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Abstract

This study aims to comprehensively analyse Foot and Mouth Disease (FMD) by formulat-

ing two mathematical models specifically tailored for confined and unconfined environments

in Namibia. The models composed for this research incorporate essential compartments that

capture the intricate dynamics of livestock populations, including their susceptibility to FMD,

latent exposure, infectiousness, and recovery. Furthermore, the models account for the imple-

mentation of optimal control measures by farmers and the disease control mechanisms em-

ployed by national institutions such as the vaccination campaign, culling and quarantining of

livestock.

To ensure the stability and equilibrium of the proposed models, well-established mathemat-

ical principles such as the LaSalle Invariance principle, Lyapunov function and Routh-Hurwitz

stability analysis are utilized. These methods assist in determining the equilibrium points of

the models and assessing their stability properties. In addition, historical data on FMD reported

cases within the country is also incorporated to enhance the accuracy and applicability of the

models analyses.

The study utilises numerical simulations with an Ordinary Differential Equation (ODE) solver

in Python to demonstrate the impact of various scenarios of FMD progression. Furthermore,

an excel-input data sheet is created to facilitate basic analysis and to showcase the variability

range resulting from modifications in FMD dynamics.

By employing a combination of mathematical modelling, stability analysis, historical data

integration, and numerical simulations, this research provides significant insights into the be-

haviour and control of FMD in confined and unconfined environments in Namibia. The findings

vii



contribute to the existing knowledge of FMD in Namibia and provide insights that can inform

decision-making and policy formulation in combating this economically significant disease.
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Chapter 1

Introduction

The introductory section of this study presents information on the background of FMD in

Namibia as a framework, reasons for conducting the study and what it entails to achieve to-

gether with its significance in controlling the disease. Additionally, a summary of the entire

study is provided at the conclusion of this chapter.

1.1 Background of the Study

Mathematical analysis deals with theories of differentiation, integration, limits, measure and

analytic functions that are applied to physical, economical, biological and other real-world

models. Various examples of such applications can be found in the work of [9], [39], [54],

[53], [59], [11], [15] whose results justified the practice of control measures against infectious

diseases from the mid-17th century. These applications form the base of mathematical analysis

in studying a commonly known livestock foot and mouth disease which pose serious impact on

Namibia’s livestock industry. According to [56], FMD is a transboundary animal infection that

significantly impacts the productivity of livestock, leading to disruptions in both regional and

international trade of animals and animal-based products.

Multiple mathematical models have been created to depict the spread of infectious diseases,

with origins tracing back to the 20th century when Kermack and McKendrick introduced the

classical Susceptible-Infectious-Recovered (SIR) model to analyse epidemics of plague and

cholera in London and Bombay. According to [11], the SIR model has been widely utilized as

a fundamental framework for numerous subsequent infectious disease models.

In the study conducted by [32], a basic classical SIR model was developed to investigate the
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transmission of FMD in Namibia. This simplified model divided the population into three com-

partments, allowing for a clearer understanding of the more intricate epidemiological modelling

outcomes.

Different epidemiological studies extended the classical SIR model by including demographics

such as birth and death. Furthermore, extension of the SIR model framework can be applied

in multiple ways such as by including seasonality to show whether infectious disease epidemic

has sustained cycles or by implementing additional compartments capturing the behavioural

and biomedical control interventions [41].

Analysis of extended demographic models depict information on the cycle of an infectious

disease epidemic and endemic level. The distinction between epidemic models and endemic

models lies in their temporal scope. Epidemic models are employed to depict the rapid spread

of diseases within a time frame of less than one year. On the other hand, endemic models are

utilized to investigate diseases that persist over extended periods, characterized by the contin-

ual replenishment of susceptible individuals through factors such as birth or the recovery from

temporary immunity [28].

Understanding Foot and Mouth Disease

The awareness and efforts to control FMD can be traced back to several centuries ago. It was the

first disease affecting cloven-hoofed ruminants for which the viral cause, FMD virus (FMDV),

was demonstrated by Loeffler and Frosch [22]. FMD is attributed to a genus Aphthovirus,

which belongs to the Picornaviridae family. This genus encompasses seven serotypes that are

immunologically distinct: serotypes A, O, C, South African Territories (SAT-1, SAT-2, SAT-3),

and Asia-1 [33]. It is important to note that these serotypes do not confer cross immunity.

Within the various serotypes, there exists a virus infection-associated antigen (VIA) that ex-

hibits group reactivity and holds significant importance in the serological diagnosis of FMD

infection. To date, the identification of over 60 subtypes of the virus and the ongoing emer-

gence of new subtypes exemplifies the dynamic nature of the phenomenon under investigation.

According to the manual of diagnostic tests and vaccines for terrestrial animals by the World

Organisation for Animal Health (OIE), the ongoing generation of novel FMDV variants is a re-

2



sult of the persistent mutation arising from error-prone RNA replication, recombination events,

and selective pressures imposed by the host. These dynamic processes contribute to the contin-

uous evolution and diversification of the FMDV population [58].

According [12], the high contagiosity of the disease enables the rapid spread of viral infection

among cloven-hoofed ruminants, including cattle, sheep, goats, African buffaloes, and swine.

In the study of [5] it was recognised that cattle can sustain FMDV for a maximum of 3 years

and 6 months while African buffaloes sustain the virus for up to 5 years. The study of [56],

characterised FMD as a disease that primarily spreads via direct contact between animals. At

the same time secondary transmission occurs via shared water points, shared pasture, or via

airborne with viral spores carried by the wind.

The incubation period of FMD is a function of multiple variables, including the species of the

infected cloven-hoofed ruminant, the strain of the FMDV, the route of inoculation, and the dose

of the FMDV, [8]. According to [38] and [29], the reported FMD incubation period for livestock

population ranges between 2 to 14 days after contact with an infectious cloven-hoofed rumi-

nant. Empirical evidence obtained through veterinary laboratory observations demonstrates

that the FMDV elicits a significant elevation in body temperature in infected animals, denoted

as a high fever, with a duration typically ranging from 2 to 6 days (T 2 [2,6]). This fever is sub-

sequently accompanied by the appearance of vesicular lesions in the oral cavity and interdigital

spaces of the hooves, leading to excessive salivation and impaired ambulation, manifesting

lameness, and reduced appetite.

The infectious period for livestock affected by FMD extends for approximately 7 to 10 days.

During this period, infected animals exhibit symptomatic manifestations of the disease and

continue to be a source of infection. The outcome of the infection, whether recovery or mor-

tality, is influenced by factors such as age and pre-existing immunity. It is important to note

that the mortality rate associated with FMD is generally low, albeit subject to variations [38].

As indicated by [33], the estimated fatality rate for adult livestock in the context of FMD falls

within the range of 0 to 5 per cent. Figure 1.1 illustrates the graphical depiction of the clinical

manifestations associated with FMD.
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Figure 1.1: FMD clinical signs

Surveillance of Foot and Mouth Disease

The government of the Republic of Namibia facilitates a mycobacterium surveillance strategy

that was implemented through passive and active surveillance of FMD in the country. Passive

surveillance involves investigating reported suspect clinical cases of livestock through ante and

post-mortem examination of organs or intradermal testing. While active surveillance involves

testing livestock and examination of carcasses at slaughter facilities using intradermal testing

before exporting or importing stock.

According to [34], mycobacterium surveillance is considered the standard method for routine

confirmation of FMD infection. However, rapid nucleic acid techniques like polymerase chain

reaction (PCR) are also utilized for confirming FMD cases. The Namibian surveillance strategy

covers three demarcated zones:

1. Zone 1: The FMD Infected Zone

This geographic area covers the Zambezi region due to the periodic occurrence of FMD.

As highlighted by the [25], controlling the disease in this zone poses significant chal-
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lenges due to its inclusion in the Kavango Zambezi Trans-Frontier Conservation Area

(KAZA). The area is inhabited by African Buffaloes, known carriers of the FMD virus,

making the disease control efforts more complex.

2. Zone 2: FMD Protection Zone

This geographic area is also known as the FMD Containment Zone due to the current

outbreak within the area. The zone covers Kunene, Ohangwena, Oshikoto, Oshana,

Omusati, Kavango East and West region. The Meat Board reported that this zone cre-

ates a barrier to FMD by preventing the disease from spreading into the FMD Free zone.

Historically, the FMD Containment Zone was free from FMD for 40 years. But due to

an open border between Namibia and Angola, animals from the two countries basically

share pastures and water points, exposing the zone to FMD infection, [25].

3. Zone 3: FMD Free Zone (Commercial Area)

This geographic area is separated from the FMD Containment zone, which includes a

double stock physical barrier proof of game fence called the Veterinary Cordon Fence

(VCF). The VCF cut through from Palgrave Point on the west coast of Namibia and cut

through to a point on the common border-point between Namibia and Botswana, with en-

try and exit frontier posts along the fence. In addition to the physical barrier, the Ministry

of Agriculture and Land Reforms have deployed Veterinary officers at each frontier post

to disinfect necessary materials and conduct inspection on possible contaminated items

that flows into the FMD Free Zone, especially during outbreaks seasons.

The northern part of the VCF comprises zones 1 and 2, that form the Northern Communal Area

(NCA), while the whole southern part is composed of zone 3 alone that forms the Commercial

area.
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Figure 1.2: Map of Namibia FMD inspection districts and zones

According to [24], the ongoing global prevalence of FMDV infection is sustained across

three continental reservoirs in Africa, Asia, and South America. These reservoirs are further

divided into seven main infection pools, each encompassing multiple serotypes of the virus.

Due to the predominant circulation of the virus within these regional reservoirs, viral strains

have evolved and become region-specific strains. This necessitates the development of cus-

tomized vaccines, particularly for type A and SAT viruses.

The global distribution of FMDV is characterized by an association with economic develop-

ment, where prosperous nations have successfully eliminated the disease, while developing

countries face challenges due to resource limitations and inadequate infrastructure. The attain-

ment of FMD-free status presents significant trade opportunities for countries with potential

for livestock exports, thereby incentivising investments in veterinary services and FMD control

measures, [55]. However, the substantial investment required to ensure a sustainable export
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flow may be unattainable or economically unfeasible, particularly for countries that are net

importers of livestock and related products. Consequently, many nations do not prioritize the

eradication of FMD as a primary objective.

The geographical region encompassing the reservoir of SAT 1 to 3 viruses transcends tradi-

tional political and economic boundaries. This reality has significant implications, as the FMD

problem is beyond the scope of individual countries to address independently, and the respon-

sibility is often perceived to lie with a third party. Furthermore, national efforts to enhance

FMD control are impeded by the risk of cross-border infection transmission from neighbouring

countries. Consequently, there has been limited progress in reducing the prevalence of FMD

infection within most of the existing reservoirs over the past four decades.

The figure below (Figure 1.3) depicts the inferred national FMD status overlaid with the re-

gional distribution of FMDV pools and the predominant serotypes of the virus (adapted from

the FMD World Reference Laboratory website http://www.wrlfmd.org/).

Figure 1.3: Country FMD Status Map

Control Mechanisms and Prevention of Foot and Mouth Dis-
ease

FMD prevention and control strategies aim to mitigate the spread of the disease and minimize

its impact on livestock populations. These mechanisms encompass various measures and in-

terventions to reduce the transmission of FMDV, enhance biosecurity, and manage outbreaks
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effectively, [58].

According to [8], [12], [34] and [33], the essential elements of preventing and controlling FMD

consist of:

1. Vaccination Programs:

Vaccines play a crucial role in conferring immunity against specific FMDV serotypes.

Vaccination campaigns target susceptible livestock populations, particularly in endemic

regions or areas at high risk of FMD outbreaks.

2. Surveillance and Early Detection:

Active surveillance systems are implemented to monitor the presence and circulation

of FMDV. Early detection of FMD cases allows for prompt response and containment

measures to prevent further spread.

3. Biosecurity Measures:

Strict biosecurity protocols are essential to prevent the introduction and transmission

of FMDV. These measures include quarantine procedures, restricted animal movement,

proper disinfection, and hygiene practices within livestock facilities.

4. Control of Animal Movement:

Restricting the movement of livestock, especially in outbreak-affected areas, helps con-

tain the spread of FMD. Movement controls can involve regional restrictions, animal

movement permits, and tracing systems to monitor the movement of susceptible animals.

5. Education and Awareness:

Public awareness campaigns and educational programs aim to inform livestock owners,

farmers, and other stakeholders about FMD risks, prevention measures, and the impor-

tance of early reporting of suspected cases.

6. Rapid Response and Containment:

Timely response to FMD outbreaks is crucial to limit the disease’s impact. Rapid contain-

ment measures, including culling infected and at-risk animals, implementing quarantine

zones, and disinfection protocols, help prevent further disease transmission.
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7. International Collaboration:

Cooperation and information sharing between countries and international organizations

are vital for effective FMD prevention and control. Collaborative efforts facilitate the

exchange of knowledge, resources, and best practices to combat FMD on a global scale.

By implementing these comprehensive prevention and control mechanisms, countries can re-

duce the incidence and impact of FMD, safeguard livestock health, and protect the economic

interests associated with the livestock industry.

According to the [58], there are two approaches for prophylaxis in controlling and preventing

FMD. These two methods are outlined as follows:

Sanitary Prophylaxis

The approach of sanitary prophylaxis, as outlined by [58], includes the following measures:

1. Border animal movement control and surveillance to protect free zones.

2. Implementation of quarantine measures.

3. Slaughter of infected, recovered, and FMD-susceptible contact animals.

4. Thorough cleaning and disinfection of premises and all contaminated materials.

5. Proper disposal of carcasses and contaminated animal products within the infected area.

Medical Prophylaxis

The medical prophylaxis approach involves the use of vaccines, specifically inactivated and

live attenuated vaccines. However, caution is needed with live attenuated vaccines due to the

risk of reversion to virulence. The use of conventional live FMD vaccines may also hinder the

detection of infection in vaccinated animals.

Traditional FMD vaccines consist of chemically inactivated cell-culture-derived preparations

of a seed virus strain blended with suitable adjuvants and excipients. These vaccines can be

categorized as either standard potency or higher potency vaccines.
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1. Standard Potency Vaccines (commercial vaccines):

These vaccines contain sufficient antigen and appropriate adjuvants, providing a mini-

mum potency level of 3PD50 (50 per cent protective dose). After two initial vaccinations

given 1 month apart, they provide six months of immunity. The selection of vaccine

strains is based on their antigenic relationship with circulating strains, and many vac-

cines are multivalent to ensure broad antigenic coverage against prevailing strains.

2. Higher Potency Vaccines (emergency vaccines):

These vaccines contain sufficient antigen and adjuvants, offering a minimum potency

level of 6PD50 (50 per cent protective dose). They are recommended for vaccination

in populations that have no previous exposure to FMD. These vaccines provide a wider

spectrum of immunity and rapid onset of protection.

In addition to these prophylaxis methods, a progressive control pathway for Foot and Mouth

Disease (PCP-FMD) has been developed by the FAO. The PCP-FMD is a framework for de-

signing FMD control programs in countries where FMD is still endemic [12]. It aims to pro-

gressively reduce the impact of FMD and the load of FMDV. The PCP-FMD consists of several

stages of control activities, as depicted in Figure 1.4. Implementation of these stages enables

countries to increase their level of FMD control, leading to successful applications for OIE

endorsement of a national control program vaccination or official freedom from FMD with or

without vaccination, depending on the stage reached, [33].
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Figure 1.4: FMD control activity Stages

1.2 Statement of the Research

The nature of an FMD virus is so remarkable for its environmental resistance as Namibia con-

tinues to experience sporadic outbreaks of FMD, especially in its northern communal areas. In

normal circumstances, the disease causes high morbidity and low mortality with massive eco-

nomic impact of isolating infected countries from the global livestock trade market, especially

when there is a failure to implement control measures in infected and exposed areas.

Namibia is among the listed FMD infected Southern African Development Community (SADC)

members and it is currently being investigated on the production of FMD-free livestock com-

modities exported to the United Nation of America and the Republic of China [50].

To mitigate the economic and welfare impact of FMD, vaccination of susceptible livestock is

an effective measure. However, it is crucial that the vaccine closely matches the specific strain

and serotype responsible for FMD. Furthermore, the duration of protection provided by the

vaccine is typically limited, lasting around 12 months or less, as noted by [43].

A significant challenge lies in maintaining high levels of vaccination and herd immunity within

livestock populations, particularly in developing countries. This necessitates the presence of
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advanced vaccine manufacturing capabilities, a robust delivery infrastructure, and a reliable

system for livestock identification. These requirements make the task of sustaining widespread

vaccination and achieving optimal herd immunity a complex undertaking.

Another challenge arises from the presence and growing population of African buffaloes in

northern Namibia, where there is a lack of mechanisms to control their herd size. It is impor-

tant to note that African buffaloes can also be affected by the FMD virus. Once the infection

infiltrates this unmanaged buffalo population, controlling the disease becomes exponentially

more difficult in relation to livestock.

Despite numerous comprehensive studies conducted on FMD outbreaks and other diseases in

the SADC subcontinent, such as those by [29], [30], and [26], the existing biological and vet-

erinary knowledge has not been extensively quantified to develop a complex model capable of

accurately encompassing all the mechanisms of disease transmission within both confined and

unconfined environments. Although there is great potential to gather a significant amount of

data on the location and movement of livestock, compared to the understanding of buffalo in-

teractions, the precision of such data is still insufficient to enable definitive predictions of FMD

spread. As a result, the majority of existing FMD models rely on the traditional SIR model for

analysing disease transmission.

Moreover, quantifying features such as the level of biosecurity on a farm poses a challenge,

as they are not typically recorded but have a significant influence on the spread of infection.

Therefore, it is crucial to rely on the knowledge and expertise of veterinary practitioners and

diagnostic laboratory reports for this study. In the event of an outbreak, farmers and veterinary

practitioners utilize vaccines to provide broad disease protection coverage in the unconfined en-

vironment. Conversely, in the confined environment, the control measures involve the slaugh-

tering and disposal (burial or incineration) of infected animals. This practice is considered a

drastic control mechanism aimed at eradicating the disease and is often less costly compared to

vaccinating or living with FMD.

Considering these aforementioned dynamics and limitations, we develop two distinct mathe-

matical models that capture the dynamics of FMD in Namibia. The first model extends the

confined environment model to incorporate control intervention mechanisms and the interac-
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tion between buffaloes and livestock that is typically observed in the unconfined environment.

Subsequently, these models will be utilized in a predictive approach to assess the impact of

control mechanisms and disease management in both environmental settings. Ultimately, these

models will enable us to draw conclusions regarding the dynamics of the biological system at

the FMD-free equilibrium point.

1.3 Study Objectives

The primary objective of this study is to develop mathematical models, in the form of ordinary

differential equations (ODEs), that depict the progression of FMD in two distinct environmental

settings in Namibia: the confined environment and the unconfined environment. The focus is

on assessing optimal control solutions for disease management. The specific objectives of this

study are as follows:

(i) Formulate mathematical models for FMD progression in both the confined and uncon-

fined environments.

(ii) Derive the basic reproduction number (R0) of FMD, which indicates the average number

of secondary infections caused by a single infected individual.

(iii) Determine the FMD-Free Equilibrium (DFE) point, which represents the disease-free

state.

(iv) Determine the FMD Endemic Equilibrium point, which represents the long-term equilib-

rium with a persistent presence of the disease.

(v) Determine the optimal control solution for managing FMD in each environment.

Guidelines for Objectives

These study objectives are accomplished through two modules:

1. Module 1: Mathematical Formulation and Analysis of the Confined Environment FMD

Model
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In this module, the progression of FMD is mathematically formulated and analysed in

a closed, homogeneous population. The focus is on optimal control measures such as

livestock vaccination. The study assumes no herd mixing in the confined environment

and that livestock do not share pasture with FMD carriers, specifically African buffaloes.

2. Module 2: Mathematical Formulation and Analysis of the Unconfined Environment

FMD Model

This module formulates and analyse the progression of FMD in heterogeneous popula-

tions across two neighbouring locations. The study incorporates optimal control mea-

sures involving livestock quarantine and vaccination. It assumed herd mixing in the un-

confined environment and knowledge that livestock share pastures with the FMD carrier.

The division of the study into two modules provides a competitive advantage by offering an

asymmetric reward in understanding the dynamic progression of FMD in Namibia. The as-

sumptions made in each module are supported by direct and sufficient evidence, particularly

regarding the geographical distribution of African buffaloes along Namibia’s interface.

1.4 Research Methodology

Extensive discussions of applicable methodologies of the study are detailed in chapter two of

this study. The study formulated two mathematical models of FMD progression, namely the

’Susceptible, latently Exposed, Infectious and Recovered’ (SEIR) model and the ’Suscepti-

ble, latently Exposed, Infectious, Quarantined, and Recovered’ (SEIQR) model in attempts to

systematically describe the progression of FMD amongst livestock populations in the two en-

vironmental settings.

