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ABSTRACT

In this thesis the Gaussian plume model is proposed as a method for solving problems
related to the transportation of pollutants due to advection by wind and turbulent dif-
fusion. The idea of advection and diffusion is fundamental to this thesis as well as its
mathematical derivations from the initial principles to the explanation of the governing
partial differential equation. Dimensional analysis technique has been employed as well
as Fick’s first and second law of diffusion. The concentration distribution of a pollutant
freed into the atmosphere may be defined by the advection-diffusion equation which is a
second-order partial differential equation of parabolic form.

Assumptions underlying the model in this thesis have been explained, their origin
from advection diffusion equation and the important properties of the plume solution
in the atmosphere. The results are then applied to solving problem in which emission
rates are strongminded in a given power plant. We demonstrated our outcomes with an
application for ongoing research of emission from diesel power plant (Anixas Power Plant,
Walvis Bay).
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Background of the study

When air pollution began to have a substantial consequence on human life, it became
essential to learn and understand the links between emission sources and the air quality
deterioration and associated health effects. In the past years, the dispersion of pollu-
tants in the atmosphere has been the object of study and investigation in industrialized
countries. The problems caused by air pollution are complex and affect natural pro-
cesses, influencing the ecological balance. Only after the impacts of the sources have
been assessed correctly will it be possible to devise and implement rational, convincing
and effective policies to improve air quality (Arya, 1999).

In Namibia, the effects of fuel emissions from power plants have not been well consid-
ered. As a result, effective policies to shield human health and therefore, the atmosphere
from such emissions are lacking. Therefore, it’s vital that such emissions be scrutinized
and modelled.

The Anixas diesel-fuelled power plant in the Republic of Namibia has been functioning
since July 2011 to help in serving the height power necessities within the Namibian grid.
The station is set adjacent to the prevailing Paratus Power Plant at Walvis Bay and it
provides an emergency standby capacitance of 22.5 MW to the country. The 22.5 MW
generation is shared among 3 caterpillar V16 cylinder diesel generator sets (Figure one.1).
The generators use light-weight oil (LFO) for beginning and stopping and significant oil
(HFO) for traditional operation. The LFO is so not expected to possess a major impact
on the aerosolised and particle emissions.

Figure 1.1: Anixas Power Station: Oil-fuelled generator sets.
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Each generator set is linked to an emissions analyser (Figure 1.2) measuring particulate
and gaseous emissions.

Figure 1.2: Emissions analysers

A 60 metre high cluster exhaust stack (Figure 1.3) disperses the emissions high up
reducing ambient concentration of any pollutant.

Figure 1.3: Anixas 60m high cluster exhaust stack

The key contaminants released from a diesel engine comprise Nitrogen oxides (NOx,
Sulphur dioxide (SO2 and particulate material (soot and fuel ash). Emissions of CO
and unburned Hydro Carbons (UHC) from diesel engines are insignificant for liquid fuel
engine plants.

1.2 Thesis organisation

Chapter 1 contains an introduction about a brief overview of air pollution dispersion
modelling and its significance to Namibia’s energy production sector. Furthermore, it
details the objectives of the project, the methodology used as well as the importance of
the research.

Chapter 2 discuses the literature survey on research domain and presents a summary
on a number of researches already conducted in relation to the research problem under
consideration. The literature, viz thesis and publications specifically deal with emissions
and air pollution dispersion in the atmosphere.
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Chapter 3 describes the basics of any flow simulation are based on the conservation
of various laws expressed in the form of equations. These equations are to be solved
to get the solution. The transportation of fluid flow relies on solving four equations,
viz. conservation of mass, advection, diffusion and also species concentration in case of
combustion. This chapter discusses the equations used by the model.

Chapter 4 covers the fundamentals of Gaussian Plume Model - its evolution, assump-
tions, basic structure, behaviour and its area of application are covered in this chapter.

Chapter 5 covers the geometrical modelling and the inputs needed for the simulation
of fluid flow in the atmosphere and emission process in diesel engine at the power plant
are discussed in this section. The analysis of the data is also covered in this chapter.

In chapter 6, the performance and emission analysis with respect to the specified power
plant and geometric variations using Gaussian Plume Model are discussed. Results were
presented and more discussion was tickled in detail.

Chapter 7 gives a summary of the observations and interpretations made from the
dissertation. The concluding statements are drawn, describing the achievements of the
research work and the possible applications in the real world. Recommendations are
made from for future work.

Last but not least, the appendix contains the whole description of all benchmark
methodology of our Gaussian model as well as References

1.3 A model and its purpose

A model could be a straightforward manner of representing a posh state of affairs. It
doesn’t have to be compelled to take into account each and every element concerned.
Betting on the matter that has to be solved solely the vital characteristics are mentioned.
Most world issues are often simplified victimization mathematical modelling as some way
to strain extraneous data. Whereas, the ensuing model typically can’t be solved precisely,
it ought to a minimum of be ”as straightforward as possible”. Several ecological issues
can’t be solved without mathematical modelling, since the wildlife is interconnected and
it is impractical to live all the individual relationships.

Mathematical models are utilized by scientists, analysts and engineers so as to review
the interactions of the system elements and predict their behaviour(Briggs, 1975).

1.4 Concepts and definitions

The term transport means, processes that change substances through the layer and
atmosphere by physical means. As an equivalence to communication, transport is the
method by which the letter goes from one site to a different (Fisher & Macqueen, 1981).
The communicating truck is that the analogy for the fluid, and therefore the letter itself
is that the analogy for the chemical species. The two main means of transport in en-
vironmental mechanics are temperature change (transport related to the movement of a
fluid) and diffusion (transport related to accidental motions inside a fluid).

3



Similarly, the word transformation in this context, defines those procedures that trans-
form a substance of concern into a different material. Regarding the similarity, trans-
formation is the paper reusing plant that turns the message into a shoe box. The two
main methods of transformation are physical (transformations triggered by physical reg-
ulations, such as dangerous decay) and chemical (transformations instigated by chemical
or biological responses, such as disbanding)(Turner & Hurst, 2001).

1.5 Advection-Diffusion Equation

Essentially, transport happens in fluids over the progression of advection and diffusion.
The concentration distribution of a pollutant released into the air may be described by
the advection-diffusion equation which is a second-order partial differential equation of
parabolic type. The mathematical equation for advection-diffusion equation is given as
(Turner I & Zhuang, 2003):

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
=

∂

∂x
(Kx

∂c

∂x
) +

∂

∂y
(Ky(

∂c

∂y
) +

∂

∂z
(Kz

∂c

∂z
) + s (1.5.1)

where Kx, Ky, Kz are the eddy diffusivity along x, y and z direction respectively. The
following assumptions are made in the solution of the equation (1.5.1):

• Steady state condition is considered (i.e. ∂c
∂t

= 0).

• The vertical velocity component (w) is neglected in comparison to horizontal veloc-
ity components (u and v).

• x-axis is oriented in the direction of mean wind (i.e. u = U , v = 0).

• Downwind diffusion is neglected in comparison to transport due to mean wind (i.e.
| U ∂c

∂x
|�| ∂

∂x
(Kx(

∂c
∂x

)) |).

Application of these assumptions in equation (1.5.1) leads to the steady state advection
diffusion equation for dispersion of a non-reactive contaminant released from continuous
source as (Seinfeld & Peterson, 1977):

U
∂c

∂x
=

∂

∂y
(Ky

∂c

∂
) +

∂

∂z
(Kz

∂c

∂z
) (1.5.2)

where x, y and z are coordinates in the along-wind, cross wind and vertical directions
respectively. C is the mean concentration of pollutants and U is the mean wind speed in
the downwind direction. Ky and Kz are eddy diffusivities of pollutants in the crosswind
and vertical direction respectively.

Mathematical models are in 2 categories, namely: statistical and deterministic models.
Statistical models are founded on the analysis of previous monitoring air quality informa-
tion. Deterministic models are founded on the mathematical explanation of physical and
chemical methods taking dwelling in the atmosphere. These models are constructed on
mathematical equations and express energy, momentum and conservation laws of mass.
The Advection-Diffusion Equation is a deterministic model (Arya, 1999).
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Founded on the Advection-Diffusion Equation, atmospheric dispersion modelling ac-
cording to (Holmes & Morawska, 2006) customs mathematical algorithms, to define the
atmosphere, spreading and chemical and physical developments in the interior of the
cloud, to explain how air (or water) chemicals diffuse in the ambient atmosphere (or wa-
ter body) as well as to compute concentrations at various places. These representations
are used to estimate and/or forecast the downwind absorption of air or water pollutants or
contaminants discharged from causes such as manufacturing plants, vehicular circulation
and water contaminations from accidental chemical releases. Although the models are
merely estimation models, they estimate concentration discharged from any detail estab-
lished of chemical, at any site, at any period of time and with high levels of confidences
(Nagendra & Khare, 2002).

According to Seinfeld & Peterson (1977) the atmospheric diffusion algorithms existed
for a long time to define the spreading of airborne pollutants within the tempestuous
atmosphere. The use of analytical solutions of this equation was the first and remains
the most convenient way for modelling air pollution problems. Air dispersion models are
built on analytical explanations which have quite a few advantages compared to numerical
models as all the persuading parameters are clearly articulated in a mathematically closed
form. Analytical models are also beneficial in investigating the exactness and performance
of numerical models.

1.6 Difference between diffusion and advection

Diffusion and advection both transport the pollutants from one place to another, in
different ways. The common difference is:

• Advection spirits one way (downstream);

• Dispersion moves in all directions (irrespective of a stream direction).

Below is the mathematical formulation:

• Advection u∂c
∂x

has a first-order derivative, which means that if x is replaced by -x
the term changes signs (anti-symmetry);

• Diffusion D ∂2c
∂x2

has a second-order derivative, which means that if x is substituted
by -x the term does not alter sign (symmetry).

1.7 Air dispersion models

The above-mentioned models are separated into diverse sets of source physiognomies
such as point, line and area sources or on the basis of geographical of the region as flat
or complex ground. They can as well be categorized according to the dimensions of the
field they are defining (Bluett et al., 2004): Short distance models (distance from source
less than 30-50 km), Mesoscale models (concentration fields of the order of hundreds of
kms) and Mainland or Universal Flow models.
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Some of the models can, moreover, be grouped according to the time resolution of the
concentration formed: occasional models (sequential determination of less than an hour),
Short-time models (sequential determinations larger than or equal to an hour and less
than or equal to 24h) and climatologically models (by means of determinations bigger
than 24h, seasonal or yearly are the common ones).

The overview of a dispersion coefficient as a function of time in a given distance from
a source might permit obtaining outcomes which are physically acceptable; then again,
their dependence on time brands it demanding to give the equation of diffusion in a
static coordinate system given that several sources have to be preserved concurrently.
Notwithstanding the commonly used limits of the slope theory has been largely exercised
since a) modest, b) it defines the diffusive passage in the context of an Eulerian, besides
nearly all dimensions are Eulerian view, c) outline fallouts that correspond with the data
that were obtained experimental as well as more multifaceted models, e) they require less
input i.e. not expensive (Chung, 2010).

In addition to starting the basis for a widespread and active body of present research
in atmospheric dispersion modelling, the results are used to demonstrate basic techniques
from partial differential equations (Greens functions, Laplace transforms, a asymptotic,
special functions), constrained optimization (linear least squares), numerical analysis,
and inverse problems.

Basically, to achieve these, a computer program was used that explained the equations
and algorithms of mathematics which describe the contaminant diffusion. Those models
are imperative specifically to governmental representative that are responsible for han-
dling and shielding the ambient air quality. The models also stream data to support in the
designing of the best control policies to diminish emissions of detrimental air pollutants
(Sutton, 1932).

1.8 The aspect of climatic change

The aspect of climate differences has a key part in defining the dispersion, distribution,
direction as well as the conveyance of contaminants in the atmosphere. Consequently, it
is really essential to study and consider the climatic conditions of an area the study is
carried out.

1.9 Air quality standards and regulations

Importantly, the purpose of modelling air dispersion is to measure the negative effects of
a certain facility or movement on the atmosphere. The influence is measured by means of
linking the expected concentration of the contaminant at ground level to an orientation
level. The ambient air quality standards and limits are the commonly generally used
reference for contrast in the field of environmental fluid flow. The data obtained are
compared to the World Bank Guidelines (Table 1.1) for stack emissions.
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Table 1.1: Wolrd Bank Guidelines (http://www.his.com/ mesas/OccupHealth.htm).

Pollutant Stack Emissions/ Concentrations
Particulate Matter 50mg/Nm3

Nitrogen Oxides Oil: 460mg/Nm3(130ng/Jor225ppm)
Sulfur Dioxide Concentration not to exceed 2000mg/Nm3.

