, there were not many changes in posterior

mean for malaria incidence temporally structured interaction map before and after

adding fixed effects (see Figures C.3 and 4.14). In addition, adding fixed effect on

the spatially structured interaction model has aided in detecting spatial effects in

the North constituencies of Zambezi region in 2020 unlike the spatially structured

interaction model without added fixed effects (Figures C.4 and 4.15).

Similar studies on malaria spatial modelling conducted earlier, not only in African

but also in Asian countries (e.g. Sipe, 2003; Hay et al., 2006; Kazembe, 2007; Victor,

2009; Tuyishimire, 2016; Yunxia ,2015; Joao, 2018) have found the distribution of

malaria cases to have a seasonality characteristic setting. The non-spatial model

(Table 4.8) also presented a significant malaria seasonality with high mean malaria

incidence being reported during Autumn (March to May) as compared to other

seasons. The mean malaria incidence rate was found to decrease by 97% and 84%
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during Spring (September to November) and Summer (December to February) re-

spectively as compared to Autumn (March to May).

The study found the spatial and temporal variation of malaria risk to be due to a

combination of climatic factors both observed and unobserved, where average an-

nual total rainfall and annual average maximum temperature were found to explain

the spatial and temporal variation of malaria infection in Namibia from both tempo-

ral and spatial perspectives and this was similar to the results obtained by Kazembe

(2007) in Malawi.

The population living in the far East and West of Kavango and Zambezi region con-

stituencies was predicted to be more at malaria risk as compared to others (Figures

4.13, and 4.15), primarily, people aged 5 to 19 , 20 to 39 years and unemployed people

that are living in villages (Table 4.9). This confirmed that the occurrence of malaria

cases in constituencies might be high and closely related to the two ecological factors,

namely, maximum temperature and amount of rainfall received (Table 4.15) as those

are the constituencies that receive high annual rainfall and an annual record high

temperature (Figure 4.1).

Most countries have eradicated malaria by mapping malaria anopheles mosquito

breeding sites using other spatial approaches such as geographical information sys-

tem (GIS) and spatial statistics, which allow for the assessment of the degree of

infection clustering to explore the spatial clustering of dengue (Ali et al., 2003; Zhang

et al., 2008; Vazquez-Prokopec et al., 2010). Tuyishimire (2016), for example, used

extensive malaria occurrence data to model malaria risk factors in Rwanda and was

able to locate malaria breeding locations in rural areas in Rwanda’s south-eastern

region.

People who tested positive for malaria were followed up on within one week after

being diagnosed with malaria at their homes so that the geo-coordinates of breeding

site locations could be documented. However, the geo-coordinates of breeding were

not available on the DHIS2 system during the period of data collection. As a result,
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the study was unable to further detect and map malaria anopheles mosquito breed-

ing sites.

5.2 Conclusions

The goal of this study was to use an ecological spatial-temporal regression model

that is known to be a completely Bayesian model by Neema and Bohning (2012)

based on the Besag, York and Mollie framework (Besag, York & Mollie; 1991) to

characterise geographical variation in malaria risk and evaluate possible connec-

tions between disease risk, and environmental factors at the constituency level in

Namibia’s malaria-endemic areas.

Through the whole posterior inference approach, a detailed examination of the un-

certainty in the unobserved random factors that also contribute to the volatility of

malaria mean rate was done. The procedure was accomplished by adding the ob-

served and unobservable random effects into the whole hierarchical Bayesian model.

The random effects that were evaluated included structured space-time heterogene-

ity, which measured the effect of constituencies clustering, unstructured heterogene-

ity, time trend effect, which represented the three respective periods 2018 - 2020,

interaction between space and time, and the covariates effect of climatic variable,

as well as some other possible variables that were found to have a significant effect

on malaria in other countries according to literature. R-INLA was used to perform

the analysis, which included prior and hyper-prior distribution specifications for the

parameter and hyper parameters.
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A variety of datasets were merged to achieve the study’s goals, such as Malaria

tested positive by rapid diagnosis datasets (RDT) surveillance agreed datasets that

contain daily records of people who tested positive for malaria, individual malaria

datasets that contain more information about people who tested positive for malaria,

climatic weather data that contains environmental variables thought to be related

to malaria from literature, and the Namibia shapefiles dataset provided from the

Namibia Statistics Agency (NSA) for mapping purposes.

The study discovered that the spatial temporal model with both random and fixed

effects best fit the model, which demonstrated a strong spatial and temporal het-

erogeneity distribution of malaria cases (spatial pattern) with high risk in most of

the Kavango West and East outskirt constituencies where high malaria peak was

discovered to occur during Autumn and Summer (January to May) and annual

average rainfall, annual average maximum temperature together with some unob-

served random effects were found to be significantly associated with malaria cases

distribution through space and time.