In the absence of a memorandum of understanding (MoU) between the researcher and primary

data provider, a desktop review of all the latest available secondary data or information re-

lated to FMD in Namibia was conducted and the procedure included direct observation of data

from exclusive electronic media, literature, and the application of formal objective data mea-

surement, which is more of the technical know-how of the disease amongst livestock in both

confined and unconfined environments.
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The data was pre-processed and analysed to avoid duplicate and missing values, following ba-

sic quality standards of data processing under the statistical environment. The study employs

the LaSalle Invariance principle, Lyapunov function and Routh-Hurwitz stability analysis to

determine the equilibria of both models, while the Pontryagin’s maximum principle was used

in finding the optimal control of the two models. The numerical simulation is conducted us-

ing ODE solver in Python which was performed on an 11th-generation Intel(R) Core(TM)

i7-1185G7, 3.00GHz, 32 GB with a 64-bit operating system.

An Excel-input data tool for educational purposes was also implemented to capture numerical

simulations as parameter changes. In addition, another Excel spreadsheet on livestock popula-

tion for FMD distribution by district and region is provided as well. The developed simulation

scripts and codes can be accessed in the appendices, while the Excel illustration tool and dis-

trict data form part of the study’s supplementary materials.

Equations involving a function and its derivatives are explored for the ODE model’s formula-

tion and these models encompass a collection of differential equations that depicts information

about compartmental inflow and outflow of livestock. The two models of SEIR and SEIQR

with a latency period between livestock becoming infectious and being infected by an FMDV

during an outbreak are discussed separately in modules 1 and 2 of this study.

The latter model is designed for the unconfined environment where quarantining of livestock

and herd mixing in two neighbouring locations were exercised. Some preliminary concepts,

stability definitions and discussion of methodologies that describe the framework of this study

are detailed in Chapter 2 under Supporting Mathematical Theories and Preliminaries Concepts

section. These mathematical concepts are utilized in developing the two models and performing

analyses, which will be described and demonstrated in the proceeding chapters. To distinguish

them from the numbering of Chapters to Chapters, both equations and figures are assigned

numbers specific to their respective domains.

1.5 Significance and Importance of the Study

This study holds significant value in the field of infectious disease research, specifically in the

formulation of an infectious disease model that incorporates both behavioural and biomedical
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control interventions for FMD. By including these interventions, the study aims to provide a

comprehensive analysis of the disease’s progression, surpassing the limitations of classical SIR

models commonly used in similar studies.

The inclusion of behavioural and biomedical interventions in the formulated models enables a

more realistic and nuanced analysis of FMD dynamics. This comprehensive approach allows

for a better understanding of the effectiveness of control measures and provides valuable in-

sights into the impact of these interventions on disease transmission.

One key aspect of the study is its focus on capturing information on different FMD interven-

tions within the two environmental settings of Namibia. This expands the analysis and ensures

that the findings are both significant and applicable. The precise analysis of these models is

crucial, as it allows for a comprehensive assessment of the frequency, severity, and control

mechanisms of FMD, while also considering potential unintended consequences.

Furthermore, this study fills an important gap in the existing literature by formulating mathe-

matical models that capture the dynamics of FMD transmission in both confined and unconfined

environmental settings of Namibia. The models developed in this study will serve as valuable

tools for animal health officials in raising awareness about the threats and progression of FMD

within communities. Moreover, they will support the development of effective disease eradica-

tion programs and aid in the quantitative assessment of control measures.

The findings of this study will have practical implications for disease control policy and decision-

making. By providing a better understanding of FMD transmission dynamics and the effective-

ness of interventions, the results can inform strategic disease control interventions, promote

better decision-making processes, and track progress towards achieving FMD-free status in

Namibia.

Additionally, the study contributes to the advancement of epidemiological modelling and serves

as a monitoring tool to shed light on the underlying mechanisms of infectious diseases. The

application of mathematical models to FMD surveillance data allows for the exploration of sci-

entific hypotheses and the quantitative assessment of different control strategies.

Moreover, the study acknowledges the presence of African buffaloes and their significant role

in FMD transmission. By considering empirical evidence and capturing the spread of FMD in
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livestock, the models developed in this study provide valuable insights into the dynamics of

FMD transmission in the presence of buffaloes.

Overall, the output of this study is expected to guide decision-making, improve existing the-

ories, identify research gaps, and contribute to future epidemiological studies. By providing

guidance for disease control interventions and tracking progress towards FMD-free status, this

study has the potential to make a meaningful impact in the field of FMD research and control

efforts in Namibia.

1.6 Limitations of the Study

While this study contributes valuable insights into the dynamics of FMD transmission in Namibia,

it is important to acknowledge certain limitations that may impact the generalization and appli-

cability of the findings.

Firstly, it should be noted that this study focuses on two distinctive models as outlined in the

Methodology section. While more extended models exist in the literature, the scope of this

study is limited to these specific models. The population considered in the models is based on

the livestock population in the confined and unconfined environments of Namibia, as observed

through consolidated data from electronic media and literature. However, it is essential to rec-

ognize that the specific characteristics of other regions or countries may differ, and caution

should be exercised when extrapolating the findings to different contexts.

The analysis of FMD in this study is primarily based on the investigation of the most recent

catastrophic outbreak in Namibia, relying on reported cumulative cases across various districts

in commercial and communal areas. It is crucial to acknowledge that the accuracy and com-

pleteness of the reported data may vary, and the study is reliant on the availability and reliability

of the data sources used.

The numerical solutions presented in the study utilize data referenced from the Namibia Meat

Board and the Ministry of Agriculture, Water and Land Reforms (MAWLR). However, it is

important to note that certain parameter values were estimated using historical data to address

any deficiencies in the reviewed data. While efforts have been made to ensure the accuracy of

the parameter values, there may still be uncertainties associated with these estimations.
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Furthermore, it is important to clarify the interpretation of hyphens (-) and zeros (0) in the

tables or data presented. A hyphen (-) represents a value of zero, while a zero (0) indicates

insignificant values. This distinction is crucial for understanding the significance of certain

parameters or variables in the models.

It is important to acknowledge the limitations related to the application of the models to FMD

data. While the sets of ODEs used in this study can be applied to various infectious diseases,

it is essential to consider the specific characteristics of FMD. For example, the models in this

study neglect the infectivity of livestock during the latency period, and they also do not account

for unreported cases. These factors may impact the accuracy of the models and their ability to

fully capture the spread of FMD within the population.

Additionally, the models assume constant parameter values, which may not reflect the dynamic

nature of FMD transmission and recovery rates over time. It is important to recognize that

these rates may vary and evolve as the disease progresses, which could have implications for

long-term simulations and predictions.

In conclusion, while this study provides valuable insights into FMD dynamics in Namibia, it

is crucial to consider the limitations outlined above. Future research should aim to address

these limitations and further refine the models to enhance their accuracy and applicability in

capturing the complexities of FMD transmission.

1.7 Outline of the Study

This study consists of five chapters that collectively provide a comprehensive analysis of FMD

dynamics in Namibia. The following outline summarizes the content of each chapter:

Chapter 1: Introduction

• Background and motivation of the study

• Overview of FMD biology and control measures

• Statement of the problem

• Objectives of the study
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• Description of the applied methodology

• Significance of the study

• Limitations of the study

Chapter 2: Literature Review

• Review of relevant literature pertaining to FMD.

• Discussion of supporting mathematical theories, concepts, and formulated models of

FMD and other infectious diseases that underpin the study’s objectives.

Chapter 3: Analysis of FMD in the Confined Environment (Module 1)

• Formulation and analysis of a set of ordinary differential equations to examine FMD

transmission in a confined environment

• Examination of the dynamics and implications of FMD spread in this setting

Chapter 4: Analysis of FMD in the Unconfined Environment (Module 2)

• Formulation and analysis of a set of ordinary differential equations to investigate FMD

transmission in an unconfined environment

• Examination of the dynamics and implications of FMD spread in this setting

Chapter 5: Results, Conclusions, and Recommendations

• Summary of the study’s findings and results obtained from the formulated models

• Interpretation and discussion of the implications of the findings

• Conclusion drawn from the analysis

• Recommendations for future research and disease control strategies

Through this structured approach, the study aims to provide a thorough understanding of FMD

dynamics in both confined and unconfined environments in Namibia. The analysis will con-

tribute to the existing knowledge base, inform disease control efforts, and provide guidance for
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future research in this field.

This study concludes with a compilation of the references cited throughout the research and the

inclusion of appendices containing the simulation routine codes utilized in the analysis.
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Chapter 2

Literature Review

The objective of this chapter is to present a comprehensive review of the literature concerning

model formulation theories, applications, and the dynamics of FMD models. The review en-

compasses various contextual information obtained from different studies on FMD dynamics,

which serve as essential building blocks for this study.

Firstly, we delve into the contextual information derived from a range of studies focusing on

the dynamics of FMD models. These studies offer valuable insights and serve as the corner-

stone of our research. By thoroughly examining the existing literature, we develop a deeper

understanding of the dynamics of FMD and its implications for modelling.

Secondly, we discuss supporting mathematical theories and preliminary concepts that are rel-

evant to the mathematical analysis of the formulated models. Additionally, we explore mathe-

matical models that incorporate vaccination and quarantine as control measures. This extension

of the discussion is a crucial aspect of our study, as it allows us to explore more comprehensive

models that account for these vital interventions.

Furthermore, this chapter outlines various methods employed in modelling FMD, along with

their associated benefits, limitations, and results. Through a critical analysis of these methods,

we identify gaps and limitations in the existing research, which motivate the need for this study.

These identified gaps will guide our research towards addressing unexplored areas and making

meaningful contributions to the field of FMD modelling.

Overall, this literature review establishes a solid foundation for our research by synthesizing the

relevant theories, concepts, and findings from existing studies. It serves as a roadmap for the

subsequent chapters of this study, providing the framework for framing the research problem
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and selecting appropriate methodologies to achieve the objectives of this study.

2.1 Review of Formulated Mathematical Models for Infec-
tious Diseases

In this section, we present a thorough examination of the mathematical models developed for

infectious diseases, with special attention given to the influential contributions of A.G. McK-

endrick and W.O. Kermack in 1927. These distinguished public health physicians expanded

upon the earlier research conducted by S.R. Ross, who was honoured with the second Nobel

Prize in medicine in 1911 for his proposal of a differential equation model for malaria as a

host-reactor disease [10].

The SIR model, developed by McKendrick and Kermack, continues to be a fundamental com-

partmental model in the field of infectious disease modelling. It has laid the groundwork for

numerous subsequent models, establishing itself as a cornerstone in the field [57]. The SIR

model comprises three compartments:

(i) The susceptible compartment (S) represents livestock individuals who are susceptible to

the disease. If a susceptible individual encounters an infectious individual, they become

infected and transition to the infectious compartment.

(ii) The infectious compartment (I) comprises livestock individuals who have contracted the

disease and have the ability to transmit it to susceptible individuals.

(iii) The removed compartment (R) encompasses livestock individuals who have either re-

covered from the disease and moved into the removed compartment or have experienced

natural or disease-related deaths. In most studies, the number of deaths is typically con-

sidered negligible compared to the total population. This compartment is also referred to

as the recovered or resistant compartment.

The SIR model plays a fundamental role in comprehending the dynamics of diseases and

has been extensively utilized to simulate the spread and control of infectious diseases. A sig-

nificant contribution of McKendrick and Kermack’s research was the identification and formu-

lation of the basic reproduction number, which is elaborated on independently in section 2.3 of
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this thesis. They demonstrated the criticality of the basic reproduction number in determining

whether a disease will propagate or decline within a population. Moreover, their work high-

lighted the significance of population-level factors, including infection rates, recovery rates,

and contact rates, in influencing the dynamics of disease transmission. They illustrated how

modifications in these parameters can impact the progression of an epidemic and facilitate the

assessment of control measures and interventions.

According to [42], the "Intermediate Quantitative Economics with Python" online resource

provides valuable insights into modelling infectious diseases. The resource presents various

epidemiological models, including the SIR model, which is commonly used to study the spread

of infectious diseases. By utilizing Python programming, researchers can simulate and analyse

the dynamics of disease transmission, such as the FMD, through differential equations. This

modelling approach allows for the investigation of different scenarios and intervention strate-

gies to better understand and control disease outbreaks.

In an investigation carried out at the Kruger National Park in South Africa, [20] expanded

the SIR model by constructing a stochastic quantitative model to evaluate the annual risk of

FMD transmission from buffaloes to livestock herds. The primary objective of their study was

to propose improved control strategies for reducing FMD infection in the cattle population and

gaining insights into the transmission dynamics between livestock and buffalo populations. Ac-

cording to the model results, immunizing the livestock population was identified as the most

effective measure for safeguarding against FMDV. The study also revealed that FMDV trans-

mission had a higher likelihood of occurring when livestock and buffaloes interacted within the

national park, particularly through shared water points. Considering these findings, the authors

recommended minimizing interaction between livestock and buffaloes in the absence of addi-

tional control measures.

Using data from the 2001 UK epidemic, [48] conducted a study that introduced a proba-

bilistic model for FMD transmission. The main objective of their research was to investigate the
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optimal implementation of reactive ring vaccination, considering the limited capacity available

for vaccination of livestock. The study underscored the importance of reactive vaccination as

a valuable tool for controlling future FMD epidemics and suggested that culling of vaccinated

livestock was unnecessary. The optimal size of the vaccination ring was found to depend on

logistical factors and exhibited robustness to changes in epidemiological parameters. Addition-

ally, the study explored alternative approaches to reactive vaccination, such as targeting farms

or herds near previously reported cases.

[30] introduced an optimal control problem in their study by developing a mathematical dy-

namic model specifically for FMD in Zimbabwe. Their model considered the implementation

of vaccination and culling strategies targeting symptomatic and infectious non-symptomatic

animals. Through simulations, they demonstrated that vaccination and the identification of

infectious non-symptomatic animals were the most effective control measures during FMD

outbreaks. These findings align with the conclusions of [22] and [35], emphasizing the efficacy

of vaccination as the primary control measure for managing FMD outbreaks.

It is worth noting that the study by [30] acknowledged limitations related to animal move-

ment, seasonal variation, and assumptions about FMDV transmission. Their work provided

valuable insights into different control measures, although it remains unclear whether they de-

veloped separate models for the two populations and the two environmental settings.

By reviewing the formulation and structure of the SIR model, we establish a basis for the

subsequent analysis and modelling efforts in our study of infectious diseases. Furthermore,

various modifications and extensions of the SIR model have been proposed to capture additional

complexities, such as the incorporation of vaccination and quarantine as control measures.

These interventions play a crucial role in addressing the specific needs of livestock farmers in

Namibia and contribute to the government’s ongoing efforts to enhance the country’s animal

health status. By implementing these measures, Namibia aims to build confidence in the safety

and quality of its livestock products in both domestic and international markets.

24



2.2 Supporting Mathematical Theories and Preliminaries Con-
cepts

The terms we came across are infection rate, contact rate, adequate contact rate, simple mass

action incidence rate, standard incidence, saturation incidence, basic reproduction number,

threshold numbers, etc. whose definitions highlights:

An infectious disease transmitted through direct contacts. For instance, the number of live-

stock contacted by an FMDV infective per unit of time is called a contact rate of infection and

is denoted by P(N). This rate depends on total population N. Once susceptible livestock get

in contact with the infective, they may be infected. If we take b as the probability of infec-

tion caused by each contact, then the function bN is referred to as the adequate contact rate,

which describes the infection strength of the infective and this is usually varied on the toxicity

level of the FMDV and the environment situation. Infectious diseases are mostly transmitted to

susceptible population through direct contact with infective stock and this results in the mean

adequate contact rate of bP(N) S
N , which is called the infection rate. The total new infective

stock in the infectious compartment is expressed as bP(N)SI
N , which is called an incidence of

the disease. There are three types of incidence rates used in modelling infectious diseases, viz;

(i) The standard incidence, which takes into consideration the constant contact rate. i.e.

P(N) = k then incidence = dSI
N , where d = bk

(ii) The bilinear or simple mass action incidence, which takes into consideration the contact

rate proportional to total population size. i.e. P(N) = kN then incidence = dSI, where

d = bk which is the transmission coefficient.

(iii) The saturation incidence, which takes into consideration the constant H for which the

number of susceptible is compared to when large enough. i.e. dSI
H+S

In summary, thresholds are basically numbers that are capable of forecasting whether the dis-

ease will persist or not over time. In the subsections below, we provide information on the
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building blocks of the two distinct, but interrelated models that are formulated and analysed

separately in module 1 and 2 of this study.

2.2.1 System Stability

(i) System stability is characterized by all the roots of the characteristic equation residing in

the left half of the complex plane used for graphing Laplace transforms. In this case, the

system is considered stable.

(ii) Marginal stability is observed when all the roots of the system are located on the imagi-

nary axis of the complex plane used for graphing Laplace transforms. Such a system is

referred to as marginally stable.

(iii) System instability occurs when all the roots of the system lie in the right half of the

complex plane used for graphing Laplace transforms. In this situation, the system is

deemed unstable.

In the realm of mathematics, the Laplace transform, originally developed by the esteemed

French scholar and polymath Pierre-Simon Marquis de Laplace, is an integral transformation

that converts a function with a real variable into a function with a complex variable. This math-

ematical technique holds significant importance in the scientific community due to its ability to

solve differential equations effectively. Through the application of the Laplace transform, ordi-

nary differential equations can be converted into algebraic equations, simplifying convolution

operations by replacing them with multiplication.

Now, let’s examine the stability of a system by considering a non-linear time-variant system

described by the equation dy
dx = f (x), where f : K !R and K is a subset of Rn. An equilibrium

point xe in Rn is defined as a point where f (xe) = 0. If xe is an equilibrium point, then the

trajectory x(t) = xe represents the system, which can be categorized into two stability types:

(i) Globally Asymptotically Stable (GAS): For every trajectory x(t), it is guaranteed that

x(t)! xe as t approaches infinity.
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(ii) Locally Asymptotically Stable (LAS): In the vicinity or at xe, there exists a positive con-

stant L such that if ||x(0)� xe|| L, then x(t)! xe as t approaches infinity.

Moreover, it is worth emphasizing that various forms of stability exist, such as uniform and

exponential stability. Consequently, determining stability in any of these forms can be a

formidable task, particularly when dealing with a nonlinear function f .

2.2.2 The Basic Reproduction Number R0

The basic reproduction number, denoted as R0 [2], [3], [4], [17], is a key epidemiological met-

ric. It represents the average number of secondary infections generated by a typical infected

livestock within a fully susceptible livestock population. This parameter holds significant im-

portance as a threshold value for evaluating the severity of an epidemic, especially when no

intervention or control measures are in place.

Put simply, this number helps us grasp how FMD behaves and whether it will eventually disap-

pear or continue to exist. It is calculated when no vaccination, quarantine or culling of livestock

is administered. When control measures are considered, they will impact R0 to decrease and

provide different perspectives on the epidemic severity status. In epidemiological models, when

R0 = 1, it means that one infected individual is expected to transmit the disease to exactly one

susceptible individual. If R0 < 1, it suggests that the disease is unlikely to cause an outbreak.

However, if R0 > 1, it indicates that each infected individual is likely to infect at least one

susceptible individual, regardless of the environmental conditions. It is important to note that,

for the purpose of this study, it is important to consider that the occurrence of an epidemic is

not guaranteed solely based on R0, as there may be additional probabilistic factors that are not

accounted for in the scenarios.

The next-generation matrix method is employed to calculate R0 and analyse the overall stability

of equilibrium points in the models. This method involves computing the largest eigenvalue of

the next-generation matrix, which acts as a threshold for assessing stability.

In the study by [54], the next-generation matrix method was applied to determine R0 in a com-

partmental disease transmission model based on a system of ordinary differential equations
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(ODEs). This method, which is relatively recent, proved to be valuable in evaluating the stabil-

ity of the foot and mouth disease-free equilibrium (FMD-FE) state.

The FMD-FE state represents a scenario where the entire population consists of uninfected

livestock (i.e., S > 0 and E = I = R  0). By utilizing the next-generation matrix method, R0

is obtained as the largest eigenvalue of the next-generation matrix, which separates the FMD

infectious models into two rate matrices. These matrices are commonly known as matrix F ,

which represents the path to the infection compartment, and matrix V , which encompasses the

dynamics of compartments E, I, R, and S.

The Control Reproduction Rate

The control reproduction rate, customary denoted by (Rc) is defined as the rate at which trans-

mission occurs in the livestock population that is not entirely susceptible due to the presence of

control measures intervention. Rc plays a vital role as a threshold parameter that measures the

effectiveness of control measures carried out in the attempt to control the disease outbreak.

In the presence of an FMD outbreak, the actual numerical value of Rc can be used to draw

some important analysis, such as the prevalence of FMD at peak, the initial growth rate of the

outbreak and proportion of infected livestock. Bifurcation is defined as the changes in the qual-

itative behaviour of the model as parameters are varied.

For example, when control measures are induced to eliminate FMD, the model will exhibit for-

ward bifurcation at Rc = 1. An example illustrating forward bifurcation is presented in figure

2.1 below, where K denote the force of FMD infection.

If Rc < 1, the FMD model will eventually reach the FMD-FE state, and FMD will be eradi-

cated. On the contrary, if Rc > 1, it is an alarming situation, which will lead to FMD becoming

endemic.

2.2.3 Routh-Hurwitz Principle

The Routh-Hurwitz principle (or criterion) is a mathematical test that provides sufficient condi-

tions for determining the stability of linear time-invariant dynamical models or control systems.