1.10 Statement of the problem

Knowledge of the relation between emissions by a source and pollutant concentrations
in the air at later times and other places (that is, the source/receptor relationship) is
essential to calculating the exposure of humans to these pollutants and hence to pre-
dicting the health impacts resulting from these source emissions. Mathematical models
have evolved as the most practical means to relate source emissions to the subsequent
air pollution concentrations. This thesis models the air emissions from diesel fuelled gen-
erated electric power plants located in Walvis Bay, Namibia. The output of the models
are then used to determine the potential impacts of the air emissions on the surrounding
environment.

1.11 Objectives of the study

The General objective of this study is to develop a mathematical model of emissions
from diesel-fuelled energy sources (diesel-fuelled power plant) at Walvis Bay, Namibia.

Specific objectives are

1. To analytically model the relationship between diesel power plant energy output,
emissions, and subsequent air quality impacts using the advection-diffusion-reaction
equations.

2. To assess possible ground level air pollutants’ (Sulfur Dioxide and Nitrogen Dioxide)
concentrations and assess any negative environmental impact, taking the air quality
standards as a measure of impact.

3. To apply the developed model to Namibia’s climatic conditions for use as a decision
support tool for energy and environmental planning in Namibia.

1.12 Proposed research design

The researcher first identified the diesel emissions sources from the Anixas power plant
in Namibia. These emission sources were then represented by appropriate energy output
and emission variables from which the model was developed. The emission dispersion
model was then solved using appropriate techniques to obtain the potential environmental
impacts of the emissions.

Data needed as input in the model were obtained from Namibia’s meteorological con-
ditions. MATLAB was employed in the model solution and simulation of the emissions
and environmental impacts developed. The data needed for the power plant are:
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• Energy and emissions data for the Anixas diesel power plant in Namibia.

• Local weather and topographic data for Walvis Bay, Namibia.

• Air quality standard for Namibia.

1.13 Significance/contribution

The ongoing research on the energy models in the Namibian energy system needs
additional study. Each country has its own unique energy resources, economic demand
patterns, and energy security concerns. Thus, the best strategy for each country will be
different. The significance of this study is for a better sympathetic of the environmental
health effects of the Anixas power plant.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Consumptions of energy in Namibia has been rising with 3.5% every year on average as
well as the consumptions of electricity with 5.6% even though pre-maturation rates differ
notably from one year to another. During the period of 2000-2010 the overall hike for
energy consumptions has been 38% while for electricity consumptions stands at 79%. The
electricity creation capacity rises very little at the same time. The increase throughout
this time has been nearly powered by the energy which was imported in the form of
petroleum products and electricity (NamPower, 2013).

The main supply of electricity in Namibia depends mostly on the electricity which
is imported from outside the country (65% in 2011). The inter-connector capacity for
electricity used country wide at present stands at 900 MW, of which 600 MW comes from
South Africa and the 300 MW Caprivi Link in north-east linking the Namibian system
to the Zambian grid, which comes with an option for 300 MW increase in capacity when
Phase 2 of the project is realized. The rest of the electricity supply is generated in practice
by the Ruacana 332 MW hydro power plant located on the northern boundary river
between Namibia and Angola. The plant contains three 80 MW turbines and a fourth
newly commissioned 92 MW unit. During 2014, the runners of three older turbines were
replaced, increasing the capacity by 15 MW to a total of 347 MW.

There are also two diesel plants (Paratus and newly built Anixas) in the town of Walvis
Bay (24 MW and 22 MW respectively) and a coal fired condensing plant, Van Eck, in the
capital city, Windhoek. The coal plant has four units rated 40 MW each, but currently
in practice the maximum electricity output is a fraction of the total capacity, about 50
MW. Van Eck power plant remains a peak power station. In addition to these, a small
pilot plant utilising a widely available domestic biomass fuel, invader bush, is located
about two hundred kilometres north of the capital. The capacity of the plant is 250 kW
(NamPower, 2013).

Basic information on these power generation plants in Namibia can be found in table
2.1
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Table 2.1: Power Plants located in Namibia (Ministry of Energy, 2010).

Power plant Type Build Capacity
Ruacana Hydro power station 1978 347 MW
Paratus Diesel power station 1976 24 MW
Anixas Diesel power station 2011 22 MW

Van Eck Coal-fired power plant 1973 120 MW
CBEND Small scale biomass plant 2010 0.25 MW
Tsumkwe PV - diesel hybrid 2011 200kWp PV +300kW

2.2 Fluids in the environment

Types of substances are grouped as they appear in one of two states namely, fluid
or solid. Substances that have a rigid shape that can be modified as a consequence of
stresses are know as solid elements. This shape modification is described as deformation
or strain. Various types of solids are identified by different relationships between the
shear stress and the strain. A state of equilibrium with the stresses applied on that body
is described as strained solid. When applied stresses vanishes, the solid body relaxes to
its original shape.

The shape of a fluid body is determined by interfaces and solid boundaries with other
fluids. Not like in solids, even an infinitesimal shear force changes the appearance of fluid
elements. Differences between various forms of fluid are identified by different relation-
ships between the shear stress and the rate of strain. When applied stresses vanish, fluid
elements do not return to their original shape. In addition, fluids normally do not support
tensile stresses, even though in many scenarios they strongly resist normal compressive
stresses. Mostly, they can be seen as incompressible materials or materials subject to
incompressible flow, that is, their density is not a function of pressure. Generally, fluids
may be divided into liquids, for which compressibility is generally not considered, and
gases, which are compressible fluids. The volume of a liquid mass is almost constant,
and it takes the smallest portion of a container in which it is contained. It also has a
horizontal free surface in a stationary container. A gas always expands and takes the
whole volume of any container. Hence, gases like air are usually well described in the
atmosphere using incompressible flow theory (Carslaw & Jaeger, 1959).

All forms of life on earth are immersed in a fluid or another, either the air of the
atmosphere or the water of a river, lake or ocean; even, soils are permeated with moisture.
So, it is no exaggeration to say that life, including our own, is bathed in fluids. Our
industrial systems, which release pollution on a continuing basis, would not be permissible
if transport and dilution of nearly all emissions by ambient motions of air and water is
not present (Cooper & Alley, 2002).

In sum, natural fluid motions in the environment are vital. We have a strong incentive
to study the naturally occurring fluid flows, particularly those of air in the atmosphere
and of water in all its streams, from underground aquifers to surface flows in rivers, lakes,
estuaries and oceans.

The study of these flows has received considerable attention over the years and has
spawned several distinct disciplines: meteorology, climatology, hydrology, hydraulics and
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oceanography. Whereas, the particular objectives of each of these disciplines, such as
weather forecasting in meteorology and design of water-resource projects in hydraulics,
encourage disciplinary segregation, environmental concerns compel experts in those dis-
ciplines to consider problems that are essentially similar. These includes, the effect of
turbulence on the dispersion of a dilute substance, the transfer of matter or momentum
across an interface, flow in complex geometries, the rise of a buoyant plume, and the
impact of flow over a biotic system (Cooper & Alley, 2002).

2.2.1 Assumptions in Continuum

Altogether resources are composed of distinct molecules subject to relative movements.
However, in the context of fluid mechanics we contemplate the fluid as a continuum. We
are commonly concerned in the macroscopic manners of fluid substances, such that the
lowest fluid mass of concern generally is made up of a fluid particle that is much greater
than the mean free path of a sole molecule. Hence, it is likely to disregard the discrete
molecular structure of the matter and to define it as a continuum. The continuum
method is lawful if the distinctive size, or length of the flow system (e.g., the diameter
of a solid sphere immersed in a flowing fluid) is much greater than the mean free path
of the molecules. For example, in a normal atmosphere the molecular free path is of the
order of 10−8 m, but in the high altitudes of the atmosphere the molecule mean free path
is of the order of 1 m. Consequently, for us to analyse the dynamics of a complex gas in
such heights a kinetic theory method would be essential, relatively than the continuum
method (Seinfeld & Pandis, 1997).

The study of environmental flows is also fully integrated in the contemporary emphasis
on environmental impacts and sustainable life on planet Earth. According to physicists,
the world scientific community will be occupied during the 21st century in large part by
problems related to the environment, particularly those stemming from the concern over
climate change (Rodhe et al., 2000) as well as many other problems spanning a wide
range of spatial and temporal scales. This marks the first time in the history of science
that environmental problems lie at the forefront of scientific research.

2.2.2 Partial Differential Equations

All basic processes characteristic of environmental fluid mechanics can be analysed as
partial differential equations which is commonly abbreviated as PDEs. Partial differential
equations are a result of a functions for which results are required (e.g., concentrations,
velocities, temperature, etc.) or be likely to rely on one or more spatial coordinates
as well as time. Utmost, the equations of concern comprise diffusion processes, which
include second-order spatial derivatives. The result of the suitable differential equation(s)
subject to suitable initial and boundary conditions gives the foundation for mathematical
model of the physical problem. In the following paragraphs, we analysed the simple
forms of partial differential equations faced with environmental fluid mechanics problems
(Lawrence, 1998).

Credentials of the partial differential equation linked with the specific problem of con-
cern are of most significant. Diverse measures of convergence and stability are typical of
each type of partial differential equation, as given below. The equation offers the elemen-
tary instruction for the establishment of a mathematical problem that can be used to the
solution of that real world problem. In cases of numerical models, specific procedures
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for the formulation of the numerical system are used for the specific differential equa-
tion that is linked with a specified problem. Problems of environmental fluid mechanics
can be categorized into two universal classes: problems of equilibrium and problems of
propagation (Lawrence, 1998).

The universal set up of a second-order linear Partial Differential Equation in a two
dimensional is given by

a
∂2ϕ

∂x2
+ b

∂2ϕ

∂x∂y
+ c

∂2ϕ

∂y2
= f (2.2.1)

such that a, b, and c are constant coefficients. A linear combination of coefficients
multiplied by small order derivatives of the dependent variable ϕ is represented by f .

The technique and procedure of the solution of a Partial Differential Equations subject
to initial and boundary conditions relies on the type of the Partial Differential Equation.
It is well known to categorise Partial Differential Equations based on the relationships
between the coefficients of equation (2.2.1):

If
b2 − 4ac > 0 (2.2.2)

then the Partial Differential Equation is hyperbolic.

If
b2 − 4ac = 0 (2.2.3)

then the Partial Differential Equation is parabolic.

If
b2 − 4ac < 0 (2.2.4)

then the Partial Differential Equation is elliptic.

Hyperbolic, parabolic or elliptic is used to categorize partial differential equations
branches from the analogy between the system of the discriminant (b2 − 4ac) for par-
tial differential equations and the system of the discriminant that categorises conic sec-
tions. If the Partial Differential Equation defines a domain with n -dimensions, then the
characteristics, if actual characteristics exist, are surfaces of (n − 1) dimensions, along
which signals, or evidence, propagate. If no actual characteristics exist, then there are
no preferred paths of information propagation. Consequently, the presence or absence
of characteristics has an important influence on the results of the partial differential
equation.

First-order partial differential equations defines convection or advection of a property
ϕ, given as a solute heat or concentration. The common formula of such an algorithm in
the (x, t) domain, such that x defines a spatial coordinate and t defines a time, defined
as

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 (2.2.5)

12



such that u is the advection velocity. If ϕ defines dissolved mass of a solute, then the
second term in the above equation incorporates the process of solute mass being carried
(advected) by a fluid particle as it moves through the domain. The location of any fluid
particle is compared to its velocity u by a simple relationship representing the differential
equation of the particle path line:

dx

dt
= u (2.2.6)

Hence, the path line of a fluid particle is defined as

x = x0 +

∫ t

t0

udt (2.2.7)

Beside, the path line of the fluid particle of the advection equation is stated as

∂ϕ

∂t
+ u

∂ϕ

∂x
=
∂ϕ

∂t
+
dx

dt

∂ϕ

∂x
=
∂ϕ

∂t
= 0 (2.2.8)

The last part of equation (2.2.8) indicates that ϕ is constant along the path line of the
fluid element. This path line is the distinctive path related to the equation of advection.
The first-order differential equation of the form given by Equation (2.2.5) is termed a first-
order hyperbolic partial differential equation, and it has a single family of characteristic
curves, along which the information propagates in the domain. A single first-order partial
differential equation is always hyperbolic. In second-order hyperbolic partial differential
equations there are two families of characteristic curves, along which the information
propagates.

Parabolic and hyperbolic differential equations are typical of propagation problems.
The propagation is in time and space. This means that parabolic and hyperbolic differ-
ential equations usually defines the problems of a property propagating in the domain.
The features of the propagation of the property in cases of parabolic differential equations
are different from those of hyperbolic differential equations. Elliptic partial differential
equations generally concern equilibrium problems, i.e., ones that do not involve time
derivatives.

