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Abstract 
 

The standard deviation of a population (of size  N ) is a measure of the 

spread of the population observations about the mean. A population may 

be clustered and the standard deviation of each cluster calculated. This 

paper looked at how the mean of the standard deviations of the clusters 

of a population of random numbers relate to the standard deviation of the 

population as the size of the clusters increased. We assumed that all clusters 

have the same size. As the size n of each cluster increased, the number of 

clusters    N
 decreased, making the population a single cluster when n = N . 

The sequence {s 
n 
} of the means of the standard deviations of the clusters 

converged to the standard deviation s N 

convergence was not monotonic. 

of the population. However, this 

 

 

Keywords: standard deviation of a population, population clusters, sequence 

of means of standard deviations, short-cut estimates, proximity, cluster size, 

estimation of standard deviation, randomly generated numbers, non-monotonic 

convergence, convergence simulation. 

 
Introduction and literature review 

 
Discussions have been on-going about the determination and usage of 

the standard deviation of a population. Many authors have expressed 

themselves on the relationship between the standard deviation of a single 

sample of a population and the standard deviation of the population as the 

sample size increased. This paper aimed at determining how the size of each 

cluster affected the proximity between the mean of the standard deviations 

of the clusters of a population of 5040 randomly generated numbers and the 

standard deviation of the population. 

 
Short-cut estimates of the standard deviation of a population have their 

advantages and shortcomings. Sabers and Klausmeier [1] investigated the 



 

 
accuracy of some short-cut estimates of standard deviation. They found 

that the loss in accuracy due to short-cut methods versus the conventional 

method ranged from 0% to 7.8%. 

 
On the other hand, Hargreaves and Samani [2] had the following to say: 

A weather simulation procedure utilizing a monthly climatic data base can be 

substituted for the daily climatic data to produce very comparable results. The 

weather simulation procedure requires the standard deviation of potential 

evapotranspiration (ETP). A series of monthly mean values of maximum and 

minimum temperatures provides the required data for estimating mean ETP 

and the standard deviation. If only long term mean maximum and minimum 

temperatures and the mean temperature of a series of years are available, 

the standard deviation of the mean temperature provides a means for making 

an estimate of the standard deviation in ETP. 

 
The size of the sample plays a part in the proximity of the standard deviation 

of a sample to the standard deviation of the population. 

 
Altman and Bland (date unknown), in their response to Nagele [3], wrote that 

the standard error (SE) of the sample mean depends on both the standard 

deviation (SD) and the sample size, by the simple relation 
 

SD 
SE =  

sample size 
(1) 

 

They further stated that the standard error fell as the sample size increased, 

as the extent of chance variation was reduced. This idea underlined the 

sample size calculation for a controlled trial, for example. By contrast the 

standard deviation would not tend to change as they increased the size of 

their sample. 

 
Also on the question of sample size, Ziliaka and McCloskeyb [4] wrote the 

following: We find here that in the next decade, the 1990s, of the 137 papers 

using a test of statistical significance in the AER fully 82% mistook a merely 

statistically significant finding for an economically significant finding. A super 

majority (81%) believed that looking at the sign of a coefficient sufficed for 

science, ignoring size. 

 
In a response to a question on the relationship between standard deviation 

and sample size, Professor Mean had this to say: The estimate of the 



i 

� 

 
 

n 

= 

+ 
2 

n 

 

 
standard deviation becomes more stable as the sample size increases. But 

after about 30 – 50 observations, the instability of the standard deviation 

becomes negligible.[5] 

 
According to Cochran [6], there are four ways of estimating variances for 

sample size determinations: 

 
(1)    by taking the sample in two steps 

(2)    by the results of a pilot survey 

(3)    by previous sampling of the same or a similar population, and 

(4) by guesswork about the structure of the population, assisted by some 

mathematical results. 

 
Here again, there is that link between standard deviation and the sample 

size. However, (4) indicates that the structure of the population plays a role 

if guesswork is applied. 