It offers a method to assess whether all the roots of the characteristic polynomial of a linear
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Figure 2.1: Forward bifurcation when livestock FMD death rate is 0.02

model have negative real parts [36].

In 1876, the English mathematician Edward John Routh introduced the Routh test as an effi-

cient recursive algorithm for stability analysis. This test involves organizing the polynomial

coefficients into a matrix known as the Routh array. By examining the sign patterns of specific

determinants in the Routh array, one can determine the stability of the polynomial.

In 1895, the German mathematician Adolf Hurwitz independently proposed an alternative ap-

proach. He suggested arranging the coefficients of the polynomial into a square matrix called

the Hurwitz matrix. Hurwitz demonstrated that the polynomial is stable if and only if all the

determinants of its principal submatrices are positive.

Both procedures are equivalent, with the Routh test providing a more efficient means of com-

puting the determinants of the Hurwitz matrix compared to direct computation.

Advantages of the Routh-Hurwitz Principle

(i) The system’s stability can be easily evaluated without the necessity of solving the equa-

tion.

(ii) It is possible to determine the range of values for parameter K that guarantees stability.

(iii) The point of intersection between the root locus and the imaginary axis can also be de-

termined.

Limitations of the Routh-Hurwitz Principle

(i) The Routh-Hurwitz criterion does not provide the exact locations of poles in the left or

right half of the complex plane, where Laplace transforms are graphed.
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(ii) The principle is only applicable to linear systems.

(iii) It is valid only for characteristic equations with real coefficients.

Example 2.1.

Let’s examine the nth-degree characteristic polynomial with real constant coefficients:

P(S) = Sn + x1Sn�1 + x2Sn�2 + ......+ xn�1S+ xn

If all the coefficients x1,x2, ...,xn have the same sign and no terms are missing, the Routh-

Hurwitz criterion can be applied to check the stability of the system. Otherwise, the system is

considered unstable. Here are the steps to apply the Routh-Hurwitz criterion:

Step 1: Arrange all the coefficients into two rows:

Row 1: x1 x3 x5 · · · ; Row 2: x2 x4 x6 · · ·

Step 2: In the next step, we combine these two rows to create the third row.

Row 1: x1 x3 x5 · · · ; Row 2: x2 x4 x6 · · · ; Row 3: y1 y2 y3 · · ·

Where y1 =� 1
x1
(x4x5 � x3x6)

y2 =� 1
x3
(x2x5 � x1x6); and y3 =� 1

x5
(x1x4 � x2x3)

Step 3: Next, we define the Hurwitz matrices for each value of n using the coefficients xi for

i = 1,2, ...,n from the characteristic polynomial:

H1 =
⇣

x1

⌘
; H2 =

 
x1 1
x3 x2

!
; H3 =

0

B@
x1 1 0
x3 x2 x1

x5 x4 x3

1

CA
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and

Hn =

0

BBBBBBBBBBB@

x1 1 0 0 ... 0
x3 x2 x1 1 ... 0
x5 x4 x3 x2 ... 0
. . . . ... .

. . . . ... .

. . . . ... .

0 0 0 0 ... xn

1

CCCCCCCCCCCA

For a characteristic polynomial with n = 5, the Routh-Hurwitz criterion is applied to determine

the conditions for the roots of P(S) to have a negative real part. According to Table 2.1, it is

required that all the coefficients are strictly positive.

Table 2.1: Routh-Hurwitz Criterion
n-size Additional conditions Coefficient signs

5 (x1x4 � x5)(x1x2x3 � x3
2 � x1

2x4)> x5(x1x2 � x3)2 + x1x5
2 x1 > 0,x2 > 0,x3 > 0,x4 > 0,x5 > 0

4 x1x2x3 > x3
2 + x1

2x4 x1 > 0,x2 > 0,x3 > 0,x4 > 0
3 x1x2 > x3 x1 > 0,x2 > 0,x3 > 0
2 - x1 > 0,x2 > 0
1 - x1 > 0

Example 2.2.

Let’s assess the stability of the system by examining its characteristic equation:

x4 +2x3 +6x2 +4x+1 = 0

Solution

The coefficients results yield:

0

BBBBBB@

x4 1 6 1
x3 2 4 0
x2 4 1 0
x1 3.5 0 0
x0 0 0 0

1

CCCCCCA

y1 =�1
2
(1(4)�2(6)) = 4; y2 =�1

2
(1(0)�2(1)) = 1
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z1 =�1
4
(2(1)�4(4)) = 3.5; w1 =� 1

3.5
(4(0)�3.5(1)) = 1

And since all the coefficients in the first columns are of the same sign, the given characteristic

equation has no roots with positive real parts. Hence, the system is said to be stable.

2.2.4 Lyapunov Theory

Lyapunov theory is a mathematical framework used to draw conclusions about the trajectories

of a system described by the differential equation dy
dx = f (x), without the need to explicitly

determine the trajectories themselves. A typical Lyapunov theorem takes the following form:

(i) If there exists a function V : Rn ! R that satisfies certain conditions on V and dV
dt ,

(ii) Then, the trajectories of the system exhibit certain properties.

If a function V satisfying the specified conditions exists, it is referred to as a Lyapunov func-

tion (also known as Lyapunov’s second method for stability), and its existence proves that the

desired property holds for the trajectories. A Lyapunov function is a scalar function used to

analyse the stability of an equilibrium in an ordinary differential equation (ODE). The method

of Lyapunov functions is widely used to investigate the stability of nonlinear models and is

considered one of the most popular approaches in this context.

In 1892, the Russian mathematician Alexander Mikhailovich Lyapunov introduced the method

of Lyapunov in his work "The general problem of motion stability." This method encompassed

concepts such as linearization and the direct method. The construction of Lyapunov functions is

tailored to the specific characteristics of the ordinary differential equations (ODEs) under con-

sideration. Nevertheless, this approach is widely acknowledged as the most effective method

for investigating the asymptotic behaviour of solutions. In this study, Lyapunov functions are

restricted to independent ODE models of the form:

dyi

dt
= f (yi), i = 1,2, ...,n (2.1)

with the zero equilibrium P ⌘ 0.
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Lyapunov Stability Theorems

The Lyapunov Stability Theorems can be described as follows:

Stability Theorem in the Lyapunov Sense

If there exists a Lyapunov function V (X) in the neighbourhood U of the zero solution X = 0

for an autonomous system, then the equilibrium point X = 0 is Lyapunov stable.

Asymptotic Stability Theorem

If there exists a Lyapunov function V (X) with negative definite derivatives dV
dt  0 for all X 2U

in the neighbourhood of U of the zero solution X = 0 for an autonomous system, then the

equilibrium point X = 0 is asymptotically stable.

Lyapunov Instability Theorem

Assuming the existence of a continuously differentiable function V (X) in the neighbourhood

of U of the zero solution X = 0, with:

(i) V (0) = 0

(ii) dV
dt � 0

If there exist points in the neighbourhood of U where V (X) � 0, then the zero solution X = 0

will be considered unstable.

Example 2.3.

Let’s analyse the stability of the zero solution for the following system:

dx
dt

=�2x,
dy
dt

= x� y
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Solution

Since the system has constant coefficients and is a linear homogeneous system, we can use a

quadratic form as a Lyapunov function:

V (x) =V (x,y) = ax2 +bb2

Here, a and b are the coefficients that need to be determined, with the exception of the origin

where V (x,y) is zero. The function V (x,y) is clearly positive everywhere, and we can calculate

its total derivative. Therefore,

dV
dt

=
∂V
∂x

dx
dt

+
∂V
∂y

dy
dt

= 2ax(�2x)+2by(x� y)

=�4ax2 +2bxy�2by2

=�2b[x2(
4a
2b

)� xy+ y2]

=�2b[x2(
2a
b
)� xy+ y2]

If the condition mentioned earlier is satisfied, the expression within the brackets can be rewrit-

ten as the square of the difference. Therefore,

2a
b

=
1
4

Which can also be written as: 8a = b or a = b
8 We can choose suitable values such as a = 1 and

b = 8, resulting in the derivative becoming:

dV
dt

=�16(
x2

4
� xy+ y2);

dV
dt

=�16(
x
2
� y)2  0

Therefore, we can conclude that a Lyapunov function exists for the given system, and its deriva-

tive is negative everywhere except at the origin. This implies that the system’s zero solution is

asymptotically stable.
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Advantages of Lyapunov Functions

(i) Lyapunov functions are useful for analysing the stability and instability characteristics of

equilibrium points in both linear and nonlinear systems.

(ii) The method does not rely on knowing the precise solution x(t).

(iii) The approach can be employed to examine the stability of non-oscillatory equilibrium

points.

Limitations of Lyapunov Functions

(i) There is no universally applicable technique for constructing Lyapunov functions.

(ii) Lyapunov functions can be formulated as quadratic forms in homogeneous autonomous

systems with constant coefficients.

2.2.5 LaSalle’s Invariance Principle

The Principle, also referred to as LaSalle-Krasovskii’s theorem, offers a method to demonstrate

asymptotic stability even when the derivative of the Lyapunov function is only negative semi-

definite.

The principle was introduced by Joseph LaSalle, an American mathematician who developed

stability results for both continuous and discrete cases. LaSalle’s Invariance Principle repre-

sents a version of Lyapunov’s theorems that focuses on invariance and limit sets. In the early

1960s, LaSalle extended the concept of Lyapunov functions by incorporating the idea of sets of

limit points and the characteristic of certain sets, where a given function maps elements from

one set to another. By utilizing these concepts, LaSalle was able to demonstrate a less restric-

tive definition of Lyapunov functions.

To accomplish research objectives, the broader applicability of LaSalle’s special cases is uti-

lized through the utilization of calculus on measure chains and linear dynamic processes, as

developed by Aulbach in their curated works from 1990 [6].

Within this study, LaSalle’s invariance principle is employed to establish stability outcomes for
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nonlinear models of the following form:

dx
dt

= f (x(t)),x(0) = x0 (2.2)

In the equation above, x(t)2Rn represents the state variables, f (x(t)) denotes the vector-valued

nonlinear function that characterizes the system dynamics, and x0 is the initial condition where

the equilibrium point is located at ( f (0) = 0).

A set I ⇢ Rn is invariant if it satisfies the following condition: x(0) 2 I ! x(t) 2 I8t > 0.

Additionally, two types of invariant sets are defined in relation to Equation (2.2):

(i) An invariant set is considered valid for Equation (2.2) if x(0) 2 I implies x(t) 2 I for all

t 2 R

(ii) A positive invariant set is considered valid for Equation (2.2) if x(0) 2 I implies x(t) 2 I

for all t � 0.

LaSalle’s Theorem

LaSalle’s Theorem states the following principle: Consider a system characterized by equation

2.2), where W is a compact and positively invariant set contained within M, which is a subset

of Rn. Let V : M !R be a continuously differentiable function satisfying dV (x)
dt  0 for all x in

W. Define O as the subset of W where dV (x)
dt = 0. Let I denote the largest invariant set within O.

According to LaSalle’s Theorem, for any solution originating from within W, as time t tends to

infinity, the trajectory approaches I. In other words, the following limit holds:

lim
t!•

(in fz2I||x(t)� z||) = 0,

where infz2I ||x(t)� z|| represents the distance (or minimum norm) between the trajectory x(t)

and the set I.

It is noteworthy to acknowledge the inclusive relationship among the sets in LaSalle’s theorem:

I⇢ O ⇢ W ⇢ M ⇢ Rn (2.3)
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A formal proof of the theorem demonstrates that all trajectories x(t) are bounded and converge

towards a positive limit set L+ contained within I as t approaches infinity. This limit set L+

may consist of asymptotically stable equilibriums and stable limit cycles.

Systems of Equations

As previously mentioned, a significant number of mathematical models are formulated using

differential equations, serving as essential components for both linear and non-linear mod-

els. Let’s examine a system comprising n first-order ordinary differential equations (ODEs)

expressed as follows:

dy
dt

= f (y, t,l ),y 2 G ⇢ Rn, t 2 R,l 2 D ⇢ Rm (2.4)

In this system, the sets G and D represent open subsets in Rn and Rm, respectively, while l

serves as a parameter. Equation (2.4) represents a collection of ordinary differential equations

(ODEs), where the function f (y, t,l ) on the right-hand side denotes a vector field.

Definition 2.1.

A system of the form described in (2.4) is classified as linearly independent if the function f

explicitly depends on time t (i.e., f = f (y)). Conversely, if the function f does not explicitly

depend on t, then (2.4) is considered a linear dependent model.

Consider the general autonomous system given by:

dy
dt

= f (y),y 2 Rn (2.5)

In this case, where f is independent of time t, the function in the system (2.5) comprises terms

that are either unrelated to y or have a linear relationship with t. The trajectory of a solution

y(t) in (2.5) encompasses the collection of all points that can be attained by y(t) for a given

value of t. As a result, the system can exhibit either linear or nonlinear behaviour.

To construct the phase diagram of the system in Rn, one must plot all conceivable trajectories

of y(t) passing through each point. Within this diagram, there exist specific points where the

vector field f becomes zero. These points, known as equilibrium points, hold crucial impor-
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tance in comprehending the qualitative behaviour of solutions.

In the case of an equilibrium solution for the system (2.5), denoted as y = y⇤ 2 Rn, where

f (y⇤) = 0, an important result follows. If the function f (y) is integrable, a fundamental au-

tonomous system can be described as:

dy
dt

= f (y),y 2 R

In this scenario, the solution is given by:

y(t) = y(0)+
Z t

0
f (v)dv,y 2 R (2.6)

This solution provides a relationship between the value of y(t) and the initial condition y(0),

incorporating the integral of the function f (v) with respect to v over the interval from 0 to t.

In general, the solution for the basic autonomous system exists when the right-hand side func-

tion f is continuous. However, it is important to note that continuity conditions, as demon-

strated in the example below, do not necessarily ensure the uniqueness of solutions for a non-

linear autonomous system.

Example 2.4.

Now, let’s examine the initial-value problem (IVP) described in [26].

dy
dt

= 3y
2
3 ,y(0) = 0

The IVP produces two solutions passing through the point (0,0). These solutions are repre-

sented by y1(t) = t3 and y2(t) = 0 for all t in the set of real numbers. It is worth noting that the

function f (y) = 3y
2
3 is continuous at y = 0 but it is not differentiable at y = 0.
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Definition 2.2.

The Jacobian matrix of f at the equilibrium point y⇤, denoted as D f (y⇤), is defined as the matrix

consisting of the partial derivatives of f with respect to its variables, evaluated at y⇤.

h ∂ fi

∂y j

i

y
= y⇤ =

0

BBBBBBB@

∂ f1
∂y1

(y⇤) ... ∂ f1
∂yn

(y⇤)
. . .

. . .

. . .
∂ fn
∂y1

(y⇤) ... ∂ fn
∂yn

(y⇤)

1

CCCCCCCA

2.2.6 The Jacobian

The Jacobian matrix is a mathematical tool that represents the matrix of first-order partial

derivatives of a set of functions with respect to their variables. If we have functions denoted as

f1, f2, ..., fn, which depend on variables x1,x2, ...,xn, the Jacobian matrix is defined as follows:

���J
���=

�������������

∂ f1
∂x1

∂ f1
∂x2

... ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

... ∂ f2
∂xn

. . . .

. . . .
∂ fn
∂x1

∂ fn
∂x2

... ∂ fn
∂xn

�������������

(2.7)

The Jacobian determinant, which is the determinant of the Jacobian matrix, serves as a mea-

sure to assess the functional dependence between the functions f1, f2, ..., fn. If the Jacobian

determinant, denoted as |J|, is equal to zero, it indicates that there is functional dependence

among the functions. On the other hand, if the Jacobian determinant is nonzero, it implies that

there is no functional dependence between the functions.

Example 2.5.

Let us determine whether the following functions are dependent or not using the Jacobian

approach.

1. f (x,y) = x2 +2xy+ y2, g(x,y) = lnx+ lny

2. f (x,y) = x2e3y�4x, g(x,y) = 2lnx+3y�4x
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Solution

1.

|J|=

�����

∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

�����=

�����
2x+2y 2x+2y

1
x

1
y

�����

=
2x+2y

y
� 2x+2y

x
=

2x
y
� 2y

x
6= 0

Therefore, f and g are not dependent.

2.

|J|=

�����

∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

�����=

�����
2xe3y�4x �4x2e3y�4x 3x2e3y�4x

2
x �4 3

�����

= 6xe3y�4x �12x2e3y�4x � (6xe3y�4x �12x2e3y�4x) = 0

Hence, there exists a relationship of functional dependence between the functions f and

g.

2.2.7 Pontryagin’s Maximum Principle

The Pontryagin’s maximum principle is a fundamental result in optimal control theory. It was

developed by Russian mathematician Lev Pontryagin in the 1950s and is widely used in various

fields such as engineering and physics. The principle provides a powerful tool for solving

certain types of optimal control problems.

At its core, Pontryagin’s maximum principle is used to find optimal controls for a system

described by a set of ordinary differential equations subject to constraints. The goal is to deter-

mine the control inputs that optimize a certain performance criterion, usually described by an

objective function.

The general formulation of an optimal control problem is as follows:

Given a dynamic system described by the state variables x and control variables u, subject

to a set of differential equations:

dx
dt

= f (x,u)
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where dx
dt represents the time derivative of the state vector x.

Here we want to find an optimal control policy u⇤(t) over a specified time interval [t0, t f ],

that minimizes or maximizes an objective function J:

J = f(x(t f ))+
Z t f

t0
L(x(t),u(t), t)dt

where f(x(t f )) is the terminal cost, representing the cost of the state variable x at the final

time t f .

L(x(t),u(t), t) is the running cost, representing the cost at each instant t.

The Pontryagin’s maximum principle states that for an optimal control policy u⇤(t), there

exist costate variables (also called adjoint variables) l (t) such that the following conditions are

satisfied:

1. Hamiltonian Function: The Hamiltonian function H is defined as:

H(x(t),u(t),l (t), t) = L(x(t),u(t), t)+l (t)T f (x(t),u(t))

2. Maximum Principle: The optimal control u⇤(t) maximizes the Hamiltonian H at each

point in time, subject to the system dynamics:

u⇤(t) = argmaxH(x(t),u(t),l (t), t)

3. Costate Equations: The costate variables l (t) satisfy the following differential equations,

known as the costate equations:

l̇ =�∂H
∂x

4. Terminal Condition: The terminal condition for the costate variables is given by:

l (t f ) =
∂f
∂x

(x(t f ))

By solving the costate equations backward in time from the final time t f to the initial time

t0, and combining them with the optimal control obtained from the maximum principle, we

can determine the optimal control policy u⇤(t) that minimizes or maximizes the given objective

function J.
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The Pontryagin’s maximum principle is a powerful and elegant tool for solving a wide

range of optimal control problems and has found applications in diverse areas of science and

engineering.
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Chapter 3

Module 1: Mathematical Formulation and Analysis
of the Confined Environment FMD Model

This chapter presents the mathematical formulation and analysis of a deterministic model for

FMD in the confined environment of Namibia. The model aims to describe the dynamics of

FMD within various compartments, capturing the interactions between infected and susceptible

livestock.

To facilitate comprehension, a schematic diagram is provided, illustrating the flow of FMD

through different compartments as infected and susceptible livestock interact.

The formulated model for the confined interface specifically focuses on a variant of FMD that

disregards reinfection. Furthermore, a rigorous mathematical analysis is conducted to establish

the well-posedness of the model, ensuring its biological relevance and coherence.

3.1 Mathematical Formulation of the Model

The livestock population within the district is divided into four epidemiological compartments,

each representing a distinct disease status. These compartments are mutually exclusive and

provide a classification framework for the animals.

The first compartment is denoted as the susceptible class (S), which includes livestock that are

currently free of the disease but are susceptible to infection. The second compartment is the

latently exposed class (E), consisting of animals that have been infected with the disease but

have not yet displayed noticeable clinical symptoms. The third compartment is the infectious

class (I), comprising animals that are infected with the disease and exhibit evident clinical
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symptoms. Finally, the fourth compartment is the completely removed class (R), consisting of

animals that have recovered from the disease and acquired permanent immunity to the specific

viral strain.

The total livestock population (N) is expressed as the sum of individuals in each compartment:

N = S+E + I +R  K,

where K represents the maximum carrying capacity of livestock within the district.

The assumption is made that livestock enter the susceptible class at a constant rate denoted as

a . In this class, animals can contract FMDV through direct contact with infected livestock or

exposure to airborne infectious forces. The transition from the susceptible class to the latently

exposed class takes place at a rate of dSI, where d represents the probability of FMDV trans-

mission. Furthermore, livestock experience mortality due to natural causes at a rate of e , as

well as mortality attributed to the disease at a rate of µ .

The population of latently exposed livestock decreases as individuals transition to the infected

class. This transition is determined by the rate of gE, which takes into consideration both the

natural death rate eE and the disease progression. The population of infected livestock is de-

rived from the latently exposed population that has developed symptoms and become infectious

at a rate of gE. This population is subsequently reduced by natural and disease-induced deaths,

occurring at a rate of (e +µ)I, as well as by the transition of livestock to the recovery class at

a rate of q I.

The population of recovered livestock is subject to a decrease caused by natural deaths, occur-

ring at a rate of eR. This assumption is made in the study, where no reinfection with the same

viral strain is considered.