A typical parabolic equation associated with environmental fluid mechanics is the equa-
tion of diffusion. In the (x, t) domain, the form of this equation is stated as follows

∂ϕ

∂t
= α

∂2ϕ

∂x2
(2.2.9)

where α is the coefficient of diffusion, or diffusivity. In numerous claims, an advective
term is added, making an advectiondiffusion equation

The wave equation is a most hyperbolic equation connected with environmental fluid
mechanics. Considering the domain (x, t), equation (2.2.9) is stated as

∂2ϕ

∂t2
= α2∂

2ϕ

∂x2
(2.2.10)

such that c is the propagation speed of the wave.
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Laplace equation is a known elliptic equation, linked with environmental fluid mechan-
ics. Considering the domain (x, y), equation (2.2.9) is stated as

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (2.2.11)

The solution of a parabolic or hyperbolic partial differential equation, of the types
stated by equations (2.2.9) and (2.2.10), can be attained, as long as adequate initial as well
as boundary conditions are stated. An initial condition defines the values of the unknown
variables and possibly their space derivatives at a time of reference. Boundary conditions
define the values of the unknown variables and their space derivatives at the boundaries or
other specific locations of the given domain. The solution of an elliptic partial differential
equation of the type stated by equation (2.2.11) can be attained, as long as adequate
boundary conditions of the domain are indicated. For elliptic partial differential equations
there are no initial conditions, since time derivatives are not included.

To the solution of partial differential equations, there are three types of linear boundary
conditions that can be applied:

All values of the dependent variable, ϕ, are specified on the boundaries of the
domain:

ϕ = f(x, y) (2.2.12)

such that
(x, y) ∈ G (2.2.13)

such that G is defined as the surface of the domain. Boundary conditions of this
type are defined as Dirichlet boundary conditions.

All values of the gradient of the dependent variable, ϕ, are specified on the bound-
aries of the domain:

∂ϕ

∂n
= f(x, y) (2.2.14)

given that
f(x, y) ∈ G (2.2.15)

such that n represents a coordinate normal to the boundary G. Boundary con-
ditions of this type are defined as Neumann boundary conditions.

A general linear combination of Dirichlet and Neumann boundary conditions:

aϕ+ b
∂ϕ

∂n
= c (2.2.16)

such that a, b, and c are functions of (x, y). This type of boundary condition can be
used to specify total flux, as will be described in later chapters.

It should be noted that besides linear boundary conditions, the domain may be sub-
ject to non-linear boundary conditions. Application of such conditions is generally very
complicated.
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2.3 The modelling theory of diffusion in the atmo-

sphere

Modelling of dispersion customs mathematical algarithms relating the chemical, atmo-
spheric, dispersion and physical developments prompting a contaminant produced from
well spring outcomes of a specified geometry to determine the amount of emission at
several receptors as a consequence of the release of pollutants (Holmes & Morawska,
2006).

Molecular diffusion is one the simple example of contaminants dispersion in the at-
mosphere, once matters travel from an area of great concentration to an area of little
concentration. Nevertheless, other than the diffusion of molecular, plumes disperse be-
cause of additional multifaceted methods. These methods are mechanically as well as
thermally created by turbulence and wind variations (Cooper & Alley, 2002).

2.4 Historical perspective of mathematical

models.

Major components of civil engineering works have been fluid mechanics and hydraulics
and were perhaps initially connected with problems of water supply in ancient civiliza-
tions. One of the first well-documented hydraulic engineers was Archimedes. His finding
of the plain principles of buoyancy works nowadays as one of the essential building blocks
in defining fluid behaviour. He also considered modest pumps for agricultural applica-
tions, and some of his plans are quiet in use currently. Additional primary engineers had
to deal with moving water over large distances from sources to cities, as with the Roman
aqueducts found in many parts of Europe and the Middle East (Holmes & Morawska,
2006).

These strategies required to include basic features of open channel flow, such as dis-
covery the proper slope to attain a preferred flow rate. Remains of water storage and
conveyance systems have also been found from some of the earliest civilizations known,
both in the Near East and in the Far East. Rouse (1957) offers a fascinating history of
the science and engineering of hydraulics, which is also shortened by Graf (1971), mostly
as it tells to open channel flow. In a sense, these were the first kinds of problems that
can be related with the field of environmental fluid mechanics.

To come up with the procedures for disposing of waste water was an important task
for the early engineers. The humblest means of achieving this, which was in use up to the
relatively recent past, comprised systems of gutters and drainage ditches, frequently with
direct discharge into ponds or streams. Septic tanks, with associated leeching fields, are
another instance of a simple waste water treatment scheme, and yet these can handle only
relatively slight flow rates. Inside the last century, the practice of waste water collection
and treatment has grew significantly, to allow fluctuating degrees of treatment of a waste
stream before it is discharged back into the natural environment (Tyler, 1986).

This growth has been motivated by increased demands (both in quantity and in qual-
ity) for treating municipal sewage, as well as increased necessities for treating industrial
wastes. Sanitary engineering, within the overall profession of civil engineering, usually
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allocated with designing water and waste water collection and treatment schemes. This
has changed into the fashionable field of environmental engineering, which now incor-
porates the universal area of water quality modeling, for both surface and groundwater
structures. This has imposed the incorporation of other fields of science, such as chem-
istry and biology, to address the wider range of problems now being faced in treating
waste streams with a diversity of features and requirements (Tyler, 1986).

In addition to treating municipal or industrial waste water, environmental engineers
presently are involved in answering problems of chemical fate and transport in natural
environmental schemes, including subsurface (groundwater) and surface waters, sediment
transport, and atmospheric structures. An acquaintance as well as considerate of fluid
flow and transport practices is essential to define the transport and dispersion of pollu-
tants in the environment, and chemical and biological practices must be incorporated to
define source and sink terms for contaminants of concern. Distinctive types of difficulties
might involve computing the projected chemical contaminant concentration at a water
supply intake due to an upstream spill, evaluating the spreading of waste heat discharged
from power plant condensers, forecasting lake or reservoir stratification and associated
effects on nutrient and dissolved oxygen distributions, determining the relative impor-
tance of contaminated sediments as a continuing source of pollutants to a river or lake
system, calculating the expected recovery time of a lake when contaminant loading is
discontinued, or evaluating the effectiveness of diverse remediation options for a contam-
inated groundwater source. All of these types of difficulties need an thoughtful of fluid
flow phenomena and of biochemical behaviour of resources in the environment (Tyler,
1986).

The most important aspect fuelling the development of mathematical air quality models
has been the Clean Air Act (American Meteorological Society 1981). Models are put in
place so that they validate agreement with governing norms as well as control supervisory
bodies in the direction of thinkable emission control strategies for refining the quality of
airborne (Hadlock, 1998). Through the inspiration of the Clean Air Act, air quality has
been considered specifically to foresee the concentrations of contaminants like carbon
monoxide, nitrogen dioxide, and ozone through the structure of the federal government
for various years, excluding those of countless trace of toxic pollutants which have been
previously of rising concern to wholesome results of investigation of which are expected
to be a topic and order to the forthcoming (Pasquill & Smith, 1983).

In the beginning of the 1970s, coherent models have been advanced to the point that it
was a potential to forecast the concentrations of emissions like Carbon dioxide has been
mostly given by transport but not by the reaction of chemical in the atmosphere. After
that, it was necessary to integrate the chemical in the atmosphere into the model to des-
ignate the active of contaminants, such as O3 and NO2 that are chemically vigorous upon
the atmosphere. Photochemical air shed models had been developed at the beginning
of 1980s, that could precisely predict the concentrations of NO2 and O3 as a function of
emissions. Currently, the main problem in our skilfulness to designate the dynamics of
those given air emission in town is the usefulness of high-quality input data, but not the
model itself (de Nevers, 2000).

The previous 10 years saw rapid progress of statistical and empirical models of air
quality. Various designs of the 1970s expected that the basin wide air standard altered
in equal amounts in total, basin wide discharges (Hadlock, 1998). This override copy was
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added to basin wide release that was envisaged. Overturned duplicates were partial on
request based on the overlook significant result facted resources variations and ambiance
chemistry (Tyler, 1986).

2.5 Theory of turbulence

Turbulence is the term used to characterize the complex, seemingly random motions
that continually result from instabilities in fluid flows. Turbulence is ubiquitous in natural
fluid flows because of the large scales that these flows typically occupy. Transportation
of particles of pollutants in the air from one site to the other is carried out by means
of turbulence. The combined random motion involving a group of various molecules is
known as Turbulence (Turner & Hurst, 2001) and is made up of both mechanical and
thermal eddies. Eddies are macroscopic random fluctuations from the average move-
ment. These turbulent eddies are accountable for the dispersion of contaminants in the
atmosphere. Eddies scatter pollutants by interrupting the plume, replacing a set of con-
centrated contaminants in a plume with a set of clean air from a distance away from the
plume, subsequently weakening the plume and spreading it in both vertical and lateral
directions (Cooper & Alley, 2002).

Turbulent from mechanical is formed over the collaboration among the forces in the
horizontal direction applied by one layer on an adjacent layer together with the slope of
the mean velocity with advancement. The more the mechanical turbulence, the greater
the roughness elements or the tougher the wind (Antonio et al., 2004). Therefore, the
irregular surfaces such as forests yield more eddies compared to a smooth surface such as
ice, Buildings plus other obstacles raises mechanical turbulence since these obstacles rise
the horizontal forces that slow down the mean wind (Sutton, 1932).

The ground absorbs thermal energy coming from the sun. The absorbed heat is trans-
ported into the lower atmosphere by means of convection or conduction; consequently
creating thermal eddies. When there is strong insulation than the energy from the sun
is feeble extra eddies will be produced (Briggs, 1975).

2.5.1 Spalart-Allmaras one-equation model

Spalart-allmaras one-equation model solves a single conservation equation of a Partial
Differential Equation (PDE) for the turbulent viscosity. This conservation equation con-
tains convective and diffusive transport terms, as well as expressions for the production
and dissipation of kinematic turbulent viscosity.

2.5.2 Developement of the model

The central idea which lies at the heart of development of the Spalart Allmaras model
is the fact that evolution of any scalar quantity, like kinematic turbulent viscosity, subject
to the conservation laws is given by the following differential equation:

∂vt
∂t

+∇.φ(x, t) = s(x, t) (2.5.1)

where φ(x, t) is the flux of vt and s(x, t) is the source or sink term which combines the
effects that create or destroy vt.
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Now, the flux φ(x, t), i.e. the rate of transport of vt, takes into consideration the
changes in vt due to its convection φC(x, t) by the mean velocity field U and diffusion
φD(x, t) due to its uneven distribution. The convection flux can be rewritten as

φC(x, t) = Uvt (2.5.2)

As a result, the transport equation for vt takes the following form:

∂vt
∂t

+∇.(Uvt) +∇.φD = Production − Destruction (2.5.3)

In tensor notation, the above equation can be written as

Dvt
Dt
≡ ∂vt

∂t
+ Uj

∂vt
∂xj

= Production + Diffusion−Destruction (2.5.4)

where Diffusion = −∇.φD

Most of the terms in the RHS are formed mainly by drawing an analogy of vt with the
turbulent energy. The basic premise for drawing this analogy is that vt may be regarded
as the ability of the turbulent flow to transport momentum and hence it can be directly
related with the turbulent energy.

2.6 Concentration determination

Tripathy & Panigrahi (2002) studied the effect of concentration on the distance from
the point source emission. They concluded that the full concentration is continuously
noted nearby the source. This was because of very slight wind velocity taken and also
on solar insulation influences. The spread is very noticeable within the radius of 1 km as
well as rapid fall in the concentration from the source is eminent in all the seasons after
1.6 km and 5 km.

The witnessed and projected ground level SO2 concentrations and critical distances are
compared to generalise the conventional Gaussian plume dispersion formulas for the non-
stationary circumstances of the inversion fragmentation at large power plants (Okamoto et
al., 2001). The expected full ground level concentrations and related distances downwind
with field records collected during an extensive survey conducted was compared and
recommendation was done (Wang, 1977).

An analytical model for air contamination passage and deposition from a point source
was compared. The model is attained from the analytic explanation of the atmospheric
diffusion equation with the coefficient of eddy diffusion engaged to be functions of down-
wind distance and the average wind velocity taken to be constant. The model results
for the classes of deposition phenomena were discussed. The value of these velocities
was revealed to have major effects upon the ground level contaminant concentration, the
vertical plume shape and the pollutant deposition flux in the ground (Turner & Hurst,
1977).
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A new model for plume rise from multiple sources built on simulated stack theory was
developed. The comparison made in the paper ofAnfossi et al. (1978) suggests that virtual
stack concept is consistent with experimental data and has more general application and
for short term pollution concentration detailed input parameters are required.