Furthermore, the findings of the best BYM model’s posterior mean estimations of

the parameters revealed that unstructured random effects contributed to most of the

malaria variations in Namibia which makes little difference in the identified malaria

hotspots of the spatio-temporal models with and without covariates.
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5.3 Recommendations

The use of a Bayesian approach to estimate the contributions of climatic/environmental

indicators on the spatial–temporal pattern of pandemic diseases should be encour-

aged in statistics for sensitivity data errors and as a way to guide appropriate actions

and better allocation of limited health care resources. This work is therefore dedi-

cated to people working in the government and non-governmental organisations

for policy development, specifically the MoHSS to help them to achieve malaria

target 3.3 that aimes eliminating malaria before 2030 by utilising the findings of this

study. For example, giving priority to the individual who lives in constituencies

that require closer interventions (identified malaria hotspot areas) at the appropriate

time (January – May "rainy season") more specifically individuals aged 5 to 19, the

youth e.g., children, learners, and students, and individuals that are not employed

or working in Small Business (e.g., small market sales, traders, and other manual

labourers, specifically males as these are the people that were found to be more

exposed to the malaria risk.

Future studies should consider examining all possible putative sources of malaria

transmission including travel histories and networks, and treatment seeking behav-

ior and should mostly focus on finding and mapping potential anopheles mosquito

habitat that was missed in this study due to a lack of information in the datasets

on anopheles mosquito breeding locations (e.g., irrigated agriculture). In addition,

malaria data to be used for future study should be collected via PCR test for high

accuracy of the confirmed cases and some adjustments to standardize the covariates

must be considered since all this was missed in this study. Futhermore, malaria

death records should be captured on the DHIS2 system in such a way that spatial

and temporal survival analysis in identified high malaria risk constituecies can also

be performed.
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APPENDIX A

R code

A.1 non-spatial and spatial Analysis

setwd ("C:/Users/rkatale/Desktop/analysis")

install.packages(c("sp", "rgeos", "ggplot2", "ggmap", "dplyr", "raster", "tmap", "leaflet",
"spatstat", "spdep", "rgdal", "spdep", "rgdal", "rgeos", "latticeExtra", "RColorBrewer",
"gridExtra","maps","mapproj","CARBayes", "Matrix","tidyverse","spgwr","tm_shape",
"lattice"))
install.packages("INLA", repos = c(getOption("repos"),INLA = "https://inla.r-inla-download.org/R/stable"),
dep = T)

#Call these packages

library(rgeos) library(rgdal)
library(sp)
library(ggplot2)
library(ggmap)
library(dplyr)
library(raster)
library(leaflet)
library(spatstat)
library(spdep)
library(latticeExtra)
library(RColorBrewer)
library(gridExtra)
library(Matrix)
library(lattice)
library(maptools)
library(foreign)
library(ggmap)
library(BayesX)
library(splines)
library(spdep)
library(foreach)
library(parallel)
library(INLA)
library(shapefiles)
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library(maps)
library(mapproj)
library(RColorBrewer)
library(CARBayes)
library(sf)
library(reshape2)
library(rstanarm)
require(sandwich)
library(tidyverse)
library(rgeos)
library(tmap)
library(tmaptools)
library(spgwr)
library(grid)
library(tm_shape)

#Load in shapefile
NW <- readOGR(dsn = ".", layer= "SelectedReg")
plot(NW)
data1 <- read.csv(file="SelectedReg.csv", header=TRUE, sep=",")
library(spData)

queen.nb = poly2nb(NW)
summary(queen.nb)
queen.listw=nb2listw(queen.nb) #convert nb to listw type
listw=queen.listw

#=============== plot neighbourhood
plot(NW, border=gray(.5))
plot(queen.nb, coordinates(NW), add=TRUE)

#=================== Merge the two data files
data2 <- merge(NW, data1, by=’OBJECTID’)
# ===================Computing moran’s I in R for spatial Data
mi <- moran.test(data2$NoCasesA, listw = nb2listw(queen.nb))
mi

#============ Plot Moran I scatter plot, Moran I (local),and probability of most signif-
icant Moran I (Chapter 3, Figure 3.1)

moran.plot(data2$NoCasesA, listw = queen.listw, xlab="Number of malaria Cases",
ylab="Spatially lagged malaria cases")

locm <- localmoran(data2$NoCasesA, listw = nb2listw(queen.nb)) summary(locm)
knitr::opts_chunk$set(echo = TRUE)

# Change the presentation of decimal numbers to 4 and avoid scientific notation op-
tions(prompt="R> ", digits=4, scipen=999)
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# =================Load in shapefile
NW <- readOGR(dsn = ".", layer= "SelectedReg") plot(NW)
data1 <- read.csv(file="SelectedReg.csv", header=TRUE, sep=",")
library(spData)
queen.nb = poly2nb(NW) summary(queen.nb)
queen.listw=nb2listw(queen.nb) #convert nb to listw type listw=queen.listw

#=============== plot neighbourhood
plot(NW, border=gray(.5)) plot(queen.nb, coordinates(NW), add=TRUE)

#=================== Merge the two data files
OA.Census<- merge(NW, data1, by=’OBJECTID’)
OA.Census_sf <- st_as_sf(OA.Census)

#8 Spatial distribution

tm_shape(shp, is.master = NA, projection = NULL, bbox = NULL, unit = "metric", simplify
= 1, line.center.type = c("segment", "midpoint"), ...)

tm_shape(OA.Census_sf) + tm_fill("NoCasessig", palette = "Reds", style = "quantile", title
= " Sum of malaria postive cases") + tm_borders(alpha=.8)