The presented flow diagram in Figure 3.1, along with the description provided above, gives rise

to the following system of nonlinear ordinary differential equations (equation 3.1). This system

serves as a model for our abbreviated SEIR model of FMD in the confined environment for the

livestock population.
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Figure 3.1: Schematic diagram depicting FMD transmission dynamics in the confined environ-
ment

dS
dt

= a � (d I + e)S

dE
dt

= dSI � (g + e)E

dI
dt

= gE � (e +µ +q)I

dR
dt

= q I � eR

(3.1)

Table 3.1: Description of the SEIR variables
State Variables Description

S Livestock that are susceptible to FMDV strain infection.
E Latently exposed livestock to FMDV strain show no symptoms

and are not infectious yet.
I Livestock that are infected with FMDV strain, showing clinical

symptoms and infectious.
R Livestock that have recovered from the FMDV strain.

3.2 Mathematical Analysis of the Confined Environment Model

Initially, the study assesses the well-posedness of the model by investigating the positivity and

boundedness of the solutions for S, E, I, and R in relation to time (t). These considerations

are crucial to ensure the biological significance of both the formulated environmental models

in this study.

3.2.1 Positive Invariance of the SEIR Model

Given the ODE model represented by equation (3.1), it is imperative to ensure that the livestock

population variables maintain non-negative values. This is crucial for establishing the epidemi-

ological significance of the model and ensuring its biological meaningfulness. Specifically, we
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aim to demonstrate that solutions of the system of equations, subject to positive initial condi-

tions, remain positive for all t > 0. This condition establishes a biologically feasible region

denoted by W, within which the model’s results hold true.

To establish the positivity of solutions, we will employ a theorem and present a rigorous proof

based on the literature review. By demonstrating the non-negativity of all FMD state vari-

ables, we can affirm the model’s validity and its ability to provide meaningful insights into the

confined environment FMD dynamics.

Theorem 3.2.1. Positivity of Solutions: Let S(t0) � 0, E(t0) � 0, I(t0) � 0, and R(t0) � 0

represent the non-negative initial values of the FMD state variables in equation (3.1). Then,

for t � t0, the solutions S(t), E(t), I(t), and R(t) of the model satisfy S(t)� 0, E(t)� 0, I(t)� 0,

and R(t)� 0.

Proof. We begin by assuming that for t > 0, N(0) � 0, S(0) � 0, E(0) � 0, I(0) � 0, and

R(0) � 0. To prove by contradiction, let us assume that there exists a first time t1 such that

S(t1) = 0, dS
dt (t1)< 0, and E(t)> 0, I(t)> 0, and R(t)> 0 for t > t1. From equation (3.1), we

have:
dS
dt1

= a � (d I + e)S(t1)

Since S(t1) = 0, according to our assumption, we obtain:

dS(t1)
dt

= a > 0

However, this contradicts our assumption that dS
dt (t1) < 0. Therefore, it must be the case that

S(t)� 0 for all t � 0.

Similar reasoning applies to E(t2) = 0, dE
dt (t2)< 0, I(t3) = 0, dI

dt (t3)< 0, and R(t4) = 0, dR
dt (t4)<

0, where

dE(t2)
dt

= dS(t2)I(t2)> 0,
dI(t3)

dt
= gE(t3)> 0,

dR(t4)
dt

= q I(t4)> 0

Hence, the solutions of the model with non-negative initial conditions remain non-negative for

all t � 0.
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3.2.2 Boundedness of Solutions for the SEIR Model

Lemma 3.2.2. By employing the methodology outlined in [45], we postulate that all solutions

S(t), E(t), I(t), and R(t) are strictly positive for t � 0. Hence, it follows that these solutions

are bounded for all t � 0.

Proof. Considering the positivity of solutions in W, we can reduce the model (equation 3.1) to

the following form:

dS
dt

= a � (d I + e)S

dE
dt

= dSI � (g + e)E

dI
dt

= gE � (e +µ +q)I

(3.2)

By summing the ODEs in equation (3.2), we obtain:

d(S+E + I)
dt

= a � (S+E + I)e � (µ +q)I  a � (S+E +R)e

By considering the supremum limit of d(S+E+I)
dt as t approaches infinity, we obtain: limt!•Sup[S+

E + I]  a
e Hence, due to the positivity and upper bound of all FMD state variables by a

e , the

feasible region for the confined system of ODEs is characterized as:

W = {(S,E, I) 2 R3 : S+E + I  a
e
,S > 0,E � 0, I � 0}

3.2.3 Disease-free Equilibrium for the SEIR Model

The FMD-FE state P0 = (a
e ,0,0) always exist when I  I0. Where, I0 is a fixed value of

infectious livestock such that 0 < I  I0. That is when there is zero latently exposed and

infectious livestock, the equilibrium point of the models is given by:

a � (d I⇤+ e)S⇤ = 0

dS⇤I⇤ � (g + e)E⇤ = 0

gE⇤ � (e +µ +q)I⇤ = 0

(3.3)
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The FMD-FE point of the model which is denoted by P0 is given as

P0 = (S⇤,E⇤, I⇤) = (
a
e
,0,0)

When I > I0, it indicates that the treatment rate or control measures, such as the vaccination

rate, are proportional to the number of infectious livestock, unless the vaccination capacity of

the herd has been reached. In that case, the treatment rate or control measures will be at their

maximum vaccination capacity.

Considering the treatment or control measure considered in the confined environment as a rate

function expressed as cI.

The FMD endemic equilibrium (FMD-EE) of ODEs in (3.3) will then satisfies,

a � (d I⇤+ e)S⇤ = 0

dS⇤I⇤ � (g + e)E⇤ = 0

gE⇤ � (e +µ +q)I⇤ � cI⇤ = 0

(3.4)

In the SEIR model, the analysis of both the latently exposed and infectious ODEs can be used

to assess the occurrence and cessation of the FMD epidemic. It is determined that the epi-

demic is still ongoing when the rate of change of both ODEs is greater than 0, expressed as
d(E+I)

dt > 0. This implies that dE
dt +

dI
dt > 0. From the SEIR model equation (3.2), this leads

to dSI � eE � (e + µ +q)I > 0. Considering that I > 0, we can infer that dS� eE �X0 > 0,

where X0 = e + µ + q . Given that S > E, X0 > 0, e > 0, and d > 0, this is equivalent to

dS�eE�X0 > 0. Conversely, when the rate of change of both ODEs is less than 0, it indicates

that FMDV is diminishing and the disease is under control, potentially coexisting with live-

stock for an extended period. The stability of FMD-FE is further examined in the subsequent

section, focusing on the spectral radius of the next generation matrix, which determines the

basic reproduction number.

3.3 The Basic Reproduction Number R0 for the SEIR Model

The fundamental objective is to determine the average number of new FMD infections gener-

ated by a single infectious livestock in a fully susceptible population at the FMD-FE state. The
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ODEs in (3.2) consistently correspond to the FMD-FE state P0 = (a
e ,0,0). Let P = (E,S, I)T .

The ODEs in (3.2) can be reformulated as:

dP
dt

= F (P)�V (P) (3.5)

Here, F represents the rate of new infections resulting from the transition of individuals from

the susceptible compartment to the latently exposed compartment or from the infectious com-

partment to the removed compartment. V represents the rate of livestock movement into or out

of the infectious compartment. Utilizing this approach, we can define two matrices that capture

the rate of new infection appearances in each compartment:

F (P) =

0

B@
dSI
a
gE

1

CA and V (P) =

0

B@
(g + e)E
(d I + e)S

(e +µ +q)I

1

CA

At FMD-FE P0, the Jacobian matrices of F (P) is given by,

F =

0

B@
0 d I dS
0 0 0
g 0 0

1

CA and V =

0

B@
g + e 0 0

0 d I + e 0
0 0 e +µ +q

1

CA .

The inverse of V is given by,

V�1 =

0

BB@

1
g+e 0 0
0 1

d I+e 0
0 0 1

e+µ+q

1

CCA

FV�1 =

0

B@
0 d I d I
0 0 0
g 0 0

1

CA

0

BB@

1
g+e 0 0
0 1

d I+e 0
0 0 1

e+µ+q

1

CCA=

0

BB@

0 d I
d I+e

d I
e+µ+q

0 0 0
g

g+e 0 0

1

CCA

Let a1 =
d I

d I+e and a2 =
g

g+e , and a3 =
d I

e+µ+q . Therefore, finding the eigenvalues of the matrix:

FV�1 � Il =

0

B@
0�l a1 a3

0 0�l 0
a2 0 0�l

1

CA

The characteristic equation, given by det(FV�1 � Il ) =�l (l 2 �a1(0)+a3(a2l )) =�l 3 +

a2a3l , leads to the basic reproduction number R0 as the spectral radius of the next generation
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matrix:

R0 = r(FV�1)

which can be expressed as

R0 = a2a3

= (
g

g + e
)(

d I
e +µ +q

)

=
gd I

(g + e)(e +µ +q)
(3.6)

Also, a unique positive solution P⇤ = (S⇤,E⇤, I⇤) is generated from model (3.3) when R0 > 1.

That is

S⇤ =
a

d I⇤+ e

E⇤ =
dS⇤I⇤

g + e
=

d ( a
d I⇤+e )I

⇤

g + e
=

ad I⇤

(g + e)(d I⇤+ e)

I⇤ =
gE⇤

e +µ +q � c
=

g( ad I⇤
(g+e)(d I⇤+e))

e +µ +q � c
=

aR0

e +µ +q � c

We say that I⇤  I0 iff R0  d I0
e + 1 , K0. Then, P⇤ is an endemic equilibrium of ODEs (3.3)

iff K0 � R0 > 1.

The theorem below summarizes the discussion to equilibria.

Theorem 3.3.1. Let K0 =
d I0
e +1,K1 = 1+ dcI0�g

(e+µ+q)e +2
p

(e+µ+q)gdcI0
(e+µ+q)e and K2 = 1+ dcI0�g

(e+µ+q)e +

(e+µ+q)2d I0
(e+µ+q)e .

1. The ODEs in (3.2) always have the FMD-FE state P0 = (a
e ,0,0).

2. The FMD-EE state Pi = (S⇤,E⇤, I⇤) of ODEs in (3.3) exists iff 1 < R0  K0.

3. Two more FMD-EE state Pi = (Si,Ei, Ii), i = 1,2 of ODEs in (3.3) exists iff R0 � K1 and

R0 > K2.

Proof. To generate positive solutions from model (3.2), first we set the equations to zero to get

S = a
d I+e , E = e+µ+q

g I + cI0
g . Once we substitute into (3.2), we obtain

x1I2 + x2I + x3 = 0 (3.7)
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Where, x1 = (e +µ +q)(g +e)d > 0, x2 = (g +e)((e +µ +q)e +dcI0)�gda = (g +e)((e +

µ +q)e +dcI0)� (e +µ +q + x3)eR0), and x3 = (g + e)ecI0 > 0

Let us define the discriminant of equation (3.7) as D = x2
2 �4x1x3.

If x2 � 0, then equation (3.7) does not have any positive solutions. Similarly, if D < 0, then

equation (3.7) does not have any real solutions. However, if x2 < 0 and D � 0, then equation

(3.7) has two positive solutions.

) D � 0 = x2
2 = [(g + e)((e +µ +q)e +dcI0)� (e +µ +q + x3)eR0)]

2

and

x2
2 � 4gdcI0(g � e)2(e +µ +q)

For instance

R0  1+
d f (I0)� gc

(e +µ +q + x3)e
�2
p

(e +µ +q)gdcI0

(e +µ +q + x3)e

or

R0 � 1+
dcI0 � gx3

(e +µ +q + x3)e
+2
p
(e +µ +q)gdcI0

(e +µ +q + x3)e
, K1

It is important to note that x2 < 0 can be equivalently expressed as R0 > 1+ dcI0�gx3
(e+µ+q+x3)e . Thus,

equation (3.7) will have two positive solutions, denoted as I1 and I2, if R0 � K1. The values of

I1 and I2 are given by I1 =
�x2�

p
D

2d (g+e)(e+µ+q) and I2 =
�x2+

p
D

2d (g+e)(e+µ+q) .

If we set S1 =
a

e+d I1
and S2 =

a
e+d I2

E1 = E2 =
a

g+e �
(e+µ+q+x3)e

dg (R0 �1)

Then Pi = (Si,Ei, Ii), where i = 1,2 which are FMD-EE state of (3.7) if Ii > I0.

I1 > I0 iff �x2 �
p

D > 2d (g + e)(e +µ +q)I0

This implies that

x2 +2d (g + e)(e +µ +q)I0 < 0

From the definition of x2, it follows that

R0 > 1+
dcI0 � gx3

(e +µ +q + x3)e
+

(e +µ +q)2d I0

(e +µ +q + x3)e
, K2

On the similar argument, I2 < I0 iff R0 < K2.
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Interpretation of R0

The calculation of R0 holds great significance in comprehending the average number of newly

infected livestock arising from a single infectious animal within the context of FMD. It involves

a comparison between the incidence of new infections and other population dynamics within

the model.

R0 relies on the interplay of several factors. It is determined by multiplying the birth rate a ,

FMD exposure rate g , and disease transmission rate d , which collectively contribute to the

likelihood of an individual animal becoming infectious. This value is subsequently divided by

the proportion of natural deaths e . The denominator of this division is obtained by multiplying

the sum of livestock deaths from natural causes and the FMD exposure rate (g + e) by the sum

of livestock deaths resulting from both natural and disease-related factors, in addition to the

proportion of livestock exiting the infectious compartment (e +µ +q).

If the numerator in the expression for R0 (representing the rate of FMD occurrence) surpasses

the denominator (representing the combined cessation rates), it indicates that the population of

infectious livestock will persistently increase over time.

3.4 Sensitivity Analysis of R0 in Confined Settings

To perform the sensitivity analysis of the basic reproduction number R0, we can investigate the

impact of small changes in each parameter on the value of R0. This can be done by calculating

the partial derivatives of R0 with respect to each parameter.

These partial derivatives provide information about the sensitivity of R0 to small changes in

each parameter. If a partial derivative is close to zero, it indicates that a small change in that

parameter will have a minimal effect on R0. On the other hand, if a partial derivative is signif-

icantly different from zero, it suggests that a small change in that parameter will have a more

substantial impact on R0.

By calculating these partial derivatives, we can assess the sensitivity of R0 to parameter

changes and identify which parameters have the most significant influence on the basic repro-
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duction number. Suppose we assume the following initial values for the parameters:

a = 0.2, d = 0.3, g = 0.4, e = 0.1. µ = 0.05, and q = 0.06.

We can calculate the partial derivatives of R0 with respect to each parameter as follows:

∂R0

∂a
= 0

∂R0

∂d
=

gI
(g + e)(e +µ +q)

∂R0

∂g
=

d I
(g + e)(e +µ +q)

� gd I
(g + e)2(e +µ +q)

∂R0

∂e
=� gd I

(g + e)2(e +µ +q)
� gd I

(g + e)(e +µ +q)2

∂R0

∂ µ
= 0

∂R0

∂q
= 0

Substituting the initial values into these expressions, we get:

∂R0

∂a
= 0

∂R0

∂d
=

0.4I
(0.4+0.1)(0.1+0.05+0.06)

∂R0

∂g
=

0.3I
(0.4+0.1)(0.1+0.05+0.06)

� 0.4(0.3I)
(0.4+0.1)2(0.1+0.05+0.06)

∂R0

∂e
=� 0.4(0.3I)

(0.4+0.1)2(0.1+0.05+0.06)
� 0.4(0.3I)

(0.4+0.1)(0.1+0.05+0.06)2

∂R0

∂ µ
= 0

∂R0

∂q
= 0

Based on these calculations, we can see that the partial derivatives with respect to a , µ , and

q are all zero. This indicates that small changes in these parameters will have no effect on R0.
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On the other hand, the partial derivatives with respect to d , g , and e are non-zero, indicating

that changes in these parameters will have an impact on R0.

3.5 Local Asymptotic Statibility (LAS) Analysis of SEIR FMD-
FE

In the study of dynamical systems, it is often important to assess the stability of equilibrium

points. While equilibrium points may not always exhibit stability, it is beneficial to categorize

them based on their stability properties. To analyse the local and global stability of the equi-

libria, we employ the analytic approach of examining the eigenvalues of the Jacobian matrices

associated with the ODEs in (3.2). This allows us to gain insights into the stability characteris-

tics of the equilibrium points.

FMD-free equilibrium point P0

We evaluate the Jacobian matrix at P0 as follows;

J(P0) =

0

B@
�(d I + e) 0 dS

d I �(g + e) dS
0 g �(e +µ +q)

1

CA (3.8)

With the eigenvalues �(d I + e), �(g + e), and �(e + µ + q) all being negative, it can be

concluded that the FMD-FE point P0 exhibits local asymptotic stability.

Lemma 3.5.1. Consider the Lyapunov function L = gE + (g + e)I to investigate the global

stability of P0 such that

dL
dt

= g dE
dt

+(g + e)dI
dt

= (gdS� (g + e)(e +µ +q))I  (
gad

e
� (g + e)(e +µ +q))I

If R0 < 1, then
dL
dt

= (g + e)(e +µ +q)(R0 �1)I  0

The maximal compact invariant set within the region (S,E, I) 2 W : dL
dt = 0 is denoted by P0.

By applying LaSalle’s Invariance Principle, as presented in [1], we can establish the following

theorem.
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Theorem 3.5.2. The FMD-FE point P0 of the model in equation (3.2) is globally asymptotically

stable within the region W if R0  1. However, if R0 > 1, then P0 is considered unstable.

Proof. To demonstrate the stability, we utilize the concept of a Lyapunov function, as discussed

in the existing literature, by considering:

L0 = y1E + y2I + y3E⇤+ y4I⇤

Here, y1, y2, y3, and y4 are positive constants that need to be determined. By differentiating L0

with respect to time t along the solutions of the model, we obtain:

dL0

dt
= y1

dE
dt

+ y2
dI
dt

+ y3
dE⇤

dt
+ y4

dI⇤

dt

Since S  a
e at FMD-FE, we replace the derivatives dE

dt , dI
dt , dE⇤

dt and dI⇤
dt into the equation of

dL0
dt to get,

dL0

dt
= y1dSI � (g + e)y1E + y2gE � (e +µ +q)y2I + y3dS⇤I⇤ � (g + e)y3E⇤

+ y4gE⇤ � (e +µ +q)y4I⇤  ady3I⇤

e
� (g + e)y3E⇤+ y4gE⇤ � (e +µ +q)y4I⇤

=
ady1I

e
� (y1 � y2)gE � ey1E � (e +µ +q)y2I +

ady3I⇤

e
� (y3 � y4)gE⇤ � ey3E⇤ � (e +µ +q)y4I⇤

By collecting linear terms and setting the coefficients E, I, E⇤, I⇤ to 0, we get,

ady1

e
I � (g + e)y1E + y2gE � (e +µ +q)y2I +

ady3

e
I⇤

� (g + e)y3E⇤+ y4gE⇤ � (e +µ +q)y4I⇤

= 0

Solving for y1, y2, y3, and y4 yield,

y1 =�dae � (e +µ +q)y4

g +µ
, y2 = 0 y3 =�g � (e +µ +q)y4

g +µ
,
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and if we let y4 = 1 then this will give us,

0

BBBB@

y1

y2

y3

y4

1

CCCCA
=

0

BBBB@

�dae�(e+µ+q)y4
g+µ
0

� g�(e+µ+q)y4
g+µ
1

1

CCCCA
=

1
g +µ

0

BBBB@

(e +µ +q)y4 �dae
0

(e +µ +q)y4 � g
g +µ

1

CCCCA
,

So,

y1 = (e +µ +q)y4 �dae, y2 = 0, y3 = (e +µ +q)y4 � g,

and

y4 = g +µ.

If we factorise y1 and y3 this will yield,

y1 = dae(RK �1), y3 = g(RK �1),

and RK < 1 for y1 and y3 > 0, where

RK =
(e +µ +q)y4

dae

=)dL0

dt
 (

(e +µ +q)y4

dae
�dae)SI � (e +µ +q)y4I

= dae(RK �1)I � (e +µ +q)y4I

(dae(RK �1)�RJ)I

Where

RJ = (e +µ +q)y4

dae((RK �1)� RJ

dae
)I

Therefore,
dL0

dt
�dae(1�R0)I =)

dL0

dt
�Q(1�R0),
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where Q = dae is a constant and

R0 =
(e +µ +q)(RK �1)� (e +µ +q)RK

dae

If R0 < 1, then dL0
dt < 0 when E = I = E⇤ = I⇤ = 0. Thus, the largest compact invariant set

within W for which dL0
dt = 0 when R0  1 is represented by the singleton containing P0.

Therefore, applying the LaSalle Invariance Principle, we can conclude that P0 is globally

asymptotically stable when R0  1. This completes the proof.