The cyclical changes of SPM from thermal station within a distance of 5 km using
a Gaussian plume model was studied by (Goyal & Sidhartha, 2004). The research was
done by means of both monitoring and modelling. Tentative measurements were found
from a monitoring network within the power station. The calculated values of particulate
matter at six receptors, within the thermal power plant were used to evaluate the seasonal
influence of the thermal power plant on air quality. The meteorological data on wind
speed, wind direction, cloud cover and surface temperature for two years were achieved
from India Meteorological Department (IMD). The mixing height was obtained from
National Physical Laboratory, Delhi, through Radio sound method.

The control valuation and justification policy for air quality transformation due to a
proposed thermal power plant in the Mangrol area of Chittorgrd district of Rajasthan was
studied in detail by (Mohan & Kandya, 2009). This study includes sources of emission
from tall stacks and also fugitative emission in the premises from wind erosion, load
in onto piles, load out from piles and vehicular traffic. The impact of pollutants has
been assessed in terms of both short term (i.e. 8 hourly averages) as well as long term
concentrations. ISCTS3 model has been used for short term concentration predictions
and CDM (Climatological Dispersion Model) for long term concentration predictions and
fugitative emissions were estimated using PEM (pollution Episodic model). It was found
that the contribution due to the proposed plant was very low (Jeong et al., 2005).

The overall mathematical organisation of a distinctive numerous source plume model
for estimating concentrations of inert air pollutants in a city was scrutinised. It was
found that once the emissions and climatic situations are anticipated to be statistically
self-determining or uncorrelated. then the short term manifold source formulation tips to
extensive term average concentration values equal with those assumed by meteorological
model.

An operational model for the diffusion of gases from manifold sources in an urban area
was obtained by (Turner & Hurst, 2001). A diffusion equation adapted to use area as an
alternative to a point sources was used with a basis list of SO2 emission to compute 24
hour concentrations (0 to 12 µg/m3) at 1 mile breaks. Wind velocity and stability were
averaged by 2 hour periods to assess the diffusion equation. Calculated concentrations
exceeded the observed concentrations more frequently (28%) than observed concentra-
tions (14%) for 32 stations for 35 periods. As soon as zero values of both considered and
detected, concentrations were omitted, 70% of the intended values was inside a factor
of two of the detected values. Under calculations upwind of main sources was perhaps
because considered concentrations at the centre of a square mile area established no in-
fluence from bases within that part, but only from other parts. Outcomes showed that
24 hour concentrations and their degree in urban areas may be assessed for a variety of
climatic circumstances using the source inventory diffusion method (Lin & Hildemann,
1996).

The expectations of simple Gaussian plume model for NOx concentration at ground
level using a continuous monitors over a six month period and upward at three elevations
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within the plume using a particularly built bag analyst was compared by (Roy & Mc-
Cartney, 1980). Values of wind speed and direction at 5 m and solar irradiance and air
temperature at screen height were noted at 2 minute breaks throughout the measurement
period. Stability was classified based on Turner method. The measured concentration
values have been associated with the calculations of the simple Gaussian plume model.
It institutes that the ground level concentrations at 1 to 2 km distance from the source
could be projected consistently. The predicted mean NOx concentration was between
20µg/m3. The measured mathematics mean NOx concentration for the same period was
27µg/m3. The results of the comparisons between the calculated and measured con-
centration for the ground level measurements, both short term averages and long term
averages, indicated that the model could foresee ground level concentrations within a
factor of two (Okamoto et al., 2001).

2.7 Source modelling

In order to model pollutant dispersion as correctly as possible, the source must be
well-defined. Sources for air contamination modelling can be broken up in four types.
The utmost exact symbol of the real-life situation is selected and fully detailed by the
user. Multiple sources of similar or diverse types are frequently used (Arya, 1999).

Fisher & Macqueen (1981) have considered the importance of source treatment on
mathematical outcomes together with wind tunnel measurements. They resolved that
both type and strength of source have an effect on results and that clear source modelling
strategies should be existing to modellers. In case that the characteristics of sources are
not known and measurements are impossible, both worst- and best- situations should be
modelled.

The available different sources in dispersion models are outlined below and presented
in figure 2.1:

Point source: this source is used for releases from small openings including industrial
stacks. Several variables need to be clearly explained in order to use it correctly.

Area source: frequently is used for sources with great surface areas of uneven forms.

Line source: in most cases is used for roads, thin buildings as well as airport.
Pollutants are released from a simulated line in the modelling domain.

Volumetric source: By the combination of area sources in both vertical and hori-
zontal directions. Pollutant releases from within buildings normally use volumetric
source.
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Figure 2.1: Source types used by dispersion models (Bluett et al., 2004)

The amount of emission is also a significant factor for properly modelling of point
source. It is not suitable for the emission rate to be constant. In most cases, contaminants
are not released at a continuous rate from the point source. The rates of emission normally
differ with time: for instance, the contaminant emitted from a process that does not
function 24 hours a day or 7 days a week is not continuous. Alternative instance is
the variable emissions due to the rate of process within working hours (e.g. rate of
production). Pollutant emission rates can also be affected by season and temperature,
with every pollutant category behaving otherwise according to its properties (Mohan &
Kandya, 2009).

The nature of the source could also have an impact on the variable emission rate. Great
area sources often produce irregular pollutant releases over the surface and in some cases
even because of the wind size over that surface. For deliberation of such source behaviour,
unsteady inlet environments and source emissions are taken into account (Mohan &
Kandya, 2009).

2.8 Model categories

Mathematical algorithms have been used for the modelling of dispersion of contaminant
in the atmosphere. Examples of few that employ mathematical approaches, includes
(Bluett et al., 2004):

• Box approach

• Gaussian approach

• Lagrangian approach

• Eulerian approach

The nature of the pollutant in use, the source where the pollutant is coming from and
if they come in a form plume or puff method determine the model to be used.
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2.8.1 Box approach

The simplest of all modelling systems is the box model and is founded on the mass
of conservation. Airshed is preserved as a box into which pollutants are discharged and
where they undergo chemical and physical developments. We assume that the concen-
tration of air present in the box is similar. The model customs that assumption to
estimate the average pollutant concentration anywhere within the airshed (Tyler, 1986).
The mathematical represents the Box Model uses mathematical representation as given
below:

dcv

dt
= QA+ uCinWH − uWH (2.8.1)

given that

• Q = the rate of emission

• C = concentration of pollutant

• V = capacity (volume)

• Cin = species concentration toward the inside of the airshed

• A = area of the box in a horizontal (L x W)

• L = length

• W = width

• u = wind speed

• H = mixing height

Although the Box model is important, modelling of air emission concentration is in-
appropriate due to the fact that it takes the development of pollutants inside the box
model in the absence of providing slightly data local concentrations of the contaminants
(Holmes & Morawska, 2006).

2.8.2 Lagrangian approach

In comparison to Box models, Lagrangian models outline an airshed as a box covering a
preliminary chemicals concentration. Though, the Lagrangian model then trails the route
of the box as it moves downwind. The Lagrangian model then computes the air pollution
dispersion by calculating the statistics of the routes of a large number of the pollution
plume packages. The Lagrangian model practices a moving frame of orientation. The
mathematical algorithms for Lagrangian is given as (Nagendra & Khare, 2002):

〈c(r, t)〉 =

∫ t

−∞

∫
p(r, t | r′, t′)s(r′, t′)dr′dt′ (2.8.2)

such that

〈c(r, t)〉 = Average pollutant concentration at location r at time t.
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p(r, t | r′, t′) = the probability function that an air parcel is moving from location r at
time t to location r at time t.

s(r′, t′) = emission source term

The Lagrangian model foresees the concentration of pollutants that are built upon a
moving reference network (Chung, 2010). Its weakness is that they are restricted when
outcomes from its estimate are associated with real quantities, because quantities are
completed at motionless points.

2.8.3 Eulerian approach

The similarity between Lagrangian approach and Eulerian approach is that its paths
the movement of a huge number of pollution plume packages as they change from their
original location. Eulerian approach utilizes a static 3-D Cartesian coordinate as a way
of evidence relatively than a motion frame of reference. If the pollutant is known, the Eu-
lerian model uses mathematical equations given by conservation of mass. Mathematical
representations is normally as (Stockie & Lushi, 2010):

∂〈ci〉
∂t

= −V̄ .∇〈ci〉 − ∇.〈c′iV ′〉+D∇2〈c′i〉+ 〈Si〉 (2.8.3)

given that

V = V ′ + V̄

V = vector V (x, y, z)

V̄ = wind field vector average

V ′ = changing wind fields vector

c = 〈c〉+ c′

c = chemical concentration

〈c〉 = total chemical concentration; 〈〉 denotes average

c′= fluctuating chemical concentration

D = molecular diffusive

Si = source term

From the mathematical point of view, −V̄ .∇〈ci〉 is known as hyperbolic, the turbulent
dispersion is known as parabolic and the set of differential equations defines the source
term which make it difficult to solve. Hence it can be computationally expensive to solve
(Settles, 2006).
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2.8.4 Gaussian plume approach

Gaussian model is the greatest known model for the dispersion of atmospheric pollutant
in mathematical modelling. In statistics, Gaussian is defined as a group of arranged values
that trail a bell-shaped curve distribution (Chung, 2010). This type of model accepts
that the pollutant disperses according to the regular statistical distribution (Holmes &
Morawska, 2006). At the point of release, the pollutant concentration is at an extreme
and declines in both lateral and vertical directions succeeding the normal distribution.
The Gaussian equation is used for emission from a point source overall. Its mathematical
algorithms is given as (Cooper & Alley, 2002):

c =
Q

2πuσyσz
e
−y2

2σ2y e
−(z−H)2

2σ2y (2.8.4)

such that

• C - is a concentration at a given points (x, y, z), micrograms per metre cube.

• Q - is emission rate for specified pollutant, micrograms per seconds.

• u - is a wind speed, release at given height

• σy and σz is a dispersion coefficients also know as standard deviation

• y - is horizontal distance from the source.

• H - is effective stack height (H = h + ∆h) where h = physical stack height and
∆h= plume rise

• z - is vertical distance.

Figure 2.2: Coordinate system for Gaussian Plume Idea (Ahmed & Hossain, 2008).
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From the figure, the source of the coordinate system is located at the base of the
smokestack with the x axis allied in the downwind direction. The contaminated gas
stream or plume increasing from the smoke stack (∆h) and then travel in x direction
and spread in the y and z direction as it travels. The plumes generally increase higher
above the smoke stack since they are released at higher temperature than atmosphere
and with vertical velocity. For the calculations, the plume is assumed to be discharged
at coordinate; (0, 0, H) where H is effective stack height which are the summation of
the physical stack height and plume rise (h + ∆h). The smoke emitted at the point
source is assumed to be a non-buoyant pollutant at emission rate Q (g/s) and setbacks
in x direction with velocity u that is self-governing of time, elevation or location(Crank,
1975).

If the molecular diffusion alone was producing the plume to mix with the neighbouring
air, the plume will spread gradually as a thin streak moving straight down the sky.

Figure 2.3: Time exposure of a visible plume (Arya, 1999).

The spread of the plume does not depend on molecular diffusion alone. The key cause
of the spreading is the large scale turbulent mixing that happens in the atmosphere.
The twisting behaviour is caused by the turbulent motion of the atmosphere that is
superimposed on the plume’s large scale linear motion instigated by horizontal wind
(Erwin, 1989). This turbulent motion is random in nature; a snapshot taken after a
few minutes after the first will show a diverse snapshot in different places. Yet, time
averages the variation and consequently the concentration will seem a bit unchanging
and symmetrical (Arya, 1999).

Figure 2.4: Snapshot of a visible plume (Arya, 1999).

25



The Gaussian model is based on the following assumptions (Stockie, 2011):

The emission rate released should remain constant and uniform.

Speed and wind direction remain the same.

Diffusion towards downwind is insignificant in comparison to diffusion from vertical
and crosswind.

The ground is taken to be relatively flat.

There is no deposition or absorption of the pollutant.

Diffusion of the pollutant trails a Gaussian distribution.

Application of Gaussian plume approach to the particles of dispersion in the modelling,
it has limitations. These limitations are results of the use of steady state approximations
without taking into account the time needed for the pollutant to travel to the receptor
and the vertical particle movement due to gravity throughout this time. Progressive
Gaussian models, recently, have been established that can solve most of the limitations
problems in Gaussian models that was developed earlier. AERMOD and ADMS are the
new generation models developed with progressive algorithms to overwhelmed the early
Gaussian model limitations (Carslaw & Jaeger, 1959).