 
Methodology and analysis 

 
We  generated  5040  random  numbers  using  Excel  and  calculated  the 

 

standard deviations s 
n  

, where  n is the cluster size and  ni 

 

denotes the 

 

cluster number for i = 1, 2,..., 5040 . The mean of the 
 

standard deviations of the clusters was calculated using 
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For instance, when the cluster size is 504, then 
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This procedure was repeated for different sets of 5040 randomly generated 

numbers. Table 1 shows the non-monotonic convergence of the means of 

standard deviations of the clusters to the standard deviation of the population 

for one of the sets. For this set, the standard deviation was 28.6164: 
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Table 1: Non-Monotonic Convergence Simulation 

 
 

Serial 
number 

 
Cluster 
size n 

 

Mean SD of 
Clusters 

s n 

 

Difference 

s N s n 

 

1 
 

10 
 

26.73438 
 

1.88202 

 

2 
 

15 
 

27.29214 
 

1.32426 

 

3 
 

20  
27.64601 

 
0.97039 

 

4 
 

30 
 

27.95824 
 

0.65816 

 

5 
 

35 
 

28.05827 
 

0.55813 

 

6 
 

40 
 

28.11891 
 

0.48749 

 

7 
 

45 
 

28.15516 
 

0.46124 

 

8 
 

60 
 

28.28728 
 

0.32912 

 

9 
 

70 
 

28.31353 
 

0.30287 

 

10 
 

80 
 

28.3693 
 

0.2471 

 

11 
 

90 
 

28.3641 
 

0.2523 

 

12 
 

105 
 

28.45474 
 

0.16166 

 

13 
 

120 
 

28.45288 
 

0.16352 

 

14 
 

140 
 

28.44798 
 

0.16842 

 

15 
 

180 
 

28.51759 
 

0.09881 

 

16 
 

210 
 

28.51448 
 

0.10192 

 

17 
 

240 
 

28.54756 
 

0.06884 



 

 
 

 

18 
 

280 
 

28.54062 
 

0.07578 

 

19 
 

315 
 

28.54933 
 

0.06707 

 

20 
 

360 
 

28.55474 
 

0.06166 

 

21 
 

420 
 

28.56815 
 

0.04825 

 

22 
 

560 
 

28.58982 
 

0.02658 

 

23 
 

630 
 

28.57869 
 

0.03771 

 

24 
 

720 
 

28.59851 
 

0.01789 

 

 

For each set of 5040 randomly generated numbers, the sequence {s n } 
converged to s N . However, the convergence was non-monotonic for each 

set. 

 
Results and discussion 

 
We found that as the sample size of each cluster increased, the mean of the 

standard deviations of the clusters tended to the standard deviation of the 

population. However, for each n , the difference between the means of the 

standard deviations and the standard deviation of the population does not 

necessarily decrease as n increased. 

 
The  following  charts  illustrate  the  relationship  between  the  means  of 

the standard deviations of the clusters and the standard deviation of the 

population: 



 

 
 

 
 

Figure 1: Means of standard deviations of clusters 

 
In Figure 1, as the serial numbers (and consequently the cluster sizes) 

increased, the mean of the standard deviations of the clusters also increased 
 

generally. However, when serial number is 14, s 140  is 28.44798, When serial 
 

number increased to 15, s 180 

 

increased to 28.51759 whereas when serial 
 

number further increased to 16, 

 

s 210 decreased to 28.51448. The same 

trend could be noticed for the serial numbers 21, 22 and 23. These indicated 

that the convergence was not monotonic. 



 

 
 

 
 

 

Figure 2: Means of standard deviations of clusters and the trend line 
 
 

Figure 2 shows the relationship between the mean of standard deviations of 

clusters and a trend line of degree 3. It also shows how these two approached 

the standard deviation of the population as the cluster sizes increased. 

 
Conclusion 

 

 
The results indicate that the mean of the standard deviations of clusters of a 

population may be used to estimate the standard deviation of the population 

by making the size of the clusters large enough. 
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