# Neightbour structure with colour red for visiblity
#Find queen neighbours
neighbours <- poly2nb(OA.Census) neighbours

neighbours_sf <- poly2nb(OA.Census_sf) neighbours_sf

#Plot queen neighbours links plot(OA.Census, border = ’lightgrey’)
(neighbours, coordinates(OA.Census), add=TRUE, col=’red’)

listw <- nb2listw(neighbours2) listw
# Global spatial autocorrelation
# Compute local Moran
# binds results to our polygon shapefile

moran.map <- cbind(OA.Census, local)

tm_shape(moran.map) + tm_fill(col = "Ii", style = "quantile", title = "local moran statis-
tic")+ tm_borders(alpha=.900)

#Plot LISA clusters
quadrant <- vector(mode="numeric",length=nrow(local))

# centers the variable of interest around its mean
m.NoCasessig <- OA.Census$NoCasessig - mean(OA.Census$NoCasessig)

# centers the local Moran’s around the mean

m.local <- local[,1] - mean(local[,1])
# significance threshold
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signif <- 0.1 # builds a data quadrant
quadrant[m.NoCasessig >0 & m.local>0] <- 4 quadrant[m.NoCasessig <0 & m.local<0] <-
1
quadrant[m.NoCasessig <0 & m.local>0] <- 2
quadrant[m.NoCasessig >0 & m.local<0] <- 3
[local[,5]>signif] <- 0

# plot in r

brks <- c(0,1,2,3,4)
colors <- c("white","blue",rgb(0,0,1,alpha=0.4)
rgb(1,0,0,alpha=0.4),"red") plot(OA.Census,border="lightgray",col=colors [findInter-
val(quadrant,brks,all.inside=FALSE)]) box()

legend("bottomleft", legend = c("insignificant","low-low","low-high","high-low","high-
high"), fill=colors,bty="n")

#Getis-Ord approach

#creates centroid and joins neighbours within 0 and 800 units
nb <- dnearneigh(coordinates(OA.Census), 0,2)

#creates listw
nb_lw <- nb2listw(nb, style = ’B’)

#Plot data and neighbours
plot(OA.Census, border = ’lightgrey’)
plot(nb, coordinates(OA.Census), add=TRUE, col = ’red’)

#Getis-Ord Gi statistic
local_g <- localG(OA.Census$NoCasessig, nb_lw)
local_g <- cbind(OA.Census, as.matrix(local_g))

names(local_g)[8] <- "gstat"

#Cluster map

tm_shape(local_g) + tm_fill("gstat", palette = "RdBu", style = "pretty" , title = "Getis-Ord
Gi Statistics") + tm_borders(alpha=1)

#================================================================
Non spatial model (INDIVIDUAL DATASET)
#================================================================

mydata <- read.csv(file="Individualdata2021.csv", header=TRUE, sep=",")
summary(mydata)
str(mydata)
attach (mydata)
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poisreg1offset2individual <- glm(PosRDT Gender+ Agegroup+ Placeofressidence+TypeofFacility+
Occupation+Sleptunderbednetlast3nights+Homesprayedpast12months+District+
Season +offset(log(Population/1000)),family = poisson, data = mydata)

summary (poisreg1offset2individual)

#==================== Extracts the column vector of p values
coef(summary(poisreg1offset2individualnegbinomial))[,4]

#===finding confidence interval for non spatial negative binomial model
confint(poisreg1offset2individualnegbinomial) (est <- cbind(Estimate =
coef(poisreg1offset2individualnegbinomial), confint(poisreg1offset2individualnegbinomial)))

#==================finding the exponeniated coeficients===================

exp(coef(poisreg1offset2individualnegbinomial))

#=========================================================
#END Non spatial model (INDIVIDUAL DATASET)
#=========================================================
#=========================================================
#Non spatial model ( Aggregated data)
#=========================================================
mydata <- read.csv(file="Malalia26.csv", header=TRUE, sep=",")

summary(mydata)
str(mydata)
attach (mydata)

library(GLMsData)

mydata$Region <-relevel(factor(mydataRegion), re f = ”Ohangwe”)
mydata$Season < −relevel( f actor(mydataSeason),ref = "Spring")

# ==============Non Spatial Poison Model=======================
poisreg1offset2 <- glm(PosRDT Season +Region + hpd +mavgtemp + mmintemp +
mmaxtemp + mtotalrainfal + mavgwindspeed + mavegoiltemp + humidity +avegleafwet-
ness+offset(log(Population/1000)),family = poisson, data = mydata)

summary (poisreg1offset2)

#==============Non Spatial Negative binomial Model========================
poisreg1offsetnegbinomial <- glm.nb(PosRDT Season +Region + hpd+mavgtemp +
mmintemp + mmaxtemp + mtotalrainfal + mavgwindspeed + mavegoiltemp + humidity
+avegleafwetness+offset(log(Population/1000) ))
summary (poisreg1offsetnegbinomial)

#==================== Extracts the column vector of p values
coef(summary(poisreg1offset2))[,4]
coef(summary(poisreg1offsetnegbinomial))[,4]
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#===========================================================

#===finding confidence interval for non spatial negative binomial model===

confint(poisreg1offsetnegbinomial) (est <- cbind(Estimate = coef(poisreg1offsetnegbinomial),
confint(poisreg1offsetnegbinomial)))
#==================finding the exponeniated coeficients===================

exp(coef(poisreg1offsetnegbinomial))

poisreg1offsetDIC <- (PosRDT Season + hpd + mavgtemp + mmintemp + mmaxtemp
+ mtotalrainfal + mavgwindspeed + mavegoiltemp + humidity +avegleafwetness +off-
set(log(Population/1000))+ f(CONST, model = "iid", hyper = prior.prec) )
summary (poisreg1offsetDIC)