FMD-endemic equilibrium point P⇤

We evaluate the Jacobian matrix at P⇤ as follows;

���J(P⇤)
���=

�������

�d I⇤ � e 0 �dS⇤

d I⇤ �(g + e) 0
0 g �(e +µ +q)

�������
=

�������

�eR0 0 � ad
eR0

e(R0 �1) �(g + e) 0
0 g �(e +µ +q)

�������

With the characteristic polynomial of J(P⇤) given by

l 3 + x1l 2 + x2l + x3

where

x1 = 2e +µ +q + g + eR0, x2 = (eR0 + g + e)(e +µ +q)+(g + e)eR0

x3 = (g + e)(e +µ +q)eR0 + gad (R0 �1)
R0

= (g + e)(e +µ +q)2eR0 � (g + e)(e +µ +q)e

It is clear that x1 > 0 and if R0 > 1 then x3 > 0.

x1x2 � x3 = (2e +µ +q + g + eR0)((eR0 + g + e)(e +µ +q)+(g + e)eR0)

� (g + e)(e +µ +q)2eR0 +(g + e)(e +µ +q)e > 0
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By employing the Routh-Hurwitz criteria, it can be deduced that for R0 > 1, the eigenvalues of

J(P⇤) are negative, which leads to the following results.

Lemma 3.5.3. Assume R0 > 1. Then, the FMD-EE point P⇤ is locally asymptotically stable.

Proof. To establish the global stability of P⇤, we consider the Lyapunov function given by

L = (S�S⇤ �S⇤ln
S
S⇤

)+(E �E⇤ �E⇤ln
E
E⇤ )+

g + e
e

(I � I⇤ � I⇤ln
I
I⇤
)

Hence,
dL
dt

= (1� S⇤

S
)
dS
dt

+(1� E⇤

E
)
dE
dt

+(
g + e

e
)(1� I⇤

I
)
dI
dt

By substituting the expressions of derivatives from equation (3.3) and utilizing the relation

a = dS⇤I⇤+ eS⇤

we obtain the following expression:

dL
dt

= (1� S⇤

S
)((S�S⇤)e +dS⇤I⇤ �dSI)+(1� E⇤

E
)(dSI

� (g + e)E)+(1� I⇤

I
)(e +µ +q + x3)

(g + e)I
e

=�(S�S⇤)(S�S⇤)e
S

+dS⇤I⇤ �dS⇤I⇤
S⇤

S
+dS⇤I �dSI

E⇤

E
+(g + e)E⇤ � (g + e)E I⇤

I

� (e +µ +q)(g + e)I
e

+(e +µ +q)(g + e)I⇤

e

Since eE⇤ = (e +µ +q)I⇤ then, this implies that

dS⇤I � (e +µ +q)(g + e)I
e

= dS⇤I � (g + e) IE⇤

I⇤
= (dS⇤I⇤ � (g + e)E⇤)

I
I⇤

= 0

So for

dL
dt

=�(S�S⇤)(S�S⇤)e
S

+3(g + e)E⇤ �dS⇤I⇤
S⇤

S
�dSI

E⇤

E
� (g + e)EI⇤

I

=�(S�S⇤)(S�S⇤)e
S

+(3� S⇤

S
� SE⇤I

S⇤EI⇤
� EI⇤

E⇤I
)(g + e)E⇤  0

Since
S⇤

S
+

SE⇤I
S⇤EI⇤

+
EI⇤

E⇤I
�3 � 0
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, it implies that dL
dt = 0 if and only if S = S, E = E , and I = I . The maximal compact invariant

set in (S,E, I) 2 W : dL
dt = 0 is the singleton P. By applying the LaSalle invariance principle,

we conclude the following:

If R0 > 1, the endemic equilibrium P⇤ is globally asymptotically stable.

FMD-endemic equilibrium P1 and P2

By analysing the Jacobian matrix at P1 and P2
⇤, we get

���J(P1)
���=

�������

�d I1 � e 0 �dS1

d I1 �(g + e) 0
0 g �(e +µ +q)

�������
=

�������

� a
S1

0 �dS1

d I1 �dS1I1
E1

0
0 g cI0�gE1

I1

�������

���J(P2)
���=

�������

�d I1 � e � (g + e) 0 dS1

g �d I1 � e � (e +µ +q) 0
0 d I1 �(g + e)� (e +µ +q)

�������

To determine the local stability of P1 and P2, the following lemma is applicable.

Lemma 3.5.4. Consider a 3⇥ 3 real matrix D. If the trace tr(D), determinant det(D), and

determinant det(D1) of D are all negative, then all eigenvalues of D have negative real parts.

We can clearly get tr(J(P1))< 0

det(J(P1)) =
1

E1
(adgE1I1S1)< 0 since gE1 � cI0 > 0

det(J(P2)) = (�d I1)�e �(g +e)(�d I1�e �(e +µ +q))(�(g +e)�(e +µ +q))+gd 2S1I1

One can see that

det(JP1
2)< 0, if d 2I1

2(g +2eµ +q)> ed 2S1I1

The same argument can be used for P2 as well and the endemic equilibria for Pi, i = 1,2 are

locally asymptotically stable when

Si

Ii
<

2eµ +q
e

.

This approach was also applied in [53], [5], [20], [13], and [16] for local stability testing.
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3.6 Optimal Control

The optimal control problem for FMD is formulated from the perspective of an epidemiologist

aiming to identify an optimal controller that minimizes the number of infected livestock during

an outbreak within a specified time frame.

In the considered scenario, two control measures, namely vaccination and culling, are imple-

mented in a controlled environment. Conversely, for the unconfined environment, livestock are

subjected to quarantine and vaccination as preventative measures against FMDV infection. The

model presented in Chapter 4 of this study incorporates the practice of quarantining livestock

between location 1 and location 2 in the unconfined environment.

3.6.1 Using both Vaccination and Culling Measures

The study showcase the anticipation reactions to the two control actions being:

(a) The use of vaccination, denoted by v(t) and quantified as a fraction on the general popu-

lation of livestock at the given time t. This action v(t) is expected to reduce the livestock

susceptible population and increase the completely removed population as t �! •.

(b) The control action u(t), which represents the utilization of culling, is applied as a fraction

of the total livestock population at time t. This control action is expected to decrease the

populations of latently exposed and infectious livestock while increasing the population

of completely removed livestock as t approaches infinity.

The study remodels the dynamic model in equation (3.1) to capture the effects of these two

control actions to produce:

dS
dt

= a � (d I(t)+ e + v(t))S(t)

dE
dt

= dS(t)I(t)� (g + e +u(t))E(t)

dI
dt

= gE(t)� (e +µ +q +u(t))I(t)

dR
dt

= q I(t)+ v(t)S(t)+(E(t)+ I(t))u(t)� eR(t) (3.9)
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Based on the overall framework of the optimal control problem described in Equation (3.9), we

introduce the following objective function:

J(v(t),u(t)) =
Z n

0
(A1E(t)+A2I(t)+

1
2
(A3v2 +A4u2))dt (3.10)

The study regards the quantities of latently exposed and infectious livestock, along with the

associated control actions v(t) and u(t), as costs to be minimized.

The weights A1 and A2 correspond to the importance assigned to the variables E and I,

respectively. On the other hand, A3 and A4 represent the weights associated with the minimal

control actions. The Lagrangian function L(E, I,v(t),u(t)) is constructed using the integrand

given in Equation (3.10). Consequently, the study considers the control functions v(t) and u(t)

as piecewise continuous functions defined within the set W = [0,wmax(v,u)]. As stated in [23],

control actions defined in an additive manner with bounded coefficients are guaranteed to exist

in standard optimal control theory.

The optimal control of the models can be derived using the Pontryagin’s maximum principle.

Theorem 3.6.1. The control actions in the confined environment are associated with adjoint

variables li, i = 1,2,3,4, which satisfy the following conditions:

dl1

dt
= (d I(t)+ e + v(t))l1(t)�d I(t)l2(t)�l4(t)v(t)

dl2

dt
= A1 +(g + e +u(t))l2(t)�l3(t)g �l4(t)u(t)

dl3

dt
= A1 +(l1(t)+l2(t))(dS(t))�l3(t)(e +µ +q +u(t))

dl4

dt
= l4(t)e (3.11)

The adjoint variables li in the confined environment satisfy the boundary conditions li(t) =

0 for all i = 1,2,3,4. Moreover, the optimal control variables can be expressed as follows:

v⇤(t) = min{max{0,
(l4 �l1)S⇤

A3
},1}

u⇤(t) = min{max{0,
(E⇤+ I⇤)l4 �E⇤l2 � I⇤l3

2A4
},1} (3.12)
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Proof. Let the Hamiltonian for the optimal control action of the confined environment be

defined by,

H = A1E +A2I(t)+
1
2
(A3v2(t)+A4u2(t))+(a � (d I(t)+ e + v(t))S(t))l1 +(dS(t)I(t)

� (g + e +u(t))E(t))l2 +(gE(t)� (e +µ +q +u(t))I(t))l3 +(q I(t)+ v(t)S(t)+(E(t)+ I(t))u(t)

� eR(t))l4

The adjoint model is thus expressed as:

dl1

dt
=� ∂H

∂S(t)
= (d I(t)+ e + v(t))l1 �d I(t)l2 � v(t)

dl2

dt
=� ∂H

∂E(t)
=�A1 +(g + e +u(t))l2 � gl3 �u(t)l4

dl3

dt
=� ∂H

∂ I(t)
=�A2 +dS(l1 �l2)+(e +µ +q +u(t))l3 � (q +u(t))l4

dl4

dt
=� ∂H

∂R(t)
=�e(�l4) (3.13)

which is simplified to:

dl1

dt
=� ∂H

∂S(t)
= (l1 �l2)d I(t)� v(t)

dl2

dt
=� ∂H

∂E(t)
= (l2 �l3)g +(l2 �l4)u(t)+ el2 �A1

dl3

dt
=� ∂H

∂ I(t)
= (l1 �l2)dS(t)+(e +µ +q +u(t))l3 � (q +u(t))l4 �A2

dl4

dt
=� ∂H

∂R(t)
= el4 (3.14)

The optimality conditions will then yield:

∂H
∂v(t)

= A3v(t)�S(t)l1 +S(t)l4 = 0 ) (l4 �l1)S(t)
A3

∂H
∂u(t)

= 2A4u(t)�E(t)l2 � I(t)l3 +(E(t)+ I(t))l4 = 0 )=
�(E(t)+ I(t))l4 +E(t)l2 + Il3

2A4

(3.15)
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which defines the quantity:

v⇤(t) =
(l1 �l4)S⇤

A3

u⇤(t) =
�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
(3.16)

By considering the limits on the vaccination control, we obtain the following:

v⇤(t) =

8
>>><

>>>:

(l1�l4)S⇤
A3

if 0  (l1�l4)S⇤
A3

 1,

0 if (l1�l4)S⇤
A3

 0,

1 if (l1�l4)S⇤
A3

� 1.

Which in compact notation yields,

v⇤(t) = min{max{0,
(l1 �l4)S⇤

A3
},1} 3.17

Using the bounds for culling control, we get,

u⇤(t) =

8
>>><

>>>:

�(E⇤+I⇤)l4+E⇤l2+I⇤l3
2A4

if0  �(E⇤+I⇤)l4+E⇤l2+I⇤l3
2A4

 1,

0 if�(E⇤+I⇤)l4+E⇤l2+I⇤l3
2A4

 0,

1 if�(E⇤+I⇤)l4+E⇤l2+I⇤l3
2A4

� 1.

Which in compact notation yields,

u⇤(t) = min{max{0,
�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1} 3.18

The following optimality system is produced by using equation (3.16) and (3.18),

dS
dt

= a � (d I(t)+ e)S(t)�min{max{0,
(l1 �l4)S⇤

A3
},1}S(t)

dE
dt

= dS(t)I(t)� (g + e)E �min{max{0,
�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1}E(t)

dI
dt

= gE(t)� (e +µ +q)I �min{max{0,
�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1}I(t)

dR
dt

= q I(t)+min{max{0,
(l1 �l4)S⇤

A3
},1}S(t)+min{max{0,

�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1}E(t)

+min{max{0,
�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1}I(t)� eR(t) (3.19)
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dl1

dt
= (d I + e)l1(t)+min{max{0,

(l1 �l4)S⇤

A3
},1}l1(t)�d Il2(t)�min{max{0,

(l1 �l4)S⇤

A3
},1}l4(t)

dl2

dt
= A1 +(g + e)l2(t)+min{max{0,

�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1}l2(t)

�l3(t)g �min{max{0,
�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1}l4(t)

dl3

dt
= A1 +(l1(t)+l2(t))(dS)� (e +µ +q)l3(t)

�min{max{0,
�(E⇤+ I⇤)l4 +E⇤l2 + I⇤l3

2A4
},1}l3(t)

dl4

dt
= l4(t)e (3.20)

With the initial conditions S(0)> 0, E(0)> 0, I(0)> 0, R(0)= 0, and the transversal conditions

li(t) = 0, for all i = 1,2,3,4.
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Chapter 4

Module 2: Mathematical Formulation and Analysis
of the FMD Model in an Unconfined Environment

This chapter builds upon the deterministic FMD mathematical model developed in Module 1 of

the study. The model is further analysed and presented using a schematic diagram to depict the

transmission and spread of FMD among different compartments, particularly when livestock

interact between two communal locations.

The model formulated for the unconfined interface focuses on a variant based FMD whereby

African buffaloes infested environment is considered since buffaloes are the host of the most

reported FMDV strains.

Figure 4.1: Schematic diagram depicting FMD transmission dynamics in the unconfined envi-
ronment

65



4.1 Mathematical Formulation of the Model

The livestock population in each location is represented by the following variables at time t:

Location 1:

• Susceptible population: S1(t)

• Latently exposed population: E1(t)

• Infectious population: I1(t)

• Completely removed population: R1(t)

• Quarantined population: Q1(t)

Location 2:

• Susceptible population: S2(t)

• Latently exposed population: E2(t)

• Infectious population: I2(t)

• Completely removed population: R2(t)

• Quarantined population: Q2(t)

The total livestock population in each location, denoted by N1(t) and N2(t) respectively,

can be expressed as the sum of the corresponding compartments:

Location 1: N1(t) = S1(t)+E1(t)+ I1(t)+R1(t)+Q1(t)

Location 2: N2(t) = S2(t)+E2(t)+ I2(t)+R2(t)+Q2(t)

where N1 +N2  K, and K denote the interface carrying capacity of livestock in the two loca-

tion.

It is assumed that livestock are recruited into the classes of location 1 and 2 at the rates, eT21

and eT12, respectively. where e denote the rate of livestock movement between locations 1

and 2. T21 and T12 are the probabilities of livestock in location 2 moving into location 1 and

livestock in location 1 moving into location 2, respectively.
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Livestock in the susceptible classes become infected with FMDV through direct contact with

infectious livestock or airborne infection forces. This decrease the class population as livestock

progress to the latently exposed classes of location 1 and 2 at the volume of, d1S1(t)I1(t) and

d2S2(t)I2(t) at time t, respectively. The probability of transmission of the FMDV is put at d1

and d2, since the transmission in the two locations are not the same.

The number of latently exposed livestock decreases due to two factors. Firstly, there is a pro-

gression of livestock from the latently exposed class to the infected classes at rates gE1(t) and

gE2(t) in locations 1 and 2, respectively. Secondly, there is movement of livestock between

location 1 and 2 at rates eT12E1(t) and eT21E2(t), respectively. Here, g represents the rate at

which latently exposed livestock become infectious, and eT12 and eT21 represent the rates of

movement between the locations.

The number of infected livestock is determined by the rate at which the latently exposed popu-

lation becomes symptomatic and infectious. This occurs at rates gE1(t) and gE2(t) in locations

1 and 2, respectively.

The number of recovered livestock in each location is produced at rates qE1(t) and qE2(t),

respectively. Here, q represents the rate at which infectious livestock recover or die.

Based on the flow diagram presented in Figure 4.1 and the above description, we obtain the fol-

lowing system of non-linear ordinary differential equations (ODEs) that models our SiEiIiRiQi

model of FMD for the livestock population in the unconfined environment of locations i = 1,2:
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dS1

dt
=�d1S1(t)I1(t)� eT12S1(t)+ eT21S2(t)

dE1

dt
= d1S1(t)I1(t)� eT12E1(t)� gE1(t)+ eT21E2(t)

dI1

dt
= gE1(t)+ eT21I2(t)�q I1(t)� eT12I1(t)

dR1

dt
= q I1(t)+ eT21R2(t)� eT12R1(t)

dQ1

dt
= e(T21(S2(t)+E2(t)+ I2(t)+R2(t)))� e(T12(S1(t)+E1(t)+ I1(t)+R1(t)))�qQ1(t)

dS2

dt
=�d2S2(t)I2(t)+ eT12S1(t)� eT21S2(t)

dE2

dt
= d2S2(t)I2(t)+ eT12E1(t)� gE2(t)� eT21E2(t)

dI2

dt
= gE2(t)� eT21I2(t)�q I2(t)+ eT12I1(t)

dR2

dt
= q I2(t)� eT21R2(t)+ eT12R1(t)

dQ2

dt
= e(T12(S1(t)+E1(t)+ I1(t)+R1(t)))� e(T21(S2(t)+E2(t)+ I2(t)+R2(t)))�qQ2(t)

(4.1)

Table 4.1: Description of the SiEiIiRiQi variables
State variable Description

S1 Livestock in location 1 that are susceptible to FMDV strain infection
E1 Livestock in location 1 that are latently exposed to FMDV strain infection without

showing any clinical symptoms and not infectious yet
I1 Livestock in location 1 that are infected with FMDV strain,

showing clinical symptoms and infectious
R1 Livestock in location 1 that have recovered from the FMDV strain
Q1 Livestock that are quarantined in location 1 facility
S2 Livestock in location 2 that are susceptible to FMDV strain infection
E2 Livestock in location 2 that are latently exposed to FMDV strain infection

without showing any clinical symptoms and not infectious yet
I2 Livestock in location 2 that are infected with FMDV strain,

showing clinical symptoms and infectious
R2 Livestock in location 2 that have recovered from the FMDV strain
Q2 Livestock that are quarantined in location 2 facility
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4.2 Mathematical Analysis of the Unconfined Environment
Model

Firstly, to ensure the biological meaningfulness of our model, it is important to examine the

well-posedness of the model. This involves investigating the positivity and boundedness of the

solutions for S1(t), S2(t), E1(t), E2(t), I1(t), I2(t), R1(t), R2(t), Q1(t), and Q2(t) with respect

to time (t).

4.2.1 Positive Invariance of the SiEiIiRiQi Model

Considering the ODE model given by equation (4.1), it is crucial to demonstrate the epidemi-

ological meaningfulness of the model by showing that all FMD state variables remain non-

negative. This ensures that solutions of the system of equations, starting from positive initial

conditions, remain positive for all t > 0. The region in which the model is biologically mean-

ingful is referred to as the biological feasible region and is denoted as W1.

Theorem 4.2.1. Positivity of Solutions: If the initial values of the FMD state variables in equa-

tion (4.1) are non-negative, then the solutions S1(t),S2(t),E1(t),E2(t), I1(t), I2(t),R1(t),R2(t),Q1(t)

and Q2(t) of the model will also be non-negative for t � 0.

Proof. Let’s consider the assumptions: for t > 0, N1(0) and N2(0) � 0, S1(0) and S2(0) � 0,

E1(0) and E2(0) � 0, I1(0) and I2(0) � 0, R1(0) and R2(0) � 0, and Q1(0) and Q2(0) � 0.

Alternatively, we assume by contradiction that there exists a first time t1 satisfying S1(t1) = 0,
dS1(t1)

dt < 0, S2(t1)= 0, dS2(t1)
dt < 0, E1(t)> 0, E2(t)> 0, I1(t)> 0, I2(t)> 0, R1(t)> 0, R2(t)> 0,

Q1(t)> 0, and Q2(t)> 0 for 0 < t < t1. Using equation (4.1), we can represent dS1
dt and dS2

dt as:

dS1(t1)
dt1

=�d1S1(t1)I1(t1)� eT12S1(t1)+ eT21S2(t1) = 0 (4.2)

dS2(t1)
dt1

=�d2S2(t1)I2(t1)+ eT12S1(t1)� eT21S2(t1) (4.3)

Since S1(t1) = 0 and E1(t) > 0, I1(t), and R1(t) according to our assumption, we have
dS1(t1)

dt = N1(t1)� (E1(t1)+ I1(t1)+R1(t1)) > 0. However, this contradicts our initial assump-
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tion that dS1(t1)
dt < 0. Hence, we conclude that S1(t)⌅ 0, implying S1(t)> 0.

Suppose there exists a time t2 such that E1(t2) = 0, dE1(t2)
dt < 0, and S1(t) > 0, I1(t) > 0,

R1(t) > 0, Q1(t) > 0, S2(t) > 0, E2(t) > 0, I2(t) > 0, R2(t) > 0, and Q2(t) > 0 for 0 < t < t2.

Considering the equation:

dE1(t2)
dt2

= d1S1(t2)I1(t2)� gE1(t2)� eT12E1(t2)+ eT21E2(t2) (4.4)

Since the assumption states that E1(t2) = 0 and S1(t), I1(t), R1(t), Q1(t), S2(t), E2(t), I2(t),

R2(t), and Q2(t) > 0, it follows that dE1(t2)
dt2

= d1S1(t2)I1(t2) > 0. Therefore, we conclude that

E1(t)> 0 for all t in the interval (0, t2).