2.9 The atmospheric stability

The propensity of the atmosphere to upsurge or overpower vertical movement moves the
concentration of pollutants. A stable atmosphere will cause complex pollutant concentra-
tions and prevent dispersion of pollutants in the atmosphere. An unstable atmosphere,
pollutant concentration will be fewer and dispersion will upsurge (Swart, 2016)
Pasquill categorized the atmospheric turbulence into six stability classes, namely, A, B,
C, D, E and F. Stability class F is the most stable or described as the least turbulent
class. Solar radiation increases atmospheric instability through warming of the earth
surface so that warm air is below cooler air causing vertical mixing. Clear nights push
conditions toward stable as the ground cools faster establishing more stable conditions
and inversions. Wind increases vertical mixing, breaking down any type of stratification
and pushing the stability class towards neutral.

Other parameters that can define the stability class of the atmosphere are

Temperature gradient

fluctuations in wind direction

Richardson number - which is a dimensionless number that expresses the ratio of
the buoyancy term to the flow shear term:

Ri =
buoyancy; /; /term

flow; /; /shear; /; /term
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Bulk Richardson number - which is an approximation of the Gradient Richardson
number. The BRN is a dimensionless ratio in meteorology related to the consump-
tion of turbulence divided by the shear production of turbulence. It is used to show
dynamic stability and the formation of turbulence.

Monin-Obukhov length - which is used to describe the effects of buoyancy on tur-
bulent flows, particularly in the lower tenth of the atmospheric boundary layer.

2.10 Mixing height and ventilation coefficients

Mixing height is measured in metres and can be stated as the height of the area
above the surface of the earth wherever turbulent airflow exists. Mixing height is an
important parameter when describing the air pollution climate of an area. Any pollutants
or particles free into this layer will be transported and dispersed vertically (Swart, 2016).
Convective heating and turbulence due to friction from the earth’s surface are the key
reasons for dispersion and transport in the mixing layer.

Rama et al. (2005) studied the SO2 distribution in Venice by means of an air quality
simulation model and found that the model was designed to substantially reduce the
artificial diffusion which always happen when applying grid models to point sources. At
every hour of simulated time, the mixing height were calculated by the model interpolat-
ing between a minimum of 200 m and a maximum of 500 m which are mostly values of
Venice. It was concluded that during winter, the average concentration ranges between
20.6µg/m3 to 123.4µg/m3 and during summer, the average concentration ranges from
5.2µg/m3 to 37.9µg/m3. The results of computation indicated that the model is capable
of describing the short term pollution field provided adequate detailed input parameters
that are supplied.

The assimilative capacity and dispersion of pollutants due to industries in the Visakha-
patnam bowl area located in the coastal Andhra Pradesh, India was studied by Rama et
al. (2005). The ventilation coefficient was determined as the product of 3 hour wind speed
and mixing height on each day per season and it was found to be 9781 m2/s in summer
and 13924 m2/s in winter. The pollution potential in terms of pollutant concentrations
was obtained using two dispersion models.

The different operational methods for the determination of the mixing height was com-
pared by Ahmed & Hossain (2008). The two basic methods for the determination of the
mixing height were derived profile data (measurements or numerical model output) and
parameterization using simple equations or models. They concluded that all the tested
parameterization schemes showed deficiencies under certain conditions, thus requiring
more flexible algorithms able to take into account changing and non classical conditions.

2.11 Validation of the model

Zoras et al. (2006) studied a working model for the diffusion of gases from different
sources in an urban area. The equation of diffusion which was modified to use area
instead of point sources was utilized with a source inventory of SO2 emission to compute
24 hour concentrations (0 to 12 µg/m3 at a interval of one mile. Stability as well as
wind velocity were averaged by a period of 2 hour to evaluate the equation of diffusion.
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Computed concentrations more than the observed concentrations more frequently than
observed concentrations for 32 stations for 35 periods.

The physical concepts underlying the measurement and modelling of pollutant concen-
trations caused by point sources was examined by Briggs (1975). It has been indicated
that the stochastic nature of concentration fields could cause severe limitations on the
ability of models to predict short term concentrations. It was shown that before compar-
ing, it was necessary to make an estimate of the expected deviation between predictions
and observations.

A Gaussian plume model was evaluated at Dickerson power plant comparing its pre-
dicted, for different methods of dispersion estimates to field measurements of SO2 ground
level concentration along the plume center line Scott & Gerhard (2002). Brookhaveh wind
speed temperature gradient method, Pasquill Turner method, Pasquill Turner method
dropping one stability class and TVA method were used. Each methods showed big dif-
ferent results for predicting dispersion. The predicted concentrations are within a factor
of two of measurements in 73% of the cases studied.
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CHAPTER 3

GOVERNING EQUATIONS

3.1 Introduction

All of the models are based on simple mass balance principles. A mass balance is an
accounting method in which one tracks the total mass of a specie entering and leaving
a system. The general balance equation is written around a specific set of boundary
conditions and takes the following general form:

[
Accumulation

rate

]
=


All
flow
rates
in

−

All
flow
rates
out

+

[
Creation
rate

]
−
[
Distruction

rate

]
(3.1.1)

3.2 Expressing concentration

The fundamental of attention in the field of fluid mechanics and environmental is
quantity of concentration. The term concentration can be defined as a measure of the
amount of a substance within a mixture (Carslaw & Jaeger, 1959). Mathematically, the
concentration C is the ratio of the mass of a matter Mi to the entire volume of a mixture
V stated

C =
Mi

V
(3.2.1)

The units of concentration are [M/L3], normally stated in mg/l, kg/m3, lb/gal, ppm
(parts per million), etc.

3.3 Dimensional reasoning

A very influential analytical technique that is used is dimensional analysis. The concept
behind dimensional analysis is that if one can describe the parameters that a process
depends on, then one should be able to custom these parameters, frequently in the method
of dimensionless variables, to define that process at entirely scales (Fisher & Macqueen,
1981).

Dimensional analysis gives an influential instrument for evaluating connections amongst
various parameters of a problem once the governing equation is not recognized from some
additional basis, such as a theoretical consequence. The simple evidence underlying any
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dimensional cognitive is that all physically realistic expressions must be dimensionally
dependable. In detail, the Buckingham π theorem, presented in the next section, can be
understood as a proper statement of a connection amongst variables founded merely on
their dimensional elements.

Some physical equation that is dimensionally composed (that is, the dimensional ele-
ments are similar for each of the terms in the equation) can be written in non-dimensional
method. The calmest method to understand this is to split all the terms of the equation
by one of the terms. Completed correctly, this frequently results in equations articulated
in terms of mutual dimensionless constraints. Meanwhile all the terms have a similar
physical dimensions, the outcome of this procedure is a relationship amongst these di-
mensionless variables, which can be used to assess the comparative standing of unlike
terms in any assumed equation. For instance, it would be likely to gain some thought-
ful of the relative significance of different forces in a specific flow field by observing at
the values of the parameters in dimensionless forms of the momentum equations. This
process occasionally permits simplification of a general governing equation, by removing
terms that are understood as being of minor significance, matched with others.

One other significant claim of dimensional study is in providing a means of scaling
the outcomes of a model study to prototype settings. This is essential, for example, in
extrapolating outcomes from laboratory physical modelling studies to field conditions.
In order to ensure this, conditions of similarity must be fulfilled. There are three kinds
of similarity: Intuitively, a model or experiment should be geometrically alike to the
field situation, which means that the ratio of all length scales is similar amongst the
model and the prototype. Kinematic similarity includes likeness of length and time
quantities. Dynamic likeness also must be fulfilled in order to correctly scale outcomes
about forces and stresses. Kinematic and dynamic likeness is attained when suitable
dimensionless parameters are identical in the model and in the prototype. Dynamic
similarity is correspondent to saying the ratios of appropriate forces are similar.

3.3.1 Dimensionless parameters

Dimensional analysis is based on the theory known as Buckingham π-theorem. Let
a system be defined by dimensional variables x. The given complete group of variables
comprise y unique physical dimensions (temperature, time, mass, length,etc.). The Buck-
ingham π-theorem argues that if there are x− y non-dimensional that are independent,
then one can come up with sets from these main variables, (Scott & Gerhard, 2002).
When creating the dimensionless groups, retain the dependent variables (the one to ex-
pect) in only one of the dimensionless group.

After we have the x−y dimensionless variables, the Buckingham π-theorem additional
says that the variables can be associated in the following way

π1 = f(π2, πi, ....., πx−y) (3.3.1)

such that π is considered as the ith dimensionless variable.

Suppose we have to forecast the flow of fluids when it turns out to be turbulent.
The variable that is dependent is a quality (turbulent or laminar) and which has no
measurements (dimensions). If we consider velocity u, the flow of disturbances, it is
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where the variables depend which are categorized by a typical length scale L, and the
fluid possessions, as defined by its dentist ρ, temperature T , and viscosity µ.

Primary, we have to know that ρ and µ are functions of T ; therefore, the above three
given parameters can not be preserved as independent. Hence, common dense which is
an old method is by recalling the variable µ and ρ from the procedure of the kinematic
viscosity v = µ

ρ
. Consequently, we have obtained x = 3 dimensional variables (L, u, v) in

y = 2 physical dimensions (length and time).

From there, is to formulate the group of Dimensionless variables

π1 = f(L, u, v)

This can be completed using the assumption that each parameter contains a diverse
exponent where we can write each dimension with a distinct equation. What we are
saying is as follows

π1 = uaLbvc (3.3.2)

and each dimension is needed to cancel out, leaving us with two equations

T : 0 = −a− c

L : 0 = a+ b+ 2c.

Considering the T -equation, the following has been obtained

a = −c (3.3.3)

also considering the L-equation, we obtain

b = −c (3.3.4)

Subsequently, our equation are still to be defined, therefore we are allowed to select
the coefficient of c.

In order to get the basic formula, we need to select

c = 1

which is giving us
a = b = −1

Therefore, it gives us

π1 =
v

uL
(3.3.5)

The given equation (3.3.5) of non-dimensional grouping is the inverse of the famous
Reynolds number Re; therefore, we have stated through dimensional analysis, that the
turbulent state of the fluid flow must rely mostly in the theory of Reynolds number, given
below as

Re =
uL

v
(3.3.6)
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defined as a orthodox outcome in the field of fluid mechanics.

3.4 Basic transport equation

Mass balance for a control volume where the transport happens only in one direction
(x-direction).

The mass balance for this situation can be written in the following procedure, (Seinfeld
& Peterson, 1977): Change of mass in

the control volume
in a time interval ∆t

 =

Mass entering
the control
volume in ∆t

−
Mass leaving

the control
volume in ∆t

 (3.4.1)

The representation of the general transport equation in x direction is given by (Crank,
1975)

∂C

∂t
=

1

∆x
.(J1 − J1 −

∂J

∂x
∆x) (3.4.2)

∂C

∂t
= −∂J

∂x
(3.4.3)

where C is the concentration over time t and J is the flux. The flux is changing in x
direction with the gradient of ∂J

∂x
.

We are existing in a three-dimensional space, where the similar rules for the general
mass balance and transport are binding in all dimensions. Consequently,

∂C

∂t
= −

3∑
i=1

∂

∂xi
Ji (3.4.4)

where

x1 = x

x2 = y

x3 = z

which yields to

∂C

∂t
= −(

∂

∂x
Jx +

∂

∂y
Jy +

∂

∂z
Jz) (3.4.5)

The transport equation is derived for a conservative tracer or substantial. The control
volume is constant as the time advancements. The flux (J) can be everything (i.e. flows,
dispersion, etc).
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3.5 Advective flux

The advective flux can be analysed with the simple theoretical model, which comprises
two control volumes. Advection happens only towards one direction in a time intermis-
sion. The equation for Advective flux is given by, (Settles, 2006)

JA =
∂x

∂t
C (3.5.1)

where C is concentration and J is the advective flux.

3.6 Diffusion

Diffusion is the most important transport process in the field of environmental fluid
mechanics. Diffusion varies from advection in a manner it is random in nature (does
not necessarily follow a fluid particle). Transfer of heat by conduction is due to random
molecular motions, and there is an understandable similarity among the two processes.
This was documented by Fick (1855), who initially put diffusion on a quantitative basis
by adopting the mathematical equation of heat conduction resulting some years earlier
by Fourier (1822). The mathematical theory of diffusion in isotropic substance is hence
founded on the hypothesis that the rate of transfer of diffusing substance through the
unit area of a section is proportional to the concentration gradient measured normal to
the section, (Crank, 1975):

JD = −D∂C
∂x

(3.6.1)

where C is the concentration of diffusing substance, x the space coordinate measured
normal to the section and D is called the diffusion coefficient. The negative sign arises
because diffusion occurs in the direction opposite to that of increasing concentration. It
must be emphasized that the statement expressed mathematically by equation (3.6.1) is in
general consistent only for an isotropic medium, whose structure and diffusion properties
in the neighbourhood of any point are the same ralative to all directions. Equation (3.6.1)
is called Fick’s first law of diffusion, x direction.