#=====================================================

#======================END OF NON SPATIAL MODELS=====================
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#======================SPATIAL MODEL AGGREGATED DATA

require(sp) # package to work with spatial data
require(rgdal) # package to work with spatial data

# =================Load in shapefile NW <- readOGR(dsn = ".", layer= "Selecte-
dReg") plot(NW)
data1 <- read.csv(file="aggregateddata2020.csv", header=TRUE, sep=",")
colnames(data1)[1]<-"OBJECTID"

#=================== Merge the two data files

data2 <- merge(NW,data1,by=’OBJECTID’)
ddd2<-data2@data
require(RColorBrewer)
# Create a colour palette to use in graphs
my.palette <- brewer.pal(n = 9, name = "YlOrRd")

#========== Visualise the number of scats across space
spplot(data2, zcol = "RR", col.regions = my.palette, cuts = 8)

#=========== Specify the adjacency matrix
mal_Temp <- poly2nb(data2) # construct the neighbour list
nb2INLA("mal.graph", mal_Temp) # create the adjacency matrix in INLA format
mal.adj <- paste(getwd(),"/mal.graph",sep="")

# name the object

inla.setOption(scale.model.default = F)

H <- inla.read.graph(filename = "mal.graph") # and save it as a graph
# Plot adjacency matrix image(inla.graph2matrix(H), xlab = "", ylab = "")

data2$IDcode<-1:34

#==============================================

THE NEGATIVE BINOMIAL NULL MODEL
#==============================================

formula3 <- NoCases 1 + # fixed effect
f(IDcode, model = "bym", # spatial effect: IDcode is a numeric identifier for each area in the
lattice (does not work with factors)
graph = mal.adj) # this specifies the neighbouring of the lattice areas
mal_Data<-data2@data
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# Finally, we can run the model using the inla() function
Mod_mal3 <- inla(formula3, family = "nbinomial", # since we are working with count data
data = mal_Data, control.compute = list(cpo = T, dic = T, waic = T),E=expe)
# CPO, DIC and WAIC metric values can all be computed by specifying that in the con-
trol.compute option
# These values can then be used for model selection purposes if you wanted to do that
# Check out the model summary
summary(Mod_mal3)

formula3_p <- NoCases ∼ 1 +f( IDcode, model = "bym", graph = mal.adj, scale.model
= TRUE, hyper = list( prec.unstruct = list(prior = "loggamma", param = c(1,0.001)), #
precision for the unstructured effect (residual noise) prec.spatial = list(prior = "loggamma",
param = c(1,0.001)) # precision for the spatial structured effect ) )

Mod_mal3_p <- inla(formula3_p, family = "nbinomial", data = mal_Data, control.compute
= list(cpo = T), E=expe )

summary(Mod_mal3_p)

# We can extract the summary of the fixed effects (in this case only GS)

zeta.cutoff <- c(0, 1,2,3,4) # we make a categorisation to make visualisation easier cat.zeta <-
cut(unlist(zeta), breaks = zeta.cutoff, include.lowest = TRUE)

# Create a dataframe with all the information needed for the map

maps.cat.zeta <- data.frame(IDcode = mal_Data$IDcode, cat.zeta = cat.zeta)

# Create a new polygon from Fox_Lattice and add the value of the posterior mean

mal_Lattice_post <- data2 data.mal.post <- attr(mal_Lattice_post, "data") attr(mal_Lattice_post,
"data") <- merge(data.mal.post, maps.cat.zeta, by = "IDcode")

my.palette.post <- rev(brewer.pal(n = 9, name = "YlGnBu")) spplot(obj = mal_Lattice_post,
zcol = "cat.zeta", col.regions = my.palette.post)

#====================================================
a <- 0
prob.zone <- lapply(zone.index, function(x) 1 - inla.pmarginal(a, x))
prob.zone.cutoff <- c(0, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)

cat.prob.zone <- cut(unlist(prob.zone), breaks = prob.zone.cutoff, include.lowest = T)

# Create a new polygon from Fox_Lattice and add the value of the posterior sd
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maps.cat.prob.zone <- data.frame(IDcode = mal_Data$IDcode, cat.prob.zone = cat.prob.zone)

mal_Lattice_var <- data2 data.fox.var <- attr(mal_Lattice_var, "data") attr(mal_Lattice_var,
"data") <- merge(data.fox.var, maps.cat.prob.zone, by = "IDcode")

my.palette.var <- brewer.pal(n = 9, name = "BuPu") spplot(obj = mal_Lattice_var, zcol =
"cat.prob.zone", col.regions = my.palette.var, add = T)

#===========================================
THE NEGATIVE BINOMIAL SPATIAL MODEL (WITH RANDOM
EFFECTS)
#===========================================

formula2 <- NoCases 1 +hpd_mean+mavegoiltemp_mean+ mavgtemp_mean + mmintemp_mean+
mmaxtemp_mean+mtotalrainfal_mean+mavgwindspeed_mean
+humidity_mean+avegleafwetness_mean+ # fixed effect f(IDcode, model = "bym", # spatial
effect: IDcode is a numeric identifier for each area in the lattice (does not work with factors)
graph = mal.adj) # this specifies the neighbouring of the lattice areas

mal_Data<-data2@data

# Finally, we can run the model using the inla() function

Mod_mal <- inla(formula2, family = "nbinomial", # since we are working with count data
data = mal_Data, control.compute = list(cpo = T, dic = T, waic = T), E=expe)