Now, let’s suppose there exists a time t3 such that I1(t3)= 0, dI1(t3)
dt3

< 0, and S1(t)> 0, R1(t)> 0,

Q1(t) > 0, S2(t) > 0, E1(t) > 0, E2(t) > 0, I2(t) > 0, R2(t) > 0, and Q2(t) > 0 for 0 < t < t3.

Then, we have

dI1(t3)
dt3

= gE1(t3)�q I1(t3)� eT12I1(t3)+ eT21I2(t3) (4.5)

Since from the assumption I1(t) = 0 and E1(t)> 0, then
dI1(t3)

dt3
= gE1(t3)+ eT21I2(t3)> 0

Which is a contradiction, hence I1(t)⌅ 0. Therefore, I1(t)> 0,8t 2 (0, t3).

Suppose that there exist the first time t4 such that R1(t4) = 0, dR1(t4)
dt4

< 0 and S1(t) > 0,

E1(t) > 0, I1(t) > 0, Q1(t) > 0, S2(t) > 0, E1(t) > 0, E2(t) > 0, I2(t) > 0, R2(t) > 0, and

Q2(t)> 0, for 0 < t < t4. Now considering,

dR1(t4)
dt4

= q I1(t4)+ eT21R2(t4) (4.6)

Given the assumption that R1(t4) = 0 and I1(t4)> 0, we can evaluate dR1(t4)
dt4

= q I1(t4)> 0.

However, this contradicts our assumption. Therefore, we conclude that R1(t)  0. Conse-

quently, R1(t)> 0 for all t in the interval (0, t4).

Let’s assume there exists a time t5 such that Q1(t5)= 0, dQ1(t5)
dt5

< 0, and S1(t)> 0, E1(t)> 0,

I1(t) > 0, R1(t) > 0, S2(t) > 0, E1(t) > 0, E2(t) > 0, I2(t) > 0, R2(t) > 0, and Q2(t) > 0 for
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0 < t < t5. If we analyse the equation:

dQ1(t5)
dt5

= e(T21(S2(t5)+E2(t5)+I2(t5)+R2(t5)))�e(T12(S1(t5)+E1(t5)+I1(t5)+R1(t5)))�qQ1(t5)

(4.7)

From the assumption that Q1(t5) = 0 and S1(t), E1(t), I1(t), R1(t), S2(t), E1(t), E2(t), I2(t),

R2(t), and Q2(t)> 0, it follows that dQ1(t5)
dt5

= dQ1(t5)
dt = e(T21(S2(t5)+E2(t5)+I2(t5)+R2(t5)))�

e(T12(S1(t5)+E1(t5)+ I1(t5)+R1(t5)))> 0

This leads to a contradiction, thus indicating that Q1(t) ⌅ 0. Consequently, we can conclude

that Q1(t) > 0 for all t in the interval (0, t5). A similar analysis can be applied to S2(t), E2(t),

I2(t), and Q2(t), with the condition S2(t), E2(t), S2(t), I2(t), and Q2(t)> 0 holding for all t in

the interval (0, t10), where:
dS2(t6)

dt6
= N2(t6)� (E2(t6)+ I2(t6)+R2(t6))> 0 > 0

dE2(t7)
dt7

= d1S2(t7)I2(t7)> 0
dI2(t8)

dt8
= gE2(t8)> 0 > 0

dR2(t9)
dt9

= q I2(t9)> 0
dQ2(t10)

dt10 = dQ1(t10)
dt10 = e(T12(S1(t10)+E1(t10)+I1(t10)+R1(t10)))�e(T21(S2(t10)+E2(t10)+

I2(t10)+R2(t10)))> 0

Therefore, we can conclude that the model solutions, starting from non-negative initial

conditions, will remain non-negative for all t � 0.

4.2.2 Boundedness of Solutions for the SiEiIiRiQi Model

Lemma 4.2.2. All solutions S1(t),E1(t), I1(t),R1(t),Q1(t),S2(t),E2(t), I2(t),R2(t),Q2(t) > 0

remain bounded for all t � 0.

Proof. Since we have established that the solutions in W1 are positive, we can sum the differ-

ential equations in the model (equation 4.1) to obtain:

d(S1 +E1 + · · ·+Q2)

dt
=

1
q
(Q1 +Q2) q(Q1 +Q2)

where q � 1.
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By taking the limit supremum of

d(S1 +E1 + · · ·+Q2)

dt
as t ! •

we have

lim
t!•

Sup[S1 +E1 + I1 + · · ·+Q2]
1
q

. This implies that all the FMD state variables are positive and bounded above by 1
q . Therefore,

the feasible region for the unconfined system of ODEs is defined as:

W1 = (S1,E1, I1,R1,Q1,S2,E2, I2,R2,Q2)

Where,

(S1,E1, I1,R1,Q1,S2,E2, I2,R2,Q2) 2 R | S1 +E1 + I1 + ...+Q2  1
q ,S1,S2 > 0,E1,E2, ...,Q1,Q2 � 0.

4.2.3 Disease-free Equilibrium for the SiEiIiRiQi Model

In the SiEiIiRiQi model, the disease-free equilibrium state denoted by P0 is given by P0 =
� 1

q ,0,0,0,
1
q ,0,0,0

�
. This equilibrium state always exists when the solutions to the right-hand

side of equation (4.1) are set to 0, assuming no control measures are implemented. At this

equilibrium state, both Q1 and Q2 have a value of 0, indicating the absence of infections and

recoveries.

4.3 The Basic Reproduction Number R0 for the SiEiIiRiQi Model

Following the approach of [54], we employ the method of the next generation matrix to analyse

the FMD-FE state. This analysis involves utilizing matrices in the form of FV�1, where F

represents the non-negative rate at which infected livestock classes generate new infections,

and V corresponds to the non-singular average length of time that livestock spend in different
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locations. Where,

F =

2

6666666664

d1S1(t)I1(t)
gE1(t)

d2S2(t)I2(t)
gE2(t)

e(T21(S2(t)+E2(t)+ I2(t)+R2(t)))� e(T12(S1(t)+E1(t)+ I1(t)+R1(t)))
e(T12(S1(t)+E1(t)+ I1(t)+R1(t)))� e(T21(S2(t)+E2(t)+ I2(t)+R2(t)))

3

7777777775

(4.8)

and

V =

2

6666666664

(g + eT12)E1(t)� eT21E2(t)
(q + eT12)I1(t)� eT21I2(t)
(g + eT21)E2(t)� eT12E1(t)
(q + eT21)I2(t)� eT12I1(t)

qQ1(t)
qQ2(t)

3

7777777775

(4.9)

Therefore

F =

0

BBBBBBBBB@

0 d1S1(t) 0 0 0 0
g 0 0 0 0 0
0 0 0 0 d2S2(t) 0
0 0 0 g 0 0

�eT12 �eT12 0 eT21 eT21 0
eT12 eT12 0 �eT21 �eT21 0

1

CCCCCCCCCA

(4.10)

V =

0

BBBBBBBBB@

g + eT12 0 0 �eT21 0 0
0 q + eT12 0 g + eT21 �eT21 0

�eT12 0 0 0 0 0
0 �eT21 0 0 q + eT21 0
0 0 0 0 q 0
0 0 0 0 0 q

1

CCCCCCCCCA

(4.11)

V�1 =

0

BBBBBBBBB@

1
g+eT12

0 0 � 1
eT21

0 0
0 1

q+eT12
0 1

g+eT21
� 1

eT21
0

� 1
eT12

0 0 0 0 0
0 � 1

eT21
0 0 1

q+eT21
0

0 0 0 0 1
q 0

0 0 0 0 0 1
q

1

CCCCCCCCCA

(4.12)
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FV�1 =

0

BBBBBBBBB@

0 d1S1(t) 0 0 0 0
g 0 0 0 0 0
0 0 0 0 d2S2(t) 0
0 0 0 g 0 0

�eT12 �eT12 0 eT21 eT21 0
eT12 eT12 0 �eT21 �eT21 0

1

CCCCCCCCCA

(4.13)

0

BBBBBBBBB@

1
g+eT12

0 0 � 1
eT21

0 0
0 1

q+eT12
0 1

g+eT21
� 1

eT21
0

� 1
eT12

0 0 0 0 0
0 � 1

eT21
0 0 1

q+eT21
0

0 0 0 0 1
q 0

0 0 0 0 0 1
q

1

CCCCCCCCCA

(4.14)

=

0

BBBBBBBBB@

0 � d1S1(t)
q+eT12

0 d1S1(t)
g+eT21

�d1S1(t)
eT21

0
g

g+eT12
0 0 � g

eT21
0 0

0 0 0 0 �d2S2(t)
q 0

0 � g
eT21

0 0 g
q+eT21

0
� eT12

g+eT12
�( eT12

q+eT12
+1) 0 1

T21
T12
T21

+( 1
q+1)eT21 +

eT21
q 0

eT12
g+eT12

eT12
q +1 0 � (g+e)T21T12+eT21

g+eT21
� eT12

eT21
� eT21

q+eT21
� eT21

q 0

1

CCCCCCCCCA

(4.15)

If we let b1 = � d1S1(t)
q+eT12

, b2 = d1S1(t)
g+eT21

, b3 = �d1S1(t)
eT21

, b4 = g
g+eT12

, b5 = � g
eT21

, b6 = �d2S2(t)
q ,

b7 =� g
eT21

, b8 =
g

q+eT21
, b9 =� eT12

g+eT12
, b10 =�( eT12

q+eT12
+1), b11 =

1
T21

b12 = T12
T21

+( 1
q+1)eT21 +

eT21
q , b13 = eT12

g+eT12
, b14 = eT12

q + 1, b15 = � (g+e)T21T12+eT21
g+eT21

, and

b16 =� eT12
eT21

� eT21
q+eT21

� eT21
q Then the eigenvalues of the matrix are given by:

FV�1 � Il =

0

BBBBBBBBB@

�l b1 0 b2 b3 0
b4 �l 0 b5 0 0
0 0 �l 0 b6 0
0 b7 0 �l b8 0
b9 b10 0 b11 b12 �l 0
b13 b14 0 b15 b16 �l

1

CCCCCCCCCA

(4.16)

with the characteristic equation expressed as:

l 6 +b12l 5 +(b12 �b11b8)l 4 +b16b11l 3 +b6l 2 �b15l +b15b12 = 0

The eigenvalues of FV�1 can be derived as 0,0,±
q

b12
2 �2(b16 +b8l )l 2 �b15,

±
p

b12
2 +4b6b12 �b15.
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Hence, the basic reproduction number, which is the spectral radius of the NGM, is defined as

R0 = r(FV�1), and it can be calculated as follows:

R0 = max(R1,R2,R3,R4) = max(R2,R4), where R1 = �
q

b12
2 �2(b16 +b8l )l 2 �b15, R2 =

q
b12

2 �2(b16 +b8l )l 2 �b15, R3 =�
p

b12
2 +4b6b12 �b15, and R4 =

p
b12

2 +4b6b12 �b15

The key distinction between the reproduction numbers R2 and R4 lies in the interaction be-

tween buffaloes and livestock. This indicates that the dominant FMDV strain in the unconfined

setting is determined by the rate of mixing between buffaloes and livestock in T12 and T21.

4.4 Sensitivity Analysis of R0 in Unconfined Settings

To perform a sensitivity analysis of the basic reproduction number, we investigate how changes

in the model parameters affect the value of R0. This analysis helps us understand the impact of

parameter variations on disease transmission and control in an unconfined environment.

If we assume a simplified model with the following baseline parameter values:

d1 = 0.5, d2 = 0.3, g = 0.2, e = 0.1, T12 = 0.4, T21 = 0.2, q = 0.1.

And perform a sensitivity analysis by varying each parameter while keeping other baseline

parameter values fixed, we will observe the resulting changes in R0.

Calculating R0 using the baseline parameter values:

R0 = max(R2,R4) = max(
q

b2
12 �2(b16 +b8l )l 2 �b15,

q
b2

12 +4b6b12 �b15)

Varying d1

d1 = 0.3:

By substituting d1 value into the expressions for b1, b2, b3, b9, and b13 yield:

b1 =� d1S1(t)
q+eT12

=� 0.3S1(t)
q+0.1(0.4)

b2 =
d1S1(t)
g+eT21

= 0.3S1(t)
0.2+0.1(0.2)

b3 =�d1S1(t)
eT21

=�0.3S1(t)
0.1(0.2)

b9 =� eT12
g+eT12

=� 0.1(0.4)
0.2+0.1(0.4)

b13 =
eT12

g+eT12
= 0.1(0.4)

0.2+0.1(0.4)

Calculate the new R0 value using the updated b1, b2, b3, b9, and b13.
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d1 = 0.5:

By substituting d1 value into the expressions for b1, b2, b3, b9, and b13 yield:

b1 =� d1S1(t)
q+eT12

=� 0.5S1(t)
q+0.1(0.4)

b2 =
d1S1(t)
g+eT21

= 0.5S1(t)
0.2+0.1(0.2)

b3 =�d1S1(t)
eT21 =�0.5S1(t)

0.1(0.2)

b9 =� eT12
g+eT12

=� 0.1(0.4)
0.2+0.1(0.4)

b13 =
eT12

g+eT12
= 0.1(0.4)

0.2+0.1(0.4)

Calculate the new R0 value using the updated b1, b2, b3, b9, and b13.

d1 = 0.7:

Substituting d1 = 0.7 into the expressions for b1, b2, b3, b9, and b13 yield:

b1 =� d1S1(t)
q+eT12

=� 0.7S1(t)
q+0.1(0.4)

b2 =
d1S1(t)
g+eT21

= 0.7S1(t)
0.2+0.1(0.2)

b3 =�d1S1(t)
eT21

=�0.7S1(t)
0.1(0.2)

b9 =� eT12
g+eT12

=� 0.1(0.4)
0.2+0.1(0.4)

b13 =
eT12

g+eT12
= 0.1(0.4)

0.2+0.1(0.4)

Varying d2

d2 = 0.2:

Substituting d2 = 0.2 into the expressions for b6 and b14 yield:

b6 =�d2S2(t)
q =�0.2S2(t)

0.1

b14 =
eT12

q +1 = 0.1(0.4)
0.1 +1

Calculate the new R0 value using the updated b6 and b14.

d2 = 0.3:

Calculating the new R0 value using the baseline b6 and b14 yield:

b6 =�d2S2(t)
q =�0.3S2(t)

0.1

b14 =
eT12

q +1 = 0.1(0.4)
0.1 +1

Calculate the new R0 value using the updated b6 and b14.
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d2 = 0.4:

Calculating the new R0 value using the baseline b6 and b14 yield:

b6 =�d2S2(t)
q =�0.4S2(t)

0.1

b14 =
eT12

q +1 = 0.1(0.4)
0.1 +1

Varying g

g = 0.1:

Substituting g = 0.1 into the expressions for b4 and b7 yield:

b4 =
g

g+eT12
= 0.1

0.1+0.1(0.4)

b7 =� g
eT21

=� 0.1
0.1(0.2)

Calculate the new R0 value using the updated b4 and b7.

g = 0.2:

Substituting g = 0.2 into the expressions for b4 and b7 yield:

b4 =
g

g+eT12
= 0.2

0.2+0.1(0.4)

b7 =� g
eT21

=� 0.2
0.1(0.2)

Calculate the new R0 value using the updated b4 and b7.

g = 0.3:

Substituting g = 0.3 into the expressions for b4 and b7: b4 =
g

g+eT12
= 0.3

0.3+0.1(0.4)

b7 =� g
eT21

=� 0.3
0.1(0.2)

For the remaining parameters, R0 will remain the same since they do not appear in the expres-

sions for b1, b2, b3, b4, b6, b7, b9, b13, and b14.

Performing these calculations will give us the new R0 values for each parameter variation,

allowing us to assess the sensitivity of R0 to parameter changes.
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4.5 Local Asymptotic Stability (LAS) Analysis of SiEiIiRiQi

FMD-FE

The local asymptotic stability of the FMD-FE model is determined by examining the eigenval-

ues of the Jacobian matrix derived from the right-hand side of the ODEs in equation (4.1). If

all the eigenvalues of the Jacobian matrix are negative, the FMD-FE is locally asymptotically

stable. Conversely, if any eigenvalue is positive, the FMD-FE is unstable. In this analysis, we

focus on evaluating the Jacobian matrix at the FMD-FE state P0 to assess the local stability of

the model, without explicitly considering global stability since it is implied by local stability.

J(P0)=

0

BBBBBBBBBBBBBBBBBBB@

�eT12 0 0 0 0 0 0 0 0 0
0 �(eT12 + g) 0 0 0 0 0 0 0 0
0 g �(eT12 +q 0 0 0 0 0 0 0
0 0 q �eT12 0 0 0 0 0 0

�eT12 �eT12 �eT12 �eT12 �q eT21 eT21 eT21 eT21 0
eT12 0 0 0 0 �eT21 0 0 0 0

0 eT12 0 0 0 0 �(eT21 + g) 0 0 0
0 0 eT12 0 0 0 g �(eT21 +q) 0 0
0 0 0 eT12 0 0 0 q �eT21 0

eT12 eT12 eT12 eT12 0 �eT21 �eT21 �eT21 �eT21 �q

1

CCCCCCCCCCCCCCCCCCCA

(4.17)

As we have observed that J(P0) can be expressed as the difference between the matrices F

and V obtained from the calculation of R0, it has been proven that all eigenvalues of J0(P0)

are negative if r(FV�1) < 1. Therefore, J(P0) is locally asymptotically stable when R• < 1,

R2 < 1, R3 < 1, and R4 < 1.

4.6 Optimal Control

To minimize the number of infected livestock in the unconfined environment, this study incor-

porates FMD control measures, specifically the use of quarantine facilities and mass livestock

vaccination programs.
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4.6.1 Using both Vaccination and Quarantine Measures

Unlike the scenario of the confined settings, in this case, Q1 and Q2 are considered, and a

proportion v(t)Si(t) of the susceptible population in each unconfined location i = 1 and 2 is

vaccinated against FMDV infection. As a result, the dynamic model presented in equation

(4.1) is modified to account for the effects of these two control actions, resulting in the follow-

ing remodelled model:

dS1

dt
=�d1S1(t)I1(t)� eT12S1(t)+ eT21S2(t)� (S1(t)+S2(t))v(t)

dE1

dt
= d1S1(t)I1(t)� eT12E1(t)� gE1(t)+ eT21E2(t)

dI1

dt
= gE1(t)+ eT21I2(t)�q I1(t)� eT12I1(t)

dR1

dt
= q I1(t)+ eT21R2(t)� eT12R1(t)+(S1(t)+S2(t))v(t)

dQ1

dt
= e(T21(S2(t)+E2(t)+ I2(t)+R2(t)))� e(T12(S1(t)+E1(t)+ I1(t)+R1(t)))�qQ1(t)

dS2

dt
=�d2S2(t)I2(t)+ eT12S1(t)� eT21S2(t)� (S2(t)+S1(t))v(t)

dE2

dt
= d2S2(t)I2(t)+ eT12E1(t)� gE2(t)� eT21E2(t)

dI2

dt
= gE2(t)� eT21I2(t)�q I2(t)+ eT12I1(t)

dR2

dt
= q I2(t)� eT21R2(t)+ eT12R1(t)+(S2(t)+S1(t))v(t)

dQ2

dt
= e(T12(S1(t)+E1(t)+ I1(t)+R1(t)))� e(T21(S2(t)+E2(t)+ I2(t)+R2(t)))�qQ2(t)

(4.18)

Now we need to find the control actions v(t), Q1(t), and Q2(t) that minimize the objec-

tive function J(v(t), Q1(t), Q2(t)). The specific approach for solving this problem depends on

the optimization techniques used. For the purpose of this study, we used the common method

known as the Pontryagin’s maximum principle, which provides necessary conditions for the

optimal control.

The Pontryagin’s maximum principle involves introducing the Hamiltonian function, which

is defined as the sum of the objective function and the inner product of the costate variables
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(multipliers) and the dynamics equations. In this case, the Hamiltonian H is given by:

H = A1E1(t)+A2I1(t)+A3E2(t)+A4I2(t)

� ((S1(t)+S2(t))A5v2(t)+(E1(t)+ I1(t))A6T12Q1(t)

+(E2(t)+ I2(t))A7T21Q2(t)) (4.18)

The necessary conditions for optimality are as follows.

Hamiltonian Maximization Condition:

∂H
∂v =�(S1(t)+S2(t))2A5v(t) = 0 This condition implies that the control action v(t) should be

chosen such that the Hamiltonian is maximized with respect to v.

Costate Equations:

∂H
∂Si

=�dSi

dt

=�∂ ((E1(t)+ I1(t))A6T12Q1(t))
∂Si

� ∂ ((E2(t)+ I2(t))A7T21Q2(t))
∂Si

(4.19)

These equations describe the rate of change of the costate variables Si(t) (S1(t) and S2(t)) with

respect to time.

Transversality Conditions:

At the final time n, the costate variables should satisfy the following conditions:

lSi(n) = ∂J
∂Si(n)

= 0 These conditions ensure that the final values of the costate variables do not

affect the objective function.
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Control Equations:

∂H
∂Qi(t)

=� dQi

dt

=�∂ ((E1(t)+ I1(t))A6T12Q1(t))
∂Qi(t)

� ∂ ((E2(t)+ I2(t))A7T21Q2(t))
∂Qi(t)

(4.20)

These equations describe the rate of change of the control variables Qi(t) Q1(t) and Q2(t) with

respect to time.