Assuming conservation of mass, then

∂c

∂t
+
∂J

∂x
= 0 (3.6.2)

∂c

∂t
− ∂

∂x
(D

∂c

∂x
) = 0 (3.6.3)

Rearranging the above equation and simplify, gives

∂c

∂t
= D

∂2c

∂x2
(3.6.4)

This is Ficks second law of Diffusion (one dimensional).
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In three dimensions we have (Ahmad, 2000):

∂c

∂t
= D[

∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2
] (3.6.5)

3.7 Advection Diffusion Equation.

In the environment, the movement of fluids happens by combining advection as well as
diffusion together. To derive advection diffusion equation, we need to employ Fick’s law
of diffusion and the conservation of mass. Recall the following equations from above:

∂C

∂t
= −∂J

∂x
(3.7.1)

JA =
∂x

∂t
C (3.7.2)

JD = −D∂C
∂x

(3.7.3)

Therefore, the total flux is given as,

J = JA + JD (3.7.4)

Due to conservation of mass,
∂c

∂t
+
∂J

∂x
= 0 (3.7.5)

Substitution in equation (3.7.5) and simplify, yields

∂C

∂t
= −u∂C

∂x
+D

∂2C

∂x2
(3.7.6)

Equation (3.7.6) can be written in three dimensions as

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= K

∂2C

∂x2
+K

∂2C

∂y2
+K

∂2C

∂z2
(3.7.7)

with D replaced by K. This is the equation for heat conduction in a solid with the
variables renamed. Our immediate reaction is to factor K out of the three terms on
the right, but the data from experimental method states that for turbulent diffusion in
the air, the values of K in the three dimensions are not the same. So, in subsequent
equations, we will write the three Ks as

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Kx

∂2C

∂x2
+Ky

∂2C

∂y2
+Kz

∂2C

∂z2
(3.7.8)
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Equation (3.7.8) is called Advection Diffusion Equation in three dimensions. Remember
that the above equations use the assumption that the value of K is constant throughout.

Next we make assumptions to simplify the Advection Diffusion equation.

• Unsteady state situation is observed (i.e. ∂C
∂t
6= 0).

• The vertical velocity component (v) and horizontal velocity component (w) is ig-
nored.

• the x-axis is aligned in the direction of mean wind (i.e. u = U , v = 0).

• movement due to mean wind is ignored compared to diffusion as result of downwind
(i.e. | Kx

∂2C
∂x2
|�| U ∂C

∂x
|).

Application of these assumptions in equation (3.7.8), leads to unsteady state advection
diffusion equation for dispersion of a contaminant released from point source in three
dimensions as (Seinfeld, 1986):

∂C

∂t
= Kx

∂2C

∂x2
+Ky

∂2C

∂y2
+Kz

∂2C

∂z2
(3.7.9)

given that x, y and z are coordinates of wind in the x direction, y direction and z
direction respectively. C is given as the concentration of pollutants. The eddy diffusivities
of pollutants in the x direction, y direction and z directions are given as Kx, Ky and Kz

respectively.

3.8 Gaussian plume derivation

There are numerous approaches that can be used to explain equation (3.8.1). In this
thesis, we used two methods for the derivations of Gaussian Plume Equation. The first
method is Similarity Solution and the second is Laplace Transform. Similarity solutions
to PDEs are solutions which depend on certain groupings of the independent variables,
instead on each variable separately (Lin & Hildemann, 1996).

3.8.1 Solution using Similarity method to 1-D diffusion equa-
tion.

Suppose we have a one dimensional diffusion equation for (3.7.9) as

∂C

∂t
= Kx

∂2C

∂x2
(3.8.1)

We selected a method known as similarity technique for us to demonstrate the impor-
tance of dimensional analysis outlined in 3.3.
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Let us have a look at a one dimensional scenario of a thin, unlimited cylinder (radius
a) as shown in Figure 3.1 underneath.

Figure 3.1: One dimensional pure diffusion in an unlimited cylinder, (Bluett et al., 2004)

So, a mass of pollutant P is released homogeneously over the cross section of area

E = πr2

at a given point
x = 0

with time
t = 0

The primary width of the pollutant is infinitesimally trivial. We are looking for the
solution for the spread of pollutant in time due to molecular diffusion only.

The above given problem is a 1-D unsteady diffusion,i.e.

∂C

∂y
= 0

also
∂C

∂z
= 0

So equation (3.8.1) is the main equation, and we need two boundary conditions and
an initial condition. For boundary conditions, we execute that

C(∞, t) = 0 (3.8.2)

and
C(−∞, t) = 0 (3.8.3)

The initial condition is given that the pollutant is released homogeneously over the cross
section across an infinitesimally small width in the x- direction is the initial condition.
For such an initial condition to be useful, Dirac Delta function is employed

C(x, 0) =
P

E
δ(x) (3.8.4)

where
δ(x) = 0
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every where excluding where
x = 0

since it is infinite, then again, ∫ ∞
−∞

δ(x)dx = 1

Consequently, the total released mass is assumed to be

P =

∫
v

C(x, t)dv (3.8.5)

P =

∫ ∞
−∞

∫ r

0

P

E
δ(x)2πrdrdx (3.8.6)

To use dimensional analysis technique, its necessity we contemplate all the parame-
ters that control the solution. Table below summarises the dependent and independent
variables for our problem.

Table 3.1: Dimensional variables for 1-D of diffusion in a cylinder.

Variable Dimensions
dependent variable C P/L3

independent variables P/E P/L2

D L2/T
x L
t T

Here are y = 3 dimensions and x = 5 parameters; therefore, one has to formulate two
groups of dimensionless

π1 =
C

P/(E
√
Kt)

(3.8.7)

π2 =
x√
Kt

(3.8.8)

Based on dimensional analysis technique, we obtained

π1 = f(π2)

hence it suggests that for the solution of C

C =
P

E
√
Kt

f

(
x√
Kt

)
(3.8.9)

such that f is a function which is not yet known with π2 as the argument. Equation
(3.8.9) is called a similarity solution because C has the similar shape in x at all times t.
Next we are required to discovery f for us to identify its shape.
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There are two primary methods in which we can found the function f . We can solve
f analytically and use equation (3.8.9) as the solution to a differential equation. The
supremacy of similarity solution is that it changes a partial differential equation (PDE)
into an ordinary differential equation (ODE), which is the objective of every solution
methods for PDEs.

The similarity solution (3.8.9) is actually just the transformation of coordinate. There-
fore, we will demand our new similarity variable to be defined as

η =
x√
Kt

In order to put equation (3.8.9) in the equation of diffusion, the following two derivatives
is required

∂η

∂t
= − η

2t
(3.8.10)

∂η

∂x
=

1√
Kt

(3.8.11)

Firstly, we employ chain rule to calculate ∂C
∂t

as given below

∂C

∂t
=

∂

∂t

[
P

E
√
Kt

f(η)

]

=
∂

∂t

[
P

E
√
Kt

]
f(η) +

P

E
√
Kt

∂f

∂η

∂η

∂t

=
P

E
√
Kt

(
−1

2

)
1

t
f(η) +

P

E
√
Kt

∂f

∂η

(
− η

2t

)
= − P

2Et
√
Kt

(
f + η

∂f

∂η

)
(3.8.12)

Likewise, we apply chain rule to calculate ∂2C
∂x2

which yields to

∂2C

∂x2
=

∂

∂x

[
∂

∂x

(
P

E
√
Kt

f(η)

)]

=
∂

∂x

[
P

E
√
Kt

∂η

∂x

∂f

∂η

]
=

P

EKt
√
Kt

∂2f

∂η2
(3.8.13)

Upon replacing these two outcomes into the diffusion equation, we get the ordinary
differential equation in η

d2f

dη2
+

1

2

(
f + η

df

dη

)
= 0 (3.8.14)

To solve equation (3.8.14), we must also change the boundary and initial conditions
to two new constraints on f . The initial conditions and boundary conditions both can
be content through a single condition on f . Considering conservation of mass, the other
constraint is taken from and is given by equation (3.8.5).

38



Substituting
dx = dη

√
Kt

into equation (3.8.5) and simplifying, we get∫ ∞
−∞

f(η)dη = 1 (3.8.15)

Solving equation (3.8.14) involves couple of integrations. Foremost, we reorganize the
equation by means of the identity

d(fη)

dη
= f + η

df

dη
(3.8.16)

which gives us
d

dη

[
df

dη
+

1

2
fη

]
= 0 (3.8.17)

If we integrate once, we obtain

df

dη
+

1

2
fη = C0 (3.8.18)

Both boundary conditions and the initial condition can be satisfied by taking C0 = 0.

If we consider C0 = 0, we get a homogeneous ordinary differential equation whose
solution can readily be established. If we move the second term to the right hand side of
the equation, we obtain

df

dη
= −1

2
fη (3.8.19)

The result is found by accumulating the f and η terms on separate sides of the equation

df

f
= −1

2
ηdη (3.8.20)

Integrating both sides yields

ln(f) = −1

2

η2

2
+ C1 (3.8.21)

Subsequently, taking the exponential of both sides yields

f = C1exp

(
η2

4

)
(3.8.22)

To discover C1 it is essential to use the remaining constraint specified in equation
(3.8.15) ∫ ∞

−∞
C1exp

(
−η

2

4

)
dη = 1 (3.8.23)
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In order to compute the above integral, one must employ the integral tables; conse-
quently, we need to make one additional change of variables in order to eliminate the 1

4

from the exponential. Therefore, we institute ζ defined as

ζ2 =
1

4
η2 (3.8.24)

2dζ = dη (3.8.25)

Replacing the above transformation of coordinate and compute C1 yields

C1 =
1

2
∫∞
−∞ exp(−ζ2)dζ

(3.8.26)

Subsequently, if we look up in the integral table, yields to

C1 =
1

2
√
π

Hence,

f(η) =
1

2
√
π
exp

(
η2

4

)
(3.8.27)

Substituting f in our similarity solution (3.8.9) yields

C(x, t) =
P

E
√

4πKt
exp

(
− x2

4Kt

)
(3.8.28)

an equation which was utilised throughout this thesis and is also a classic result in
environmental fluid mechanics. In three dimensions, we can generalise to give the solution
Scott & Gerhard (2002)

C(x, y, z, t) =
P

E
√

4πKxKyKz

exp

(
− x2

4Kxt
− y2

4Kyt
− z2

4Kzt

)
(3.8.29)

and has been derived through the method of separation of variables. Equation (3.8.28)
is still in the Lagrangian coordinates x, y and z and are measured from the center of mass
of the cloud. Center of mass assumed to move with wind speed and direction (distance
travelled = ut).

Equation (3.8.29) is normally known as theGaussian plume solution for the advection-
diffusion equation, given that we can compare the exponential dependence on both y and
z to that of a Gaussian-type function.

3.8.2 Solution using Laplace Transform

The following derivations were borrowed from The Mathematics of Atmospheric Dis-
persion Modelling Journal (Briggs, 1975) . Our attention is more on the movement of a
one pollutant such that the mass concentration at a given location

(x, y, z) ∈ R3
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given in time

t > 0 [s]

which is given by an even function

C(x, y, z, t)

We demonstrated the law of conservation of mass for C in differential form, given as

∂C

∂t
+∇. ~J = S (3.8.30)

given that

S(x, y, z, t)

is defined as source term and the vector function is given as

~J(x, y, z, t)

where [kg/m2s] acts for the mass flux of contaminant unsettled to the combined con-
sequences of diffusion and meteorology. The scattering donation to the flux arises from
the unstable eddy motion in the atmospheric surrounding. The primary outcome is that
the atmospheric diffusion may presume to follow Ficks law, which states, ”the diffusive
flux is proportional to the concentration gradient” or

~JD = −K∇C

The negative results guarantee that the contaminant flows from regions of high con-
centration to regions of low concentration, and the diffusion coefficient

(Kx, Ky, Kz) [m2/s]

is a turbulent eddy diffusivity of which in general is the purpose of position. The
second offering to the flux is because of simple linear convection by the wind, which can
be expressed as

~JA = C~u

whereas

~u = (u, v, w) [m/s]

is the wind velocity. By adding these various benefactions together, we obtain the total
flux

~J = ~JD + ~JA = C~u−K∇C
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which after replacements into the equation of conservation of mass (3.6.1) yields the
three-dimensional convection-dispersal equation

∂C

∂t
+∇.(C~u) = ∇.(K∇C) + S (3.8.31)

Furthermore, a number of clear supposition that will allow us to obtain a closed-form
analytical solution:

1. The contaminant is emitted at a constant rate Q [kg/s] from a single point source

(x, y, z) = (0, 0, H)

after placed at a high point H above the ground surface. Then the native term
can be given as

S(x, y, z) = Qδ(x)δ(y)δ(z −H) (3.8.32)

given that δ(.) is the Dirac delta function. It should be eminent here that m−1 is
the units of the delta function. For the stack-like configuration presented in Figure
2.2 the height is actually a functional height, given as H = h + δh, which is the
total sum of the true stack height h and the plume rise δh that comes from buoyant
effects.