# CPO, DIC and WAIC metric values can all be computed by specifying that in the con-
trol.compute option

# These values can then be used for model selection purposes if you wanted to do that

# Check out the model summary

summary(Mod_mal)

formula2_p <- NoCases 1 +hpd_mean +mavegoiltemp_mean + mavgtemp_mean +
mmintemp_mean+mmaxtemp_mean+mtotalrainfal_mean+mavgwindspeed_mean+
humidity_mean+avegleafwetness_mean + # fixed effect +f( IDcode, model = "bym", graph =
mal.adj, scale.model = TRUE, hyper = list( prec.unstruct = list(prior = "loggamma", param
= c(1,0.001)), # precision for the unstructured effect (residual noise) prec.spatial = list(prior
= "loggamma", param = c(1,0.001)) # precision for the spatial structured effect ) )
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Mod_mal_p2 <- inla(formula2_p, family = "nbinomial", data = mal_Data, control.compute
= list(cpo = T), E=expe )

summary(Mod_mal_p2)
# We can extract the summary of the fixed effects (in this case only GS)

round(Mod_mal$summary.fixed, 3)

# Calculating the number of areas

Nareas <- length(mal_Data[,1])

“ zone.index <- Mod_mal$marginals.random$IDcode[1:Nareas]

# exponentiate each of the zone marginals to return it to its original values (remember that
this is a poisson model so all the components of the model are log-transformed)

zetaE <- lapply(zone.index,function(x) inla.emarginal(exp,x))

zetaE.cutoff <- c(0, 1,2,3,4)
zeta.cutoff <- c(0,0.1, 1,2,3,4)# we make a categorisation to make visualisation easier
cat.zetaE <- cut(unlist(zetaE), breaks = zetaE.cutoff, include.lowest = TRUE)

# Create a dataframe with all the information needed for the map
maps.cat.zetaE <- data.frame(IDcode = mal_Data$IDcode, cat.zetaE = cat.zetaE)

# Create a new polygon from Fox_Lattice and add the value of the posterior mean

mal_Lattice_postE <- data2
data.mal.postE <- attr(mal_Lattice_postE, "data") attr(mal_Lattice_postE, "data") <-
merge(data.mal.postE, maps.cat.zetaE, by = "IDcode")

my.palette.postE <- rev(brewer.pal(n = 9, name = "YlGnBu"))
spplot(obj = mal_Lattice_postE, zcol = "cat.zetaE", col.regions = my.palette.postE)
#===================================================

a <- 0
prob.zoneE <-
lapply(zone.index, function(x) 1 - inla.pmarginal(a, x))
prob.zone.cutoffE <- c(0, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, cat.prob.zoneE <-
cut(unlist(prob.zoneE), breaks = prob.zone.cutoffE, include.lowest = T)
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# Create a new polygon from Fox_Lattice and add the value of the posterior sd

maps.cat.prob.zoneE <- data.frame(IDcode = mal_Data$IDcode, cat.prob.zoneE = cat.prob.zoneE)

mal_Lattice_varE <- data2 data.fox.var <- attr(mal_Lattice_varE, "data")
attr(mal_Lattice_varE, "data") <- merge(data.fox.var, maps.cat.prob.zoneE, by = "IDcode")

my.palette.varE <- brewer.pal(n = 9, name = "BuPu") spplot(obj = mal_Lattice_varE, zcol
= "cat.prob.zoneE", col.regions = my.palette.varE, add = T)

#===================================
#THE NEGATIVE BINOMIAL SPATIAL MODEL for INDIVIDUAL DATA (WITH
RANDOM EFFECTS)
#====================================

formula5 <- NoCases 1 +p3+p5+p8+p9+p10+p11+p12+p13+p20+p32+ # fixed effect
f(IDcode, model = "bym", # spatial effect: IDcode is a numeric identifier for each area in
the lattice (does not work with factors) graph = mal.adj) # this specifies the neighbouring of
the lattice areas
mal_Data5<-data2@data

# Finally, we can run the model using the inla() function
Mod_mal5 <- inla(formula5, family = "nbinomial", # since we are working with count data
data = mal_Data5, control.compute = list(cpo = T, dic = T, waic = T),E=expe)

# CPO, DIC and WAIC metric values can all be computed by specifying that in the con-
trol.compute option
# These values can then be used for model selection purposes if you wanted to do that

# Check out the model summary
summary(Mod_mal5)

formula5_p <- NoCases 1+p3+p5+p8+p9+p10+p11+p12+p13+p20+p32+ # fixed effect +f(
IDcode, model = "bym", graph = mal.adj, scale.model = TRUE, hyper = list( prec.unstruct
= list(prior = "loggamma", param = c(1,0.001)), # precision for the unstructured effect
(residual noise) prec.spatial = list(prior = "loggamma", param = c(1,0.001)) # precision for
the spatial structured effect ) )

Mod_mal5_p <- inla(formula5_p, family = "nbinomial", data = mal_Data5, control.compute
= list(cpo = T), E=expe )
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summary(Mod_mal5_p)