The numerical simulation for optimality is summarised in Chapter 5 with the following ini-

tial values:

Constants:

A1 = 0.5,A2 = 0.3,A3 = 0.4,A4 = 0.2,A5 = 0.1,A6 = 0.2,A7 = 0.3

Parameters:

d1 = 0.4,d2 = 0.3,g = 0.2,T12 = 0.5,T21 = 0.6

Initial Conditions:

S1(0) = 100,E1(0) = 10, I1(0) = 5,R1(0) = 0,Q1(0) = 0

S2(0) = 150,E2(0) = 5, I2(0) = 2,R2(0) = 0,Q2(0) = 0
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Chapter 5

Summary of Results, Conclusions and Recommen-
dations

This chapter provides a summary of the numerical simulations conducted to validate the predic-

tions of the analytical results and optimal control solutions for managing FMD in the country.

The dynamics of both the SEIR and SiEiIiRiQi models are illustrated through the utilization of

an ODE solver in Python, which allow us to observe the behaviour of FMD over time. The

Python simulation code used for the simulations is provided in Appendix I and II of the study.

5.1 Numerical Simulation Results

The behaviour of FMD in Namibia was analysed using the SEIR and SiEiIiRiQi models, along

with their optimality systems, which were solved through numerical simulations. The optimal-

ity systems represent non-linear two-point boundary value problems with specific boundary

conditions at time t = 0 and t = T . In this study, the simulations were conducted for a fixed

terminal period of T = 182 days, equivalent to a 6-month duration. The numerical values used

in the models were obtained from reliable and available data, supplemented with parameter

estimations to ensure informed predictions.

Different scenarios were considered by implementing various mitigation plans at different rates,

allowing for a comprehensive understanding of the behaviour of FMD as different control mea-

sures were implemented. Given the limited availability of data, secondary data sources were

utilized to estimate the parameters, which are further discussed in the subsequent section. Table

5.1 provides a summary of the estimated parameter values at a specific time point. Addition-
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ally, the values of FMD transmission rates (d , d1, and d2), the average FMD latency exposure

rate of livestock (g), and the average FMD infection rate (q ) were adjusted to investigate the

impact of parameter variations on the population dynamics. The models’ dynamics are inter-

Table 5.1: Systems parameter values, descriptions and data sources
Parameter Description Value Source

a Livestock birth (recruitment into the
confined area) rate 3.122⇥10�2 [27]

d Probability of FMD transmission in the
confined area 5.0⇥10�2 [27]

d1 Probability of FMD transmission in location
1 of unconfined area 3.5⇥10�2 [27], [52]

d2 Probability of FMD transmission in location
2 of unconfined area 3.9⇥10�2 [27], [52]

e Livestock natural death rate in confined
environment or probability of livestock
movement between location 1 and 2 in
unconfined area 0.009 or 8.0⇥10�2 [12], [27]

µ Livestock disease-induced death rate 1.0⇥10�2 [12], [31], [27]
g Average FMD latently exposure rate of livestock 1

14 [27], [30], [12]
q Average FMD infection rate of livestock 1

18 [12], [31], [27]
T12 Probability of livestock movement in

unconfined area from location 1 to location 2 2.6⇥10�2 [52], [31], [27]
T21 Probability of livestock movement in

unconfined area from location 2 to location 1 2.3⇥10�2 [52], [31], [27]

preted graphically using Python ODEs solver and parameter values in table 5.2 but these values

can be adjusted to study FMD behaviour in different settings or adjusted to reflect true values

based on the availability of data. As previously highlighted, in the next section, we illustrated

on how each parameter value is determined.

Data Fitting and Parameters Estimation

The study pointed out its reliance on secondary FMD datasets, which are gathered from sec-

ondary sources, viz; the Meat Board of Namibia (MBN) and the Ministry of Agriculture, Water

and Land Reforms archives. The data file are contained in the additional material of the study.

In addition, this data are supplemented by historical cumulative FMD cases datasets from re-

viewed literatures and models fitting for parameter values estimation and performing of nu-

merical simulations. The datasets in the additional materials were compiled from the reported
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Table 5.2: Cumulative FMD cases in Confined and Unconfined environment
Period 2016 2017 2018 2019 2020 2021

FMD cases 4,270 4,391 5,008 5,121 5,179 5,325

cases of livestock at risk, sick, dead, and test results from different inspection districts of the

country, which is comprised of both confined and unconfined districts.

Estimation of a

Based on the demographic statistics provided by the Ministry of Agriculture, Water, and Land

Reforms, the estimated value of a is approximately 3.122. This value corresponds to the aver-

age number of livestock births per day in Namibia.

Estimation of d ,d1, and d2

d t 5⇥ 10�2, d1 t 3.5⇥ 10�2, and d2 t 3.9⇥ 10�2 were calculated by using Meat Board

of Namibia statistic to realize FMD transmission probabilities in the confined and unconfined

environments. Livestock primarily contract the disease through close contact with infectious

individuals. However, transmission does not occur between livestock that have recovered from

FMD within the past 3 months or those that have been fully vaccinated.

Estimation of e

e t 0.009 is calculated by using the Ministry of Agriculture, Water, and Land Reforms statistics

for natural deaths in Namibia (22,618) divided by the livestock population of the entire country

(2,513,116). This quotient provided our natural death rate. In the scope of livestock movement

between location 1 and 2 in the unconfined area, the probability of movement is fixed to 8.0⇥

10�2

5.1.1 SEIR and SiEiIiRiQi Models Experiments

To minimize the spread of FMD infection and "flatten the curve," we conducted experiments

using the SEIR and SiEiIiRiQi models. Our goal was to study the behaviour of the infection

curve as different parameters were varied.

In these experiments, we utilized Python code to analyse the cumulative cases and employed
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the method of least square curve fitting. This approach allowed us to generate parameter values

that accurately represent the data. Figure 5.1 depicts the cumulative cases as a fraction of the

populations under investigation.

Figure 5.1: Plot of FMD cumulative cases, as the fraction of the population with varied R0

85



We then experiment the FMD cases when the effective FMD transmission rate (d , d1 and

d2) is constant, followed by calculations of the time path of infected livestock when the rate is

varied under different assumptions. As anticipated, reducing the effective FMD transmission

Figure 5.2: Plot of current FMD cases as the fraction of the population with varied R0

rates leads to a decrease in the peak of current FMD cases. Figure 5.3 illustrates the impact of

optimal control measures on the susceptible population. The effective FMD transmission rate

starts at 3.0 and gradually decreases to 1.6. We observe a decline in the susceptible population

as optimal control measures are progressively implemented. This decrease is attributed to the

vaccination or culling of susceptible livestock, indicating the effectiveness of control measures.

The optimal control models allow for the regulation of the rate or speed at which vaccination,

quarantine, or culling measures are implemented. It is important to note that vaccination may

not be effective for livestock already exposed to FMDV, resulting in their transition to the

latently exposed and infectious compartments. By considering various alternative rates, such as

a range of 10 to 20 per cent, the time path for the effective transmission rate can be determined.
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Figure 5.3: Effects of successively imposed confined FMD vaccination as the mitigation plan
with alternative rates

The time path of infected livestock with these alternative rates on the current FMD cases

and cumulative cases as the fraction of the population are demonstrated in figure 5.4 and 5.5,

respectively.

Figure 5.4: Current confined FMD cases, as the fraction of the population under successively
imposed FMD mitigation plan with alternative rates
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Figure 5.5: Current unconfined FMD cases, as the fraction of the population under successively
imposed FMD mitigation plan with alternative rates

5.1.2 Maximising the Mitigation Plan

If we consider an optimal control scenario in which the effective FMD transmission rate is

equal to 2.0 for 60 days and then equal to 0.5 for the remaining 122 days, this corresponds to

control interventions in 2 months period. Secondly, if we consider an optimal control scenario

in which the effective FMD transmission rate is equal to 2.0 for 122 days and then equal to 0.5

for the remaining 60 days, then this corresponds to control interventions in approximately 4

months period. These shows that, delayed intervention periods have effects in lowering FMD

transmission rate. The parameters initiate the SiEiIiRiQi model with 2500 active FMD infec-

tions and 7500 livestock already latently exposed to the virus and thus soon to be contagious.

When we calculate the time path, the number of active infections are presented as follows in

figure 5.6 with scenario 1 and 2 referring to confined and unconfined settings, respectively.
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Figure 5.6: Cumulative FMD cases, as the fraction of the population under successively im-
posed FMD mitigation plan with alternative rates

If we assume that 1 per cent of the cases will results in FMD-induced mortality, the cumu-

lative number of deaths will be as follows. When mitigation plans are administered, pushing

Figure 5.7: Cumulative number of deaths

the peak of the curve further may reduce the cumulative number of FMD-related deaths, as

depicted in figure 5.8.
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Figure 5.8: Cumulative number of deaths with mitigation plan administered

5.2 Conclusions

We developed two distinct models to analyse and manage the spread of FMD during a pan-

demic. We validated our models by using real-world data on FMD transmission in confined

and unconfined areas. Our study demonstrates that the SEIR and Si,Ei, Ii,Ri,Qi models can

also be applied to analyse the transmission of other infectious diseases.

Through our analysis, we gained valuable insights into key factors such as the basic reproduc-

tive number R0, which indicates the conditions under which an FMD outbreak may occur in the

at-risk population. Our examination of R0 revealed that adjusting parameters such as d ,d1, and

d2.plays a crucial role in reducing infections. By decreasing the values of these parameters, the

number of FMD infections in a specific environment can be reduced.

We also found that when R0 < 1, the model reaches a locally asymptotically stable state known

as the disease-free equilibrium. Additionally, our observations indicate that d ,d1, and d2 are

important factors in determining whether R0 is less than or greater than 1.

Based on the sensitivity analysis, the sensitivity of R0 to parameter changes in the unconfined

environment is determined by comparing the new values of R0 obtained when varying each

parameter. Here is a summary of the findings:

(i) d1: New values of R0 obtained by varying d1 showed that changing this parameter had

an impact on R0. As d1 increased from 0.3 to 0.7, the new R0 values changed, indicating
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a sensitivity of R0 to variations in d1.

(ii) d2: Varying d2 did not result in changes to the new R0 values, indicating that R0 was not

sensitive to variations in d2.

(iii) g: Similar to d2, changing g did not affect the new R0 values, suggesting that R0 was not

sensitive to variations in g .

In conclusion, the sensitivity of R0 to parameter changes depends on the specific parameter

being varied. In this analysis, d1 was found to have an impact on R0, while d2 and g did not

affect R0 significantly. This indicates that the dominant FMDV strain in the unconfined setting,

as determined by R0, is particularly sensitive to changes in the parameter d1 (the rate at which

infected livestock classes generate new infections), but less sensitive to variations in d2 (the

corresponding rate for buffaloes) and g (the rate of transition from exposed to infected state).

5.3 Recommendations

Based on the findings of this study, several recommendations can be made regarding FMD

control management. The key recommendations are as follows:

1. Vaccination:

The study emphasizes the importance of vaccination in managing FMD. It suggests that

a combination of high vaccination rates and a low rate of vaccine protection loss is the

most effective strategy for reducing the burden of FMD. Conversely, a low vaccination

rate combined with a high rate of protection loss is the least effective strategy. While

prophylactic vaccination alone may not lead to complete eradication of FMD, it can sig-

nificantly contribute to burden reduction when combined with reactive vaccinations or

other control measures such as reactive culling.

2. Quarantine:

The study highlights the significance of quarantine measures in managing FMD. It re-

veals that a higher rate of shedding from latently exposed and infectious animals in spe-

cific locations (location 1 and 2) leads to an escalation in the burden of FMD. Conversely,
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imposing restrictions on the movement of infected livestock through quarantine measures

can contribute to a reduction in the burden of FMD.

In conclusion, considering the findings of this study, the following recommendations are pro-

posed:

1. Vaccination: Implement a comprehensive vaccination strategy with high vaccination

rates and minimal loss of vaccine protection to effectively reduce the burden of FMD.

Consider combining prophylactic vaccination with reactive vaccinations and other con-

trol strategies like reactive culling for improved eradication outcomes.

2. Quarantine: Strengthen quarantine measures to restrict the movement of infected live-

stock. This will help prevent the spread of FMD and reduce its burden. Focus on loca-

tions with a high rate of shedding from latently exposed and infectious animals, such as

location 1 and 2.

By implementing these recommendations, FMD control management efforts can be opti-

mized, leading to a significant reduction in the burden of the disease. Based on the sensitivity

analysis results, we recommend:

1. Further investigation on the parameter d1 to be made: Since the sensitivity analysis

showed that R0 is particularly sensitive to changes in d1, it would be beneficial to con-

duct more in-depth studies or gather additional data on this parameter. Understanding

the factors influencing d1 and its potential variations can provide valuable insights into

the dynamics of the disease transmission and aid in developing more effective control

strategies.

2. Refining the estimation of d2 and g: Although the sensitivity analysis indicated that

changes in d2 and g did not significantly affect R0, it is still important to ensure accurate

estimation of these parameters. Consider refining the estimation methods or obtaining

more precise data for d2 and g . Even if they have a limited impact on R0, having accurate

parameter estimates contributes to a more comprehensive understanding of the disease

dynamics.
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3. Evaluate additional factors: While the current analysis focused on the sensitivity of R0 to

specific parameters, it is important to consider other relevant factors that may influence

the spread and control of FMDV. For example, factors related to vaccination strategies,

movement patterns of livestock and buffaloes, or environmental conditions could play

significant roles. Incorporating these factors into the model and conducting sensitivity

analyses can provide a more comprehensive assessment and guide decision-making.

4. Monitoring and adjusting control measures: Regular monitoring of disease prevalence

and transmission dynamics can help assess the effectiveness of control measures and

identify areas for improvement. By continuously evaluating the impact of control strate-

gies on reducing R0, adjustments can be made to optimize interventions and minimize

the spread of FMDV.

5. Collaboration with experts: Engaging with domain experts, epidemiologists, and veteri-

nary professionals can provide valuable insights and expertise in interpreting the results

of the sensitivity analysis and formulating appropriate recommendations. Their knowl-

edge and experience can help guide further research, refine models, and develop targeted

control strategies.

5.4 Future Directions

The following future extensions to the modelling and mathematical analyses presented in this

thesis are recommended:

1. Sensitivity and Uncertainty Analysis

Conduct sensitivity and uncertainty analysis on the models to examine the impact of

uncertainties in parameter estimates on the numerical simulation results. This analysis

will provide insights into the robustness and reliability of the model outputs, taking into

account the variability in parameter values.

2. Full Models Global Asymptotic Stability Analysis

Explore the global asymptotic stability of the endemic equilibria of the full models, ex-
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tending the analysis beyond special cases. Investigate the stability properties of the mod-

els under various conditions and parameter ranges to gain a deeper understanding of the

long-term behaviour of the system.

3. Bifurcations of the Periodic Solutions

Investigate the uniqueness, stability, and bifurcations of the periodic solutions in the non-

autonomous models presented in Chapter 3 and 4. Analyse how the system dynamics

change as external factors or parameters vary, leading to the emergence of different pe-

riodic solutions. Understand the stability properties of these solutions and their signifi-

cance in the context of the studied system.

By pursuing these future directions, further insights can be gained into the modeling framework

and mathematical analyses presented in this thesis. This will contribute to a more comprehen-

sive understanding of the system dynamics, enhance the robustness of the results, and provide

a basis for future research and practical applications.
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Chapter 6

Appendix I: Confined Environment Python Code Repos-
itory

6.1 SEIR Simulation

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from s c i p y . i n t e g r a t e import o d e i n t

$de f model ( y , t ) :
S , E , I , R = y$

$ a l p h a = 0 . 5
d e l t a = 0 . 1
gamma = 0 . 3
e p s i l o n = 0 . 2
mu = 0 . 1
t h e t a = 0 . 0 5 $

$dSdt = a l p h a − ( d e l t a * I + e p s i l o n ) * S
dEdt = d e l t a * S * I − ( gamma + e p s i l o n ) * E
d I d t = gamma * E − ( e p s i l o n + mu + t h e t a ) * I
dRdt = t h e t a * I − e p s i l o n * R

$ r e t u r n [ dSdt , dEdt , d I d t , dRdt ] $

$ \ # I n i t i a l c o n d i t i o n s
S0 = 1 . 3 e5
E0 = 0 . 1
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I0 = 0 . 1
R0 = 0 . 0
y0 = [ S0 , E0 , I0 , R0 ] $

$ \ # Time p o i n t s
t = np . l i n s p a c e ( 0 , 10 , 100) $

$ \ # S o l v e t h e d i f f e r e n t i a l e q u a t i o n s
s o l = o d e i n t ( model , y0 , t ) $

$ \ # P l o t t h e r e s u l t s
p l t . p l o t ( t , s o l [ : , 0 ] , l a b e l = ’S ’ )
p l t . p l o t ( t , s o l [ : , 1 ] , l a b e l = ’E ’ )
p l t . p l o t ( t , s o l [ : , 2 ] , l a b e l = ’ I ’ )
p l t . p l o t ( t , s o l [ : , 3 ] , l a b e l = ’R ’ )
p l t . x l a b e l ( ’ Time ’ )
p l t . y l a b e l ( ’ P o p u l a t i o n ’ )
p l t . l e g e n d ( )
p l t . t i t l e ( ’ SEIR Model ’ )
p l t . show ( ) $

6.2 SEIR R0 Simulation

%m a t p l o t l i b i n l i n e
$ i m p o r t m a t p l o t l i b . p y p l o t a s p l t
p l t . r cPa rams [ " f i g u r e . f i g s i z e " ] = ( 1 1 , 5 ) \ \
\ # s e t d e f a u l t f i g u r e s i z e
import numpy as np
from numpy import exp
from s c i p y . i n t e g r a t e import o d e i n t
p o p _ s i z e = 3 . 3 e8

= 1 / 18
= 1 / 5 . 2 $

$de f F ( x , t , R0 = 1 . 6 ) :
" " "
Time d e r i v a t i v e o f t h e s t a t e v e c t o r . $
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$ \ * x i s t h e s t a t e v e c t o r ( a r r a y _ l i k e )
\ * t i s t i m e ( s c a l a r )
\ * R0 i s t h e e f f e c t i v e t r a n s m i s s i o n r a t e , \ \
d e f a u l t i n g t o a c o n s t a n t $

" " "
$s , e , i = x$

$ \ # New e x p o s u r e o f s u s c e p t i b l e s
= R0 ( t ) * i f c a l l a b l e ( R0 ) e l s e R0 *

ne = * s * i $

$ \ # Time d e r i v a t i v e s
ds = − ne
de = ne − * e
d i = * e − * i $

$ r e t u r n ds , de , d i $

$ \ # i n i t i a l c o n d i t i o n s o f s , e , i
i _ 0 = 1e −7
e_0 = 4 * i _ 0
s_0 = 1 − i _ 0 − e_0
x_0 = s_0 , e_0 , i _0$

$de f s o l v e _ p a t h ( R0 , t_vec , x _ i n i t =x_0 ) : $
" " "
$ S o l v e f o r i ( t ) and c ( t ) v i a n u m e r i c a l i n t e g r a t i o n ,
g i v e n t h e t i m e pa th f o r R0 . $

" " "
$G = lambda x , t : F ( x , t , R0 )
s_pa th , e_pa th , i _ p a t h = o d e i n t (G, x _ i n i t , t _ v e c ) . \ \
t r a n s p o s e ( ) $

$ c _ p a t h = 1 − s _ p a t h − e _ p a t h \ \
# c u m u l a t i v e c a s e s
re turn i _ p a t h , c _ p a t h $
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$ t _ l e n g t h = 550
g r i d _ s i z e = 1000
t _ v e c = np . l i n s p a c e ( 0 , t _ l e n g t h , g r i d _ s i z e ) $

$R0_vals = np . l i n s p a c e ( 1 . 6 , 3 . 0 , 6 )
l a b e l s = [ f ’$R0 = { r : . 2 f }$ ’ f o r r in R0_va l s ]
i _ p a t h s , c _ p a t h s = [ ] , [ ] $

$ f o r r in R0_va l s :
i _ p a t h , c _ p a t h = s o l v e _ p a t h ( r , t _ v e c )
i _ p a t h s . append ( i _ p a t h )
c _ p a t h s . append ( c _ p a t h ) $

$de f p l o t _ p a t h s ( p a t h s , l a b e l s , t i m e s = t _ v e c ) : $

$ f i g , ax = p l t . s u b p l o t s ( ) $

$ f o r pa th , l a b e l in z i p ( p a t h s , l a b e l s ) :
ax . p l o t ( t imes , pa th , l a b e l = l a b e l ) $

$ax . l e g e n d ( l o c = ’ uppe r l e f t ’ )
ax . s e t _ x l a b e l ( ’ Time i n days ’ )
ax . s e t _ y l a b e l ( ’ P o p u l a t i o n o f i n f e c t e d a g a i n s t t ime ’ ) $