2. Wind velocity is taken to be constant and aligned with the positive x-axis and its
defined as

(u, v, w) = (u, 0, 0)

such that u > 0 for the given some constant. We rest this assumption is rested for
later to permit a universal time-varying wind field

(u, v, w) = (u, v, w)(t),

for

| (u, v, w) |> 0.

3. It is stated here that a steady state solution is considered, so that if the wind
velocity and various other variables are taken to be independent of time and the
time range of interest is sufficiently long which is reasonable enough.

4. The diffusivities of eddy motion are functions of the wind in the x from the source
only, while diffusion is taken to be isotropic so that

Kx(x) = Ky(x) = Kz(x) = K(x)

5. Wind velocity is large enough that advection is much larger than diffusion in the
x-direction is much smaller and hence the term

Kx∂
2
xC

can be overlooked.

6. If we ignore the variations in topography, then the surface of the ground can be
taken as z = 0 in a plane.

7. The pollutants should not go through the ground.
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If we make use of the above simplifying assumptions from 1 to 6, equation (3.6.2) yields
to

u
∂C

∂x
= K

∂2C

∂y2
+K

∂2C

∂z2
+Qδ(x)δ(y)δ(z −H) (3.8.33)

and we are much more interested in the result for values of x, z ∈ [0,∞) as well as
y ∈ (−∞,∞). For us to get a well-modelled problem, a Partial Differential Equation
(PDE) must be supplemented with an appropriate group of boundary conditions, that is,

C(0, y, z) = 0 (3.8.34)

C(∞, y, z) = 0 (3.8.35)

C(x,±∞, z) = 0 (3.8.36)

C(x, y,∞) = 0 (3.8.37)

Condition number one is a result of the unidirectional wind and we have assumed that
there are no contaminant sources if the values of x < 0. The last three boundary condi-
tions at infinity agreeing with the condition that the total mass of contaminant should
remain finite.

Assumption 7 states that, the vertical flux at the ground should disappear, giving us
the last boundary condition

K
∂C

∂z
(x, y, 0) = 0 (3.8.38)

When taken together, equation (3.8.33) to (3.8.37) is a well-defined problem for the
steady-state contaminant concentration.

C(x, y, z)

The solution to this problem can be obtained by removing the source term from the
Partial Differential Equation and rather bringing a delta function term into the boundary
condition:

u
∂C

∂x
= K

∂2C

∂y2
+K

∂2C

∂z2
(3.8.39)

C(0, y, x) =
Q

u
δ(y)δ(z −H) (3.8.40)

C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y,∞) = 0 (3.8.41)

K
∂C

∂z
(x, y, 0) = 0 (3.8.42)

The eddy diffusion coefficients in the atmospheric boundary layer are strong functions
of downwind distance, not to mention that they vary with weather conditions and time
from release, and consequently they are difficult to find in practice. Therefore, in most
literature, the variable x has been replaced with the new independent variable given as

r =
1

u

∫ x

0

K(ξ)d(ξ) (3.8.43)
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and has units of [m2]. Later we will observe that the variable r is a fixed multiple of
the variance of the concentration distribution, which is proposed and be denoted by σ.
In equation (3.8.39), the K coefficients is eliminated through change of variables, which
leads to the following constant coefficient problem for

∂c

∂r
=
∂2c

∂y2
+
∂2c

∂z2
(3.8.44)

From equation (3.8.40 - 3.8.42), the boundary conditions for c are identical to those
for C except that x is replaced with r. Next we use the method of separation of variables
to equation (3.8.44), with the assumption that the dependence of the solution on y
and z can be separated according to (This is a minor change of the regular division of
variables approach where we routinely presume an entirely separation solution of the
form) c(r, y, z) = R(r)Y (y)Z(z)):

c(r, y, z) =
Q

u
a(r, y).b(r, z) (3.8.45)

Two reduced dimension problems was obtained which has a form of two-dimensional
diffusion equations given as:

∂a

∂r
=
∂2a

∂y2
(3.8.46)

for
0 ≤ r <∞

and
−∞ < y <∞

with the boundary conditions

a(0, y) = δ(y), a(∞, y) = 0, a(r,±∞) = 0 (3.8.47)

as well as
∂b

∂r
=
∂2b

∂z2
(3.8.48)

for
0 ≤ r <∞

and
0 < z <∞

with the boundary conditions

b(0, z) = δ(z −H), b(∞, z) = 0, b(r,∞) = 0,
∂b

∂z
(r, 0) = 0 (3.8.49)

The variable r in all problems above can be seen as a time-like variable, so the boundary
conditions at r = 0 (which contain the delta functions) behave as initial conditions for
the given diffusion equations.
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The Laplace transform can be used to solve differential equations. Besides being a
different and efficient alternative to variation of parameters and undetermined coefficients,
the methods of Laplace is significant for input terms that are piecewise defined, periodic
or impulsive.

Assume f(t) is defined for t > 0. The Laplace transform of f(t), represented by F (s)
or L{f(t)}, is an integral transform specified by the Laplace integral:

L{f(t)} = F (s) =

∫ ∞
0

f(t)e−stdt (3.8.50)

on condition that this integral exists, i.e. that the integral is convergent.

The theorems we need are given below; in most cases we indicate the proofs briefly
without stating the conditions.

Theorem 1.

L
{
∂v

∂t

}
= ρL{v} − v0 (3.8.51)

where v0 is the value of
lim
t→0

v.

In general v0 will be a function of the space variables x, y, z. The proof for equation
(3.8.51) follows immediately on integrating by parts, since∫ ∞

0

e−ρt
∂v

∂t
dt =

[
e−ρtv

]∞
0

+ ρ

∫ ∞
0

e−ρtdt = −v0 + ρv̄.

Theorem 2

L
{
∂nv

∂xn

}
=
∂nv̄

∂xn
(3.8.52)

with similar results from the other space variables. This is equivalent to∫ ∞
0

e−ρt
∂nv

∂xn
dt =

∂n

∂xn

∫ ∞
0

e−ρtvdt

and we assume v to be such that the orders of integration and differentiation can be
interchanged in this way.

Theorem 3

suppose f(t) is continuous and has a piece-wise continuous derivative f
′
(t). Then by

integration by parts,

L{f ′(t)} =

∫ ∞
0

f
′
(t)e−stdt

L{f ′(t)} = e−stf(t) |∞0 +s

∫ ∞
0

f(t)e−stdt (3.8.53)

45



If f(t) is of exponential order2, then e−stf(t) tends to zero as t→∞, for large enough
s, so that

L{f ′(t)} = sF (s)− f(0) (3.8.54)

Similarly, if f(t) and f
′
(t) are continuous, f

′′
(t) is piece-wise continuous, and all three

functions are of exponential order, then

L{f ′′(t)} = sL{f ′(t)} − f ′(0) = s2F (s)− f(0)− f ′(0) (3.8.55)

Theorem 4

If f(t) = H(t− t0)φ(t− t0), where H(t− t0) is Heaviside′s unit function defined by

H(t− t0) = 0, t < t0

H(t− t0) = 1, t > t0

then

L{f(t)} = e−ρt0L{φ(t)} (3.8.56)

In equation (3.8.46), we start with the problem for a(r, y) and use the Laplace transform
of the Partial Differential Equation in r to obtain

ρâ− a(0, y) =
∂2â

∂y2
(3.8.57)

whereas

â(ρ, y) := Lr{a(r, y)} =

∫ ∞
0

e−ρra(r, y)dr (3.8.58)

and here ρ is the modifiable unknown term.

To get the next ordinary differential equation (ODE) for â, we need to use the source
boundary condition (3.8.47):

∂2â

∂y2
− ρâ = −δ(y) (3.8.59)

If we use the Laplace transform in y, yields

η2ˆ̂a− ηâ(ρ, 0)− ∂â

∂y
(ρ, 0)− ρˆ̂a = −1 (3.8.60)
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given that

ˆ̂a(ρ, η) := Ly{â(ρ, y)} =

∫ ∞
0

e−ηyâ(ρ, y)dy (3.8.61)

and η is known as a transform variable.

Even though the symmetry permits the solution to be extended over the whole range
of −∞ < y <∞, at this time, we limit our problem to values of 0 6 y <∞.

Solving equation (3.8.61), yields

ˆ̂a(ρ, η) =
ηc1 + c2
η2 − ρ

(3.8.62)

under condition that

c1 = â(ρ, 0)

c2 = ∂yâ(ρ, 0)− 1

Next we use the inverse transform in η which results in

â(ρ, y) = c1 cosh(
√
ρy)− c2√

ρ
sinh(

√
ρy)

â(ρ, y) =
c1
2

(
e
√
ρy + e−

√
ρy
)
− c2

2
√
ρ

(
e
√
ρy − e−

√
ρy
)

(3.8.63)

in order that

â −→ 0

as

y −→∞

it is necessary that

c1 =
c2√
ρ

after which the given formula for â minimize to

â(ρ, y) =
c2√
ρ
e−
√
ρy (3.8.64)

If we assume for the mean time that c2 is self-reliant and not contingent on ρ, then we
may use the inverse transform in ρ to obtain

a(r, y) =

(
c2√
πr

)
e

−y2
4r


(3.8.65)
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Using the delta function identity

δ(y) = lim
r−→0

e

−y2
4r


1√
4πr

(3.8.66)

We concluded that c2 =
1

2
is true a constant and that

a(r, y) =
1√
4πr

e

−y2
4r


(3.8.67)

In order to use Laplace transforms, we have to limit ourselves to 0 6 y < ∞. As
stated in equation (3.8.46 - 3.8.47), clearly has even symmetry about y = 0, and what we
obtain in equation (3.6.27) is also an even function, then it is possible to simply extend
the domain of validity for a(r, y) to y ∈ (−∞,∞).

Using the Laplace transform in r of the Partial Differential Equation to the solution of
equations (3.8.48 - 3.8.49) for b(ρ, z), yields to

∂2b̂

∂z2
− ρb̂ = −δ(z −H) (3.8.68)

where

b̂(ρ, z) := Lr{b(r, z)} =

∫ ∞
0

e−ρrb̂(r, z)dr (3.8.69)

If we consider taking the Laplace transform in z and defining

ˆ̂
b(ρ, ζ) := Lz{b̂(ρ, z)}, (3.8.70)

we realise that

ζ2
ˆ̂
b− ζb̂(ρ, 0)− ∂b̂

∂z
(ρ, 0)− ρˆ̂b = −e−ζH (3.8.71)

Subsequently, applying the changed Neumann boundary condition

∂z b̂(ρ, 0) = 0

we can work out for

ˆ̂
b(ρ, ζ) =

ζb̂(ρ, 0)− e−ζH

ζ2 − ρ
(3.8.72)

and impose the inverse transform in ζ to get

b̂(ρ, z) = b̂(ρ, 0) cosh(
√
ρz)− 1

√
ρ

sinh(
√
ρ(z −H)) (3.8.73)
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We then foist the condition that

b̂ −→ 0

as

z −→∞

which means that

b̂(ρ, 0) =
e−
√
ρH

√
ρ

(3.8.74)

and therefore

b̂(ρ, z) =
1

2
√
ρ

(e−
√
ρ(z−H) + e−

√
ρ(z+H)) (3.8.75)

Lastly, applying the inverse transform in ρ, we obtain

b(r, z) =
1√
4πr

e
−(z −H)2

4r


+ e

−(z +H)2

4r


 (3.8.76)

The contaminant concentration can now be determined by substituting equation (3.8.67)
and (3.8.76) into equation (3.8.45), which yields to:

c(r, y, z) =
Q

4πur
e

y2
4r


e
−(z −H)2

4r


+ e

−(z +H)2

4r


 (3.8.77)

Equation (3.8.77) is usually known as the Gaussian plume solution for the advection-
diffusion equation, under condition that the exponential dependence on both y and z is
the same to that of a Gaussian-type function.