# We can extract the summary of the fixed effects (in this case only GS)
round(Mod_mal5$summary.fixed, 3)

# Calculating the number of areas
Nareas <- length(mal_Data5[,1])
zone.index <- Mod_mal5$marginals.random$IDcode[1:Nareas]

# exponentiate each of the zone marginals to return it to its original values (remember that
this is a poisson model so all the components of the model are log-transformed)
zeta <- lapply(zone.index,function(x) inla.emarginal(exp,x))

zeta.cutoff <- c(0, 1,2,3,4) # we make a categorisation to make visualisation easier cat.zeta <-
cut(unlist(zeta), breaks = zeta.cutoff, include.lowest = TRUE)

# Create a dataframe with all the information needed for the map
maps.cat.zeta <- data.frame(IDcode = mal_Data5$IDcode, cat.zeta = cat.zeta)

# Create a new polygon from Fox_Lattice and add the value of the posterior mean
mal_Lattice_post <- data2 data.mal.post <-
attr(mal_Lattice_post, "data") attr(mal_Lattice_post, "data") <- merge(data.mal.post,
maps.cat.zeta, by = "IDcode")

my.palette.post <- rev(brewer.pal(n = 9, name = "YlGnBu"))
spplot(obj =
mal_Lattice_post, zcol = "cat.zeta", col.regions = my.palette.post)
#===================================================

a <- 0
prob.zone <- lapply(zone.index, function(x) 1 - inla.pmarginal(a, x))

prob.zone.cutoff <- c(0, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
cat.prob.zone <- cut(unlist(prob.zone), breaks = prob.zone.cutoff, include.lowest = T)

# Create a new polygon from Fox_Lattice and add the value of the posterior sd
maps.cat.prob.zone <-
data.frame(IDcode = mal_Data$IDcode, cat.prob.zone = cat.prob.zone)

mal_Lattice_var <- data2

data.fox.var <- attr(mal_Lattice_var, "data") attr(l_Lattice_var, "data") <- merge(data.fox.var,
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maps.cat.prob.zone, by = "IDcode")

my.palette.var <- brewer.pal(n = 9, name = "BuPu")

spplot(obj = mal_Lattice_var, zcol = "cat.prob.zone", col.regions = my.palette.var, add = T)

# END OF SPATIAL ANALYSIS
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A.2 spatio - temporal Analysis

setwd("C:Users. . . Dataset") remove(list=ls())
my.dir <- paste(getwd(),"/",sep="")
require(INLA) inla.setOption(scale.model.default=FALSE)

require(splancs)
require(sp)
require(fields)
require(maptools) require(lattice)
require(abind) library(spdep)
library(RColorBrewer)

datak <- read.csv(paste(my.dir,"katale/aggregateddata 2018to20.csv",sep="")) malariak <-
readShapePoly(paste(my.dir,"katale/SelectedReg",sep="")) ID.area1<- datak$ID.area

temp <- poly2nb(malariak) nb2INLA("malaria.graph", temp)
malaria.adj <- paste(getwd(),"/malaria.graph",sep="")

# parametric trend model

formula.par <- PosRDT sum 1 +mtotalrainfalmean +mavgtemp mean +mmaxtemp
mean+mavgwindspeed mean +humidity mean+avegleafwetness mean+ f(ID.area,
model="bym",graph=malaria.adj, constr=TRUE) + f(ID.area1,ID.year,model="iid", con-
str=TRUE) + ID.year

model.par <- inla(formula.par,family="nbinomial",data=datak,E=expe, control.predictor=list(compute=TRUE),
control.compute=
list(dic=TRUE,cpo=TRUE))

round(model.par$summary.fixed[,1:5],3)

# ***
#Plotting the poaterior mean of the main time effects

x <- seq(1,3) # Years

y<-model.par$summary.fixed[2,1]x

plot(x,y, type="l", main="Global linear temporal trend",xlab="t",ylab=expression(betat),
ylim=c(min(model.par$summary.fixed[2,3]x),max(model.par$summary.fixed[2,5]x)))
lines(model.par$summary.fixed[2,3]x,lty=2)

lines(model.par$summary.fixed[2,5]x,lty=2)

# *** #Plotting the posterior mean of spatial effect
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m <- model.par$marginals.random[[1]][1:34]
zeta.ST1 <- unlist(lapply(m,function(x)inla.emarginal(exp,x)))

SMR.cutoff<-summary(zeta.ST1)[-4]
xi.factor <- cut(zeta.ST1,breaks=SMR.cutoff,include.lowest=TRUE)

m <- model.par$summary.random[[2]][1:34,2]

int.cut <-summary(m)[-4]

int.factor <- cut(m,breaks=int.cut,include.lowest=TRUE)

data.malariak <- attr(malariak, "data")

attr(malariak, "data")=data.frame(data.malariak, xi=xi.factor)

trellis.par.set(axis.line=list(col=NA))

spplot(obj=malariak, zcol= "xi", col.regions=gray(3.5:0.5/4),colorkey = list(space = "bot-
tom", height = 0.9),main="Posterior mean of spatial main effect")

# ***
#Plotting the posterior mean of defferential time effect

datak <- read.csv(paste(my.dir,"katale/aggregateddata 2018to20.csv",sep=""))