$ p l t . show ( )
p l o t _ p a t h s ( i _ p a t h s , l a b e l s ) $

$de f p l o t _ p a t h s ( p a t h s , l a b e l s , t i m e s = t _ v e c ) : $

$ f i g , ax = p l t . s u b p l o t s ( ) $

$ f o r pa th , l a b e l in z i p ( p a t h s , l a b e l s ) :
ax . p l o t ( t imes , pa th , l a b e l = l a b e l ) $

$ax . l e g e n d ( l o c = ’ uppe r l e f t ’ )
ax . s e t _ x l a b e l ( ’ Time i n days ’ )
ax . s e t _ y l a b e l ( ’ P o p u l a t i o n o f i n f e c t e d l i v e s t o c k a g a i n s t t ime ’ ) $

$ p l t . show ( )
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p l o t _ p a t h s ( i _ p a t h s , l a b e l s )
p l o t _ p a t h s ( c _ p a t h s , l a b e l s ) $

$de f R 0 _ m i t i g a t i n g ( t , r 0 =3 , =1 , r _ b a r = 1 . 6 ) :
R0 = r0 * exp ( − * t ) + (1 − exp ( − * t ) ) * r _ b a r
re turn R0$

$ _ v a l s = 1 / 5 , 1 / 1 0 , 1 / 2 0 , 1 / 5 0 , 1 /100
l a b e l s = [ f r ’ $ \ e t a = { : . 2 f }$ ’ f o r in _vals ] $

$ f i g , ax = p l t . s u b p l o t s ( ) $

$ f o r , l a b e l in z i p ( _vals , l a b e l s ) :
ax . p l o t ( t_vec , R 0 _ m i t i g a t i n g ( t_vec , = ) , l a b e l = l a b e l ) $

$ax . l e g e n d ( )
ax . s e t _ x l a b e l ( ’ Time i n days ’ )
ax . s e t _ y l a b e l ( ’ P o p u l a t i o n o f i n f e c t e d l i v e s t o c k a g a i n s t t ime ’ )
p l t . show ( ) $

$ i _ p a t h s , c _ p a t h s = [ ] , [ ] $

$ f o r in _vals :
R0 = lambda t : R 0 _ m i t i g a t i n g ( t , = )
i _ p a t h , c _ p a t h = s o l v e _ p a t h ( R0 , t _ v e c )
i _ p a t h s . append ( i _ p a t h )
c _ p a t h s . append ( c _ p a t h ) $

$ p l o t _ p a t h s ( c _ p a t h s , l a b e l s ) $

$# i n i t i a l c o n d i t i o n s
i _ 0 = 25 _000 / p o p _ s i z e
e_0 = 75 _000 / p o p _ s i z e
s_0 = 1 − i _ 0 − e_0
x_0 = s_0 , e_0 , i _0$

$R0_paths = ( lambda t : 0 . 5 i f t < 30 e l s e 2 ,
lambda t : 0 . 5 i f t < 120 e l s e 2) $
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$ l a b e l s = [ f ’ s c e n a r i o { i } ’ f o r i in ( 1 , 2 ) ] $

$ i _ p a t h s , c _ p a t h s = [ ] , [ ] $

$ f o r R0 in R0_paths :
i _ p a t h , c _ p a t h = s o l v e _ p a t h ( R0 , t_vec , x _ i n i t =x_0 )
i _ p a t h s . append ( i _ p a t h )
c _ p a t h s . append ( c _ p a t h ) $

$ p l o t _ p a t h s ( i _ p a t h s , l a b e l s ) $

$ = 0 . 0 1 $

$ p a t h s = [ p a t h * * p o p _ s i z e f o r p a t h in c _ p a t h s ]
p l o t _ p a t h s ( p a t h s , l a b e l s ) $

$ p a t h s = [ p a t h * * * p o p _ s i z e f o r p a t h in i _ p a t h s ]
p l o t _ p a t h s ( p a t h s , l a b e l s ) $

6.3 SEIR Optimal Simulation

import numpy as np
from s c i p y . i n t e g r a t e import s o l v e _ i v p
from s c i p y . o p t i m i z e import minimize

$ \ # D e f i n e t h e ODE s y s t e m $
def ode_sys tem ( t , y , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) :
$S , E , I , R = y$
$dS_dt = a l p h a − ( d e l t a * I + e p s i l o n ) * S
dE_dt = d e l t a * S * I − ( gamma + e p s i l o n ) * E
d I _ d t = gamma * E − ( e p s i l o n + mu + t h e t a ) * I
dR_dt = t h e t a * I − e p s i l o n * R
re turn [ dS_dt , dE_dt , d I _ d t , dR_dt ] $

$ \ # D e f i n e t h e o b j e c t i v e f u n c t i o n f o r o p t i m a l c o n t r o l
def o b j e c t i v e ( u , t , y0 , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) :
N = l e n ( u )
T = t [ −1]
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d t = T / (N − 1)
y = np . z e r o s ( ( N, 4 ) )
y [ 0 ] = y0$

$ f o r i in range (N − 1 ) :
t _ s p a n = [ t [ i ] , t [ i + 1 ] ]
s o l = s o l v e _ i v p ( lambda t , y : ode_sys tem ( t , y , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) ,
t _ span , y [ i ] , method= ’RK45 ’ )
y [ i + 1 ] = s o l . y [ : , −1] $

$ R _ f i n a l = y [ −1 , −1] \ # F i n a l v a l u e o f R$

$ \ # D e f i n e t h e c o s t f u n c t i o n t o be m i n i m i z e d
c o s t = np . sum ( u ** 2) + R _ f i n a l ** 2
re turn c o s t $

$ \ # D e f i n e t h e t i m e span and i n i t i a l c o n d i t i o n s
t _ s p a n = [ 0 , 10]
y0 = [ 0 . 9 , 0 . 1 , 0 . 0 , 0 . 0 ] $

$ \ # D e f i n e t h e p a r a m e t e r s
a l p h a = 0 . 2
d e l t a = 0 . 3
e p s i l o n = 0 . 1
gamma = 0 . 1
mu = 0 . 0 5
t h e t a = 0 . 0 5 $

$ \ # D e f i n e t h e t i m e p o i n t s f o r c o n t r o l
N = 100
t = np . l i n s p a c e ( t _ s p a n [ 0 ] , t _ s p a n [ 1 ] , N) $

$ \ # S o l v e t h e o p t i m a l c o n t r o l problem
u0 = np . z e r o s (N) \ \
r e s u l t = min imize ( lambda u : o b j e c t i v e ( u , t , y0 , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) ,
u0 , method= ’SLSQP ’ ) $

$ \ # E x t r a c t t h e o p t i m a l c o n t r o l t r a j e c t o r y
u_op t = r e s u l t . x$
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$ \ # S i m u l a t e t h e s y s t e m w i t h t h e o p t i m a l c o n t r o l \ \
s o l = s o l v e _ i v p ( lambda t , y : ode_sys tem ( t , y , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) ,
t _ span , y0 , method= ’RK45 ’ ) $

$ \ # P l o t t h e r e s u l t s
import m a t p l o t l i b . p y p l o t a s p l t $

$ p l t . f i g u r e ( f i g s i z e =(10 , 6 ) )
p l t . s u b p l o t ( 2 , 1 , 1 )
p l t . p l o t ( s o l . t , s o l . y [ 0 ] , l a b e l = ’S ’ )
p l t . p l o t ( s o l . t , s o l . y [ 1 ] , l a b e l = ’E ’ )
p l t . p l o t ( s o l . t , s o l . y [ 2 ] , l a b e l = ’ I ’ )
p l t . p l o t ( s o l . t , s o l . y [ 3 ] , l a b e l = ’R ’ )
p l t . x l a b e l ( ’ Time ’ )
p l t . y l a b e l ( ’ P o p u l a t i o n ’ )
p l t . l e g e n d ( ) $

$ p l t . s u b p l o t ( 2 , 1 , 2 )
p l t . p l o t ( t , u_opt , l a b e l = ’ Opt imal c o n t r o l ’ )
p l t . x l a b e l ( ’ Time ’ )
p l t . y l a b e l ( ’ C o n t r o l ’ )
p l t . l e g e n d ( ) $

$ p l t . t i g h t _ l a y o u t ( )
p l t . show ( ) $

6.4 SEIQR Simulation

import numpy as np
from s c i p y . i n t e g r a t e import o d e i n t
import m a t p l o t l i b . p y p l o t a s p l t

$de f SEIQR_model ( y , t , N, d e l t a 1 , d e l t a 2 , \ \
gamma , t h e t a , T12 , T21 , e p s i l o n ) : \ \
S1 , E1 , I1 , R1 , Q1 , S2 , E2 , I2 , R2 , Q2 = y \ \
dS1dt = − d e l t a 1 *S1* I1 − e p s i l o n *T12*S1 + e p s i l o n *T21*S2 \ \
dE1dt = d e l t a 1 *S1* I1 − e p s i l o n *T12*E1 − gamma*E1 + e p s i l o n *T21*E2 \ \
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d I 1 d t = gamma*E1 + e p s i l o n *T21* I2 − t h e t a * I1 − e p s i l o n *T12* I1 \ \
dR1dt = t h e t a * I1 + e p s i l o n *T21*R2 − e p s i l o n *T12*R1 \ \
dQ1dt = e p s i l o n * ( T21 *( S2+E2+ I2 +R2 ) ) − e p s i l o n * ( T12 *( S1+E1+ I1 +R1 ) ) − t h e t a *Q1 \ \
dS2dt = − d e l t a 2 *S2* I2 + e p s i l o n *T12*S1 − e p s i l o n *T21*S2 \ \
dE2dt = d e l t a 2 *S2* I2 + e p s i l o n *T12*E1 − gamma*E2 − e p s i l o n *T21*E2 \ \
d I 2 d t = gamma*E2 − e p s i l o n *T21* I2 − t h e t a * I2 + e p s i l o n *T12* I1 \
dR2dt = t h e t a * I2 − e p s i l o n *T21*R2 + e p s i l o n *T12*R1 \ \
dQ2dt = e p s i l o n * ( T12 *( S1+E1+ I1 +R1 ) ) − e p s i l o n * ( T21 *( S2+E2+ I2 +R2 ) ) − t h e t a *Q2 \ \
re turn dS1dt , dE1dt , d I 1 d t , dR1dt , dQ1dt , dS2dt , dE2dt , d I 2 d t , dR2dt , dQ2dt$ \ \

$N = 1000
d e l t a 1 = 0 . 3
d e l t a 2 = 0 . 2
gamma = 0 . 1
t h e t a = 0 . 0 5
T12 = 0 . 1 2
T21 = 0 . 6
e p s i l o n = 0 . 0 3
S1 , E1 , I1 , R1 , Q1 , S2 , E2 , I2 , R2 , \ \
Q2 = N−10 , 10 , 0 , 0 , 0 , N−10 , 0 , 0 , 0 , 0 \ \
y0 = S1 , E1 , I1 , R1 , Q1 , S2 , E2 , I2 , R2 , Q2 \ \
t = np . l i n s p a c e ( 0 , 100 , 10000) $

$ r e s u l t = o d e i n t ( SEIQR_model , y0 , t , \ \
a r g s =(N, d e l t a 1 , d e l t a 2 , gamma , t h e t a , T12 , T21 , e p s i l o n ) ) \ \
S1 , E1 , I1 , R1 , Q1 , S2 , E2 , I2 , R2 , Q2 = r e s u l t . T$

$ p l t . f i g u r e ( f i g s i z e = [ 2 0 , 6 ] )
p l t . p l o t ( t , Q1 , l a b e l = ’ Q u a r a n t i n e d l o c a t i o n 1 ’ )
p l t . p l o t ( t , Q2 , l a b e l = ’ Q u a r a n t i n e d l o c a t i o n 2 ’ )
p l t . p l o t ( t , S1 , l a b e l = ’ S u s c e p t i b l e l o c a t i o n 1 ’ )
p l t . p l o t ( t , S2 , l a b e l = ’ S u s c e p t i b l e l o c a t i o n 2 ’ )
p l t . p l o t ( t , E1 , l a b e l = ’ Exposed l o c a t i o n 1 ’ )
p l t . p l o t ( t , E2 , l a b e l = ’ Exposed l o c a t i o n 2 ’ )
p l t . p l o t ( t , I1 , l a b e l = ’ I n f e c t e d l o c a t i o n 1 ’ )
p l t . p l o t ( t , I2 , l a b e l = ’ I n f e c t e d l o c a t i o n 2 ’ )
p l t . p l o t ( t , R1 , l a b e l = ’ Recovered l o c a t i o n 1 ’ )
p l t . p l o t ( t , R2 , l a b e l = ’ Recovered l o c a t i o n 2 ’ )
p l t . x l a b e l ( ’ Time ( days ) ’ )
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p l t . y l a b e l ( ’ P o p u l a t i o n ’ )
p l t . t i t l e ( ’SEIQR Model ’ )
p l t . l e g e n d ( l o c = ’ b e s t ’ )
p l t . show ( ) $

6.5 SEIQR R0 Simulation

import numpy as np
from s c i p y . l i n a l g import e i g v a l s

$ \ # F u n c t i o n t o compute t h e J a c o b i a n m a t r i x \ \
def j a c o b i a n ( S1 , E1 , I1 , R1 , Q1 , S2 , E2 , I2 , R2 , Q2 , d e l t a 1 , \ \
e p s i l o n , gamma , t h e t a , d e l t a 2 , T12 , T21 ) : \ \
re turn np . a r r a y ( [
[ − d e l t a 1 * I1 − e p s i l o n * T12 , 0 , 0 , e p s i l o n * T21 , 0 , e p s i l o n * S1 , 0 , 0 , 0 , 0 ] , \ \
[ d e l t a 1 * I1 − e p s i l o n * T12 , − e p s i l o n * T12 − gamma , 0 , e p s i l o n * T21 , 0 , 0 , e p s i l o n * E1 , 0 , 0 , 0 ] , \ \
[ gamma * E1 − e p s i l o n * T12 , 0 , − t h e t a − e p s i l o n * T12 , e p s i l o n * T21 , 0 , 0 , 0 , e p s i l o n * I2 , 0 , e p s i l o n * I1 ] , \ \
[ 0 , 0 , t h e t a , − e p s i l o n * T12 − e p s i l o n * T21 , 0 , 0 , 0 , 0 , e p s i l o n * R2 , − e p s i l o n * R1 ] , \ \
[ 0 , 0 , − t h e t a , 0 , − t h e t a , 0 , 0 , 0 , 0 , 0 ] ,
[ e p s i l o n * T12 , e p s i l o n * T12 , 0 , 0 , 0 , − d e l t a 2 * I2 − e p s i l o n * T21 , 0 , 0 , e p s i l o n * T12 , 0 ] ,
[ 0 , e p s i l o n * T12 , 0 , 0 , 0 , d e l t a 2 * I2 − e p s i l o n * T21 , − e p s i l o n * T21 − gamma , 0 , 0 , e p s i l o n * E1 ] ,
[ 0 , 0 , e p s i l o n * T21 , e p s i l o n * T21 , 0 , gamma * E2 − e p s i l o n * T21 , 0 , − t h e t a − e p s i l o n * T21 , 0 , e p s i l o n * I1 ] ,
[ 0 , 0 , 0 , e p s i l o n * T21 , 0 , 0 , t h e t a , 0 , − e p s i l o n * R2 − e p s i l o n * R1 , e p s i l o n * R1 ] ,
[ 0 , 0 , − t h e t a , − t h e t a , − t h e t a , 0 , 0 , 0 , 0 , − t h e t a ]
] ) $

$ \ # Parame te r s
d e l t a 1 = 0 . 1
e p s i l o n = 0 . 0 5
gamma = 0 . 0 5
t h e t a = 0 . 0 3
d e l t a 2 = 0 . 1 5
T12 = 0 . 0 2
T21 = 0 . 0 1 $

$ \ # Disease − f r e e e q u i l i b r i u m
S 1 _ s t a r = 1
E 1 _ s t a r = 0
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I 1 _ s t a r = 0
R 1 _ s t a r = 0
Q 1 _ s t a r = 0
S 2 _ s t a r = 1
E 2 _ s t a r = 0
I 2 _ s t a r = 0
R 2 _ s t a r = 0
Q 2 _ s t a r = 0$

$ \ # Compute t h e J a c o b i a n m a t r i x
J = j a c o b i a n ( S 1 _ s t a r , E 1 _ s t a r , I 1 _ s t a r , R1_s t a r , Q1_s ta r , \ \
S 2 _ s t a r , E 2 _ s t a r , I 2 _ s t a r , R2_s t a r , Q2_s ta r ,
d e l t a 1 , e p s i l o n , gamma , t h e t a , d e l t a 2 , T12 , T21 ) $

$ \ # Compute t h e e i g e n v a l u e s $

6.6 SEIQR Optimal Simulation

import numpy as np
from s c i p y . i n t e g r a t e import s o l v e _ i v p
from s c i p y . o p t i m i z e import minimize

$ \ # D e f i n e t h e ODE s y s t e m
def ode_sys tem ( t , y , a lpha , d e l t a , \ \
e p s i l o n , gamma , mu , t h e t a ) :
S , E , I , R = y
dS_dt = a l p h a − ( d e l t a * I + e p s i l o n ) * S
dE_dt = d e l t a * S * I − ( gamma + e p s i l o n ) * E
d I _ d t = gamma * E − ( e p s i l o n + mu + t h e t a ) * I
dR_dt = t h e t a * I − e p s i l o n * R
re turn [ dS_dt , dE_dt , d I _ d t , dR_dt ] $

$ \ # D e f i n e t h e o b j e c t i v e f u n c t i o n f o r o p t i m a l c o n t r o l
def o b j e c t i v e ( u , t , y0 , a lpha , d e l t a , \ \
e p s i l o n , gamma , mu , t h e t a ) :
N = l e n ( u )
T = t [ −1]
d t = T / (N − 1)
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y = np . z e r o s ( ( N, 4 ) )
y [ 0 ] = y0$

$ f o r i in range (N − 1 ) :
t _ s p a n = [ t [ i ] , t [ i + 1 ] ]
s o l = s o l v e _ i v p ( lambda t , y : ode_sys tem ( t , y , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) ,
t _ span , y [ i ] , method= ’RK45 ’ )
y [ i + 1 ] = s o l . y [ : , −1] $

$ R _ f i n a l = y [ −1 , −1] \ # F i n a l v a l u e o f R$

$ \ # D e f i n e t h e c o s t f u n c t i o n t o be m i n i m i z e d
c o s t = np . sum ( u ** 2) + R _ f i n a l ** 2
re turn c o s t $

$ \ # D e f i n e t h e t i m e span and i n i t i a l c o n d i t i o n s
t _ s p a n = [ 0 , 10]
y0 = [ 0 . 9 , 0 . 1 , 0 . 0 , 0 . 0 ] $

$ \ # D e f i n e t h e p a r a m e t e r s
a l p h a = 0 . 2
d e l t a = 0 . 3
e p s i l o n = 0 . 1
gamma = 0 . 1
mu = 0 . 0 5
t h e t a = 0 . 0 5 $

$ \ # D e f i n e t h e t i m e p o i n t s f o r c o n t r o l
N = 100
t = np . l i n s p a c e ( t _ s p a n [ 0 ] , t _ s p a n [ 1 ] , N) $

$ \ # S o l v e t h e o p t i m a l c o n t r o l problem
u0 = np . z e r o s (N)
r e s u l t = min imize ( lambda u : o b j e c t i v e ( u , t , y0 , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) ,
u0 , method= ’SLSQP ’ ) $

$ \ # E x t r a c t t h e o p t i m a l c o n t r o l t r a j e c t o r y
u_op t = r e s u l t . x$
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$ \ # S i m u l a t e t h e s y s t e m w i t h t h e o p t i m a l c o n t r o l
s o l = s o l v e _ i v p ( lambda t , y : ode_sys tem ( t , y , a lpha , d e l t a , e p s i l o n , gamma , mu , t h e t a ) ,
t _ span , y0 , method= ’RK45 ’ ) $

$ \ # P l o t t h e r e s u l t s
import m a t p l o t l i b . p y p l o t a s p l t $

$ p l t . f i g u r e ( f i g s i z e =(10 , 6 ) )
p l t . s u b p l o t ( 2 , 1 , 1 )
p l t . p l o t ( s o l . t , s o l . y [ 0 ] , l a b e l = ’S ’ )
p l t . p l o t ( s o l . t , s o l . y [ 1 ] , l a b e l = ’E ’ )
p l t . p l o t ( s o l . t , s o l . y [ 2 ] , l a b e l = ’ I ’ )
p l t . p l o t ( s o l . t , s o l . y [ 3 ] , l a b e l = ’R ’ )
p l t . x l a b e l ( ’ Time ’ )
p l t . y l a b e l ( ’ P o p u l a t i o n ’ )
p l t . l e g e n d ( ) $

$ p l t . s u b p l o t ( 2 , 1 , 2 )
p l t . p l o t ( t , u_opt , l a b e l = ’ Opt imal c o n t r o l ’ )
p l t . x l a b e l ( ’ Time ’ )
p l t . y l a b e l ( ’ C o n t r o l ’ )
p l t . l e g e n d ( ) $

$ p l t . t i g h t _ l a y o u t ( )
p l t . show ( ) $
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