SelectedReg <- readShapePoly(paste(my.dir,"katale/SelectedReg",sep=""))

data.SelectedReg <- attr(SelectedReg, "data")

# ***
#Non - parametric dynamic trend model

datak <- read.csv(paste(my.dir,"katale/aggregateddata 2018to20.csv",sep=""))
SelectedReg <- readShapePoly(paste(my.dir,"katale/SelectedReg",sep=""))

data.SelectedReg <- attr(SelectedReg, "data")

year <- numeric(0)

for(i in 1:3) year<- append(year,rep(i,34))

y = as.numeric(datak$PosRDT sum) ID.area<-as.numeric(datak$ID.area) ID.area1<-
as.numeric(datak$ID.area)
ID.year<-as.numeric(datak$ID.year)
ID.year1<-as.numeric(datak$ID.year)
ID.area.year<-as.numeric(datak$ID.area.year)
E<-datak$expe mtotalrainfalmean

<-as.numeric(datak$mtotalrainfalmean )
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mavgtemp mean <-as.numeric(datak$mavgtemp mean ) mmaxtemp mean
<-as.numeric(datak$mmaxtemp mean )
mavgwindspeed mean <-as.numeric(datak$mavgwindspeed mean ) humidity mean <-
as.numeric(datak humidity mean )
avegleafwetness mean <-as.numeric(datak$avegleafwetness mean )

datakk <- data.frame(y= y, E= E, ID.area=as.numeric(ID.area), ID.area1=as.numeric(ID.area),
year=year, ID.year = ID.year, ID.year1=ID.year, ID.area.year =
as.numeric(ID.area.year),mtotalrainfalmean = as.numeric(mtotalrainfalmean),mavgtemp mean
= as.numeric(mavgtemp mean),mmaxtemp mean = as.numeric(mmaxtemp mean),mavgwindspeed
mean = as.numeric(mavgwindspeed mean),humidity mean = as.numeric(humidity mean),
avegleafwetness mean = as.numeric(avegleafwetness mean))

# Spatial graph

temp <- poly2nb(malariak)
nb2INLA("malaria.graph", temp)
malaria.adj <- paste(getwd(),"/malaria.graph",sep="")

temp <- poly2nb(SelectedReg)
nb2INLA("malaria.graph", temp)

# Temporal graph

malaria.adj <- paste(getwd(),"/malaria.graph",sep="")

formula.ST1 <- y 1+mtotalrainfalmean +mavgtemp mean +mmaxtemp mean+mavgwindspeed
mean +humidity mean+avegleafwetness mean+f(ID.area,model="bym",graph=malaria.adj)
+f(ID.year,model="rw2") + f(ID.year1,model="iid") lcs <- inla.make.lincombs(ID.year =
diag(3), ID.year1 = diag(3))
model.ST1 <- inla(formula.ST1,family="nbinomial",data=datakk,E=E, control.predictor=
list(compute=TRUE), lincomb=lcs)

temporal.CAR <- lapply(model.ST1$marginals.random$ID.year, function(X) marg <-
inla.tmarginal(function(x) exp(x), X) inla.emarginal(mean, marg) )

temporal.IID <- lapply(model.ST1$marginals.random$ID.year1, function(X) marg <-
inla.tmarginal(function(x) exp(x), X) inla.emarginal(mean, marg) )

# *** # Posterior mean for temporal trend graph

plot(seq(1,3),seq(0.999,1.001,length=3),type="n",xlab="t",ylab=expression(exp(phi[t])))
lines(unlist(temporal.IID)) lines(unlist(temporal.CAR),lty=2) abline (h=1,lty=1) # ***

#— Type I interaction —#

formula.intI<- y 1+mtotalrainfalmean +mavgtemp mean +mmaxtemp mean+mavgwindspeed
mean +humidity mean+avegleafwetness mean+f(ID.area,model="bym", graph=malaria.adj)
+ f(ID.year,model="rw2") + f(ID.year1,model="iid") + f(ID.area.year,model="iid")
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mod.intI <- inla(formula.intI,family="nbinomial",data=datakk,E=E, control.predictor=
list(compute=TRUE), control.compute=list(dic=TRUE,cpo=TRUE))

#***
delta.intI <- data.frame(delta=mod.intI$summary.random$ID.area.year[,2],
year=datakk$ID.year,ID.area=datakk$ID.area) delta.intI.matrix <- matrix(delta.intI[,1], 34,3,by-
row=FALSE) rownames(delta.intI.matrix)<- delta.intI[1:34,3]

# Check the absence of spatial trend for (intI) sumarrydelta<-summary(c(delta.intI[,1]))

#****
cutoff.interaction<-sumarrydelta[c(-3,-4)] delta.intI.factor <- data.frame
(CONST=data.SelectedReg$CONST) for(i in 1:3) delta.factor.temp <-
cut(delta.intI.matrix[,i],breaks=cutoff.interaction,include.lowest=TRUE) delta.intI.factor <-
cbind(delta.intI.factor,delta.factor.temp)

colnames(delta.intI.factor)<- c("NAME",seq(2018,2020))
# plot intI
attr(SelectedReg, "data") <- data.frame(data.SelectedReg, intI=delta.intI.factor)
trellis.par.set(axis.line=list(col=NA))
spplot(obj=SelectedReg, zcol=c("intI.2018","intI.2019","intI.2020"), col.regions=gray(2.5:0.5/4),
names.attr=seq(2018,2020),main="")

# ***
# END of Int I
#— Type II interaction —#

ID.area.int <- datakk$ID.area
ID.year.int <- datakk$ID.year
mtotalrainfalmean.int <- datakk$mtotalrainfalmean
mavgtemp mean.int <- datakk$mavgtemp mean
mmaxtemp mean.int <- datakk$mmaxtemp mean

mavgwindspeed mean.int <- datakk$mavgwindspeed mean
humidity mean.int <- datakk$humidity mean avegleafwetness mean.int <-
datakk$avegleafwetness mean

formula.intII<- y 1+ mtotalrainfalmean+mavgtemp mean +mmaxtemp mean+mavgwindspeed
mean +humidity mean+avegleafwetness mean+f(ID.area,model="bym",graph=malaria.adj)
+ f(ID.year,model="rw2") + f(ID.year1,model="iid") + f(ID.area.int,model="iid", group=ID.year.int,
control.group=list(model="rw2"))

mod.intII <- inla(formula.intII,family="nbinomial",data=datakk,E=E,
control.predictor=list(compute=TRUE), control.compute=list(dic=TRUE,cpo=TRUE))
#***
delta.intII <- data.frame(delta=mod.intII$summary.random$ID.area.int [,2],
year=datakk$ID.year,ID.area=datakk$ID.area)

delta.intII.matrix <- matrix(delta.intII[,1], 34,3,byrow=FALSE)
rownames(delta.intII.matrix)<- delta.intII[1:34,3]
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#***
# Check the absence of spatial trend for (intII)

sumarrydelta<-summary(c(delta.intII[,1]))

#****

cutoff.interaction<-sumarrydelta[c(-3,-4)]

#***

delta.intII.factor <- data.frame(CONST=data.SelectedReg$CONST) for(i in 1:3) delta.factor.temp
<- cut(delta.intII.matrix[,i],breaks=cutoff.interaction,include.lowest=TRUE) delta.intII.factor
<- cbind(delta.intII.factor,delta.factor.temp)

colnames(delta.intII.factor)<- c("NAME",seq(2018,2020))

attr(SelectedReg, "data") <- data.frame(data.SelectedReg,intII=delta.intII.factor) trel-
lis.par.set(axis.line=list(col=NA)) #***

# *** plot Int II

spplot(obj=SelectedReg, zcol=c("intII.2018","intII.2019","intII.2020"), col.regions=gray(2.5:0.5/3),
names.attr=seq(2018,2020),main="")

# ***
# END of Int II
#— Type III interaction —#

formula.intIII<- y 1+mtotalrainfalmean+mavgtemp mean +mmaxtemp mean+mavgwindspeed
mean +humidity mean+avegleafwetness mean+f(ID.area,model="bym",graph=malaria.adj)
+ f(ID.year,model="rw2") + f(ID.year1,model="iid") + f(ID.year.int,model="iid",
group=ID.area.int,control.group=list(model="besag", graph=malaria.adj))

mod.intIII <- inla(formula.intIII,family="nbinomial",data=datakk,E=E, control.predictor=
list(compute=TRUE), control.compute=list(dic=TRUE,cpo=TRUE))
#***
delta.intIII <- data.frame(delta=mod.intIII$summary.random$ID.year.int[,2],year=datakk$ID.year,
ID.area=datakk$ID.area) delta.intIII.matrix <- matrix(delta.intIII[,1], 34,3,byrow=FALSE)
rownames(delta.intIII.matrix)<- delta.intIII[1:34,3]
#***

# Check the absence of spatial trend for (intII)

sumarrydelta<-summary(c(delta.intIII[,1]))
#*** cutoff.interaction<-sumarrydelta[c(-3,-4)]

#***
delta.intIII.factor <- data.frame(CONST=data.SelectedReg$CONST) for(i in 1:3) delta.factor.temp
<- cut(delta.intIII.matrix[,i],breaks=cutoff.interaction,include.lowest=TRUE) delta.intIII.factor
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<- cbind(delta.intIII.factor,delta.factor.temp)

colnames(delta.intIII.factor)<- c("NAME",seq(2018,2020))

#*** attr(SelectedReg, "data") <- data.frame(data.SelectedReg, intIII=delta.intIII.factor)
trellis.par.set(axis.line=list(col=NA))

#****
# *** plot Int III

spplot(obj=SelectedReg, zcol=c("intIII.2018","intIII.2019","intIII.2020"), col.regions=gray(2.5:0.5/3),
names.attr=seq(2018,2020),main="")

# ***
# END OF SPATIO - TEMPORAL ANALYSIS
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APPENDIX B

Malaria active case detection questionnaire

FIGURE B.1: Malaria active case detection questionnaire
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APPENDIX C

Additional marerial

C.1 Maps for the spatio-temporal model without added co-
variaariates effects

FIGURE C.1: Spatial main effect and diffrerential temporal maps of
the spatiotemporal model without added covariates (posterior mean

obtained using a random walk of order 2)
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FIGURE C.2: Posterior mean for malaria of the nonspatially or tem-
poral interaction model without added covariates using RW2
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FIGURE C.3: Posterior mean for malaria of the temporal structured
interaction model without added covariates using random walk of

order 2
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FIGURE C.4: Posterior mean for malaria of the spatial structured
interaction model without added covariates using random walk of

order 2
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