3.9 Gaussian Plume, 2 Dimensional spreading.

From equation (3.8.77), the 2 Dimensional spread is given as

C(y, z, t) =
P

4πt
√
KyKz

exp

(
− y2

4Kyt
− z2

4Kzt

)
(3.9.1)

Since mass is moving with the wind, mass transfer between adjacent sheets is essentially
zero. Convert a z dimensional problem i.e. spread (dispersion) is going in the y and z
directions.

Time for sheet to move across smoke stack/ pipe i.e.

m

um/s
= t =

1

u
seconds
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so that the amount of pollutant originally injected into the sheet we are considering is

P =
Q

u
(3.9.2)

where u = wind velocity. Q
u

has dimensions of mass/length, i.e. the amount injected
per unit length of air passing over the stack.

Some material balances and replacements has been done so that we can use the 2
dimensional equation (3.9.1) for solving problems. Substitution back yields,

C(y, z, t) =
Q/u

4π 1
u

√
KyKz

exp

(
− y2

4Ky
1
u

− z2

4Kz
1
u

)
(3.9.3)

Historically, substitute the following into equation 3.9.3 2-D turbulent diffusion equa-
tion:

Ky = 0.5σ2
y

(u
x

)
(3.9.4)

Kz = 0.5σ2
z

(u
x

)
(3.9.5)

t =
x

u
(3.9.6)

Substituting the above equations (3.9.4 - 3.9.6) into equation 3.9.2, we have

C(y, z) =
P

2πuσyσz
e

(
− y2

2σ2y
− z2

2σ2z

)
(3.9.7)

where σy is a horizontal dispersion coefficients while σz is a vertical dispersion coeffi-
cients. The unit for the above coefficients are given in meters (m).

If we set
z = (z −H) (3.9.8)

and
P = Q (3.9.9)

then equation (3.9.7) becomes

C(y, z) =
Q

2πuσyσz
e

(
− y2

2σ2y
− (z−H)2

2σ2z

)
(3.9.10)

Equation (3.9.10) is the basic Gaussian Plume Equation. The basic Gaussian plume
equation predicts a plume that is symmetrical with respect to y and with respect to
z. Different values of σy and σz mean that spreading in the vertical and horizontal
directions are not equal. Most often σy is greater than σz so that a contourof constant
concentration is like an ellipse, with the long axis horizontal. Close to the ground this
symmetry is disturbed.

50



To use the Gaussian plume equation one must know the appropriate values of σy and
σz. From equations (3.9.4) and (3.9.5) we would expect them to have the form

σy = (
2Kyx

u
)1/2 (3.9.11)

Concentration on the centreline of the plume is given by the initial term. The two
dispersion coefficient values upsurge with downwind distance, so that this centreline con-
centration decreases with the downwind distance. Concentration decreases as we move
horizontally and vertically away from the centreline which is demonstrated by the sec-
ond and third terms. Substitutions convert equation (3.9.10) to Eulerian Viewpoint.
Coordinates are now measured from smoke stack (not center of mass of plume).

3.10 Some Modifications of the Basic Gaussian Plume

Equation

3.10.1 The effect of the ground

At present, equation (3.9.10) is our best simple prediction method for the concentra-
tion in plumes considerable distances above the ground. However, we are generally most
interested in concentrations at ground level because that is where most people and prop-
erty are exposed. The blind application of equation (3.9.10) at or near ground level gives
misleadingly low results. It indicates that pollutants continue to disperse at any value of
z, even at z less than zero.

The ground damps out vertical dispersion. The upward and downward random at-
mospheric eddies that spread the plume in the vertical direction cannot penetrate the
ground. Thus, vertical spreading terminates at ground level. To account for this in
calculations it is commonly assumed that any pollutants that would have carried below
z = 0 if the ground were not there are reflected upward as if the ground were a mirror.
Thus, the concentration at any point is due to the plume itself plus what is reflected
upward from the ground.

The concentrations due to the mirror-image plume are exactly the same as those shown
by equation (3.9.10), except that (z −H)2 is replaced by (z +H)2.i.e

C(y, z) =
Q

2πuσyσz
e

(
− y2

2σ2y
− (z+H)2

2σ2z

)
(3.10.1)

The combined contribution of both plumes is obtained by writting equation (3.9.10)
and (3.9.12) by adding the values for the two plumes and factoring out the common terms
to obtain

C(y, z) =
Q

2πuσyσz
e

(
− y2

2σ2y
− (z−H)2

2σ2z

)
+

Q

2πuσyσz
e

(
− y2

2σ2y
− (z+H)2

2σ2z

)
(3.10.2)

C =
Q

2πuσyσz
exp− 0.5(

y

σy
)2[exp− 0.5(

z −H
σz

)2 + exp− 0.5(
z +H

σz
)2] (3.10.3)
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Equation (3.9.14) is correct for ground level or any elevation above it and is called
Modified Gaussian Plume Equation. For large values of z, the contribution of the (z+H)2

term becomes negligible and the result is practically identical with that from equation
(3.9.10).

3.10.2 Mixing height limits, one-dimensional spreading

As the plume flows downwind, it will eventually grow until it is completely mixed below
the mixing heightH. After that it will no longer spread vertically, but only horizontally, so
a two-dimensional spreading plume has converted to a one-dimensional spreading plume.
The mixing height is called L, and lines are drawn for long transport distances, indicating
that the observed concentrations are higher than one would compute by continuing the
two-dimensional spreading calculation to those distances. Observe that H and L appear
with two sets of meanings in these equations. In box models, H is the mixing height and
L is the downwind length of the city. In Gaussian plume models, H is effective stack
height and L is the mixing height. Alas, this usage is common. Returning to equation
(3.8.28), we see that the amount being dispersed horizontally is

P =
Q

uL
(3.10.4)

which accounts for the fact that the X for the two-dimensional Gaussian plume is now
uniformly spread over a height L. Substituting this value in Equation (3.8.28) and making
the substitutions into equation (3.9.4-3.9.6), yields to

c =
Q√

2πuLσy
exp( − y2

2σ2y
) (3.10.5)

3.11 Plume rise

The visible plumes from power plants, factories and smokestacks tend to rise and then
become horizontal. Plumes rise buoyantly because they are hotter than the nearby air
and also since they leave the stack with a vertical velocity that transports them upward.
They stop rising because, as they combine with the nearby air, they lose velocity and
cool by mixing. Lastly, they level off when they come to the similar temperature as the
atmosphere.

we employ plume rise calculations to estimate the value of ∆h and hence of H to use in
Gaussian Plume and other more complex pollutant concentration calculations. Holland’s
formula for plume rise is (Briggs, 1975):

∆h =
VsD

u
(1.5 + 2.68x10−3PD

Ts − Ta
Ts

) (3.11.1)

where

∆h = plume rise in m

Vs = stack exit velocity in m/s

Ts = Stack gas temperature in K

Ta = Air temperature at stack height in K
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D = The diameter of the stack in m

u = Wind speed in m/s

P = Pressure in millibars

Equation (3.11.1) is a dimensional equation, which is only correct for the dimensions
shown. This formula is frequently corrected for atmospheric stability by multiplying the
result by 1.1 or 1.2 for A and B stability or 0.8 or 0.9 for D, E, or F stability. Although
this formula has some theoretical basis, it is not universally applicable. All plume rise
formulas work well for some cases, but none seems to handle all cases.

The next chapter will be on the methods that are used in solving the developed model
equation 3.9.10.
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CHAPTER 4

RESEARCH METHODOLOGY

The procedures used to attain the results documented in this thesis are deliberated in
the subsequent sections.

4.1 Modified Gaussian Plume Equation.

Modified Gaussian Plume Equations is our model equation for calculating ground level
concentration. It is based on known emission rates and meteorology.

C =
Q

2πuσyσz
exp− 0.5(

y

σy
)2[exp− 0.5(

z −H
σz

)2 + exp− 0.5(
z +H

σz
)2] (4.1.1)

where H is the total elevation of the plume. This is a combination of both the physical
stack height and plume rise due to buoyancy.

4.2 Atmospheric dispersion coefficients

The variables σy and σz are atmospheric dispersion coefficients that have been deter-
mined empirically and are determined from the following equations:

σy = ax0.894 (4.2.1)

σz = cxd + f (4.2.2)

where a, c, d and f are constants given in table 4.1. These constants are functions of
the atmospheric stability category for the particular site. Stability class is a function of
prevailing wind speed and incoming solar radiation and can be obtained from table 4.2.
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Table 4.1: shows how the atmospheric stability categories are chosen based on meteoro-
logical conditions (Zoras et al., 2006)

Table 4.2: shows how the Dispersion Coefficients are chosen based on meteorological
conditions (Zoras et al., 2006).
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4.3 Plume rise

We employ plume rise calculations to estimate the value of ∆h and hence of H to use in
Gaussian Plume and other more complex pollutant concentration calculations. Holland’s
formula for plume rise is (Briggs, 1975):

∆h =
VsD

u
(1.5 + 2.68x10−3PD

Ts − Ta
Ts

) (4.3.1)

where

∆h = plume rise in m

Vs = stack exit velocity in m/s

Ts = Stack gas temperature in K

Ta = Air temperature at stack height in K

D = The diameter of the stack in m

u = Wind speed in m/s

P = Pressure in millibars

4.4 Atmospheric mixing height.

As the plume flows downwind and expands, it reaches the atmospheric mixing height
above which the plume does not rise. Dispersion cannot continue above this height
and the pollutant eventually becomes completely mixed in the vertical direction. The
problem now becomes a one dimensional problem and the concentrations will be greater
than predicted by the 2D model. The mixing height equation is of the form:

c =
Q√

2πuLσy
e
(− y2

2σ2y
)

(4.4.1)

where

Q = Emission rate

L is the mixing height

u is wind speed

In Gaussian plume model, H is the effective stack height and L is the mixing height.
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4.5 Reactive or non-conservative pollutants.

If the pollutant is reactive or non-conservative (i.e. decays or changes chemical form
overtime), a decay coefficient must be added to account for the decrease in pollutant
mass. The decay constant is a function of the pollutants half-life:

K =
0.693

t0.5
(4.5.1)

From this, a reduction factor can be determined by which the Modified Gaussian Plume
equation is multiplied:

Reduction Factor = e[
−0.693x

ut0.5
]

4.6 Air quality standard

For this thesis, the European and/ or U.S standards, have been employed for control
of air quality maximum concentration limits given as follow:

Table 4.3: Air Quality maximum concentration limits

Acute Level Chronic Level
SO2 : 350µg/m3 (1 hour average) 125µg/m3 (24 hour average)
NOx : 200µg/m3 (1 hour average) 40µg/m3 (1 year average)

Ground level concentrations cannot exceed the 1 hour averages anywhere downwind of
the plant at any time during the year.
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CHAPTER 5

MODELLING AND DATA
ANALYSIS

5.1 Modelling

The overall modelling is performed as follows:

1. Determine the effective plume height based on Hollands Equation. It requires smoke
stack diameter, velocity and temperature.

2. Determine the atmospheric stability category. Requires prevailing wind speed and
solar radiation data.

3. Calculate σy and σz, dispersion coefficients, for increments of distance x, downwind
of smoke stack.

4. Use the modified Gaussian Plume equation to calculate concentrations downwind
at the ground along the plume center line. Requires pollutant, Q in grams/seconds
for each pollutant.

5. Use the mixing Height Equation to calculate concentrations at the same points as
in step 4. Requires estimate of mixing height, L.

6. Compare concentrations from step (4) and (5) and select the largest as the control-
ling concentration. Compare them to air pollution control standards.

7. The model will need to be run for different wind speeds, wind directions, and
pollutant loadings (function of power output) to determine potential impact on
surrounding environment.

8. To validate and calibrate the model, would need to compare output with actual
field data.

5.2 Data

The data used was gathered from the Namibia meteorological weather service in Wind-
hoek and Anixas diesel-fuelled power plant in Walvis Bay.

58



5.2.1 Meteorological data

The meteorology of an area plays a big role in defining the emission concentration in the
atmosphere (Nagendra & Khare, 2002). The dispersion of pollutants in the atmosphere is
caused by turbulent eddy movement (diffusion) and advection due to the movement of air
crowds by the wind (Stockie, 2011). This means that wind speed, atmospheric stability
and turbulent processes are the most significant meteorological factors prompting disper-
sion in the atmosphere. Additional vital meteorological factors to deliberate comprised
of: wind direction, wind speed, temperature and relative humidity. Wind speed and wind
direction are variable over time.

Table 5.1: Climatic conditions of Walvis Bay 2016

Monthly Wind S (m/s) Solar R Cloud C % Temp mean Pressure
Jan 3.4 8 10 30 1011.8
Feb 3.3 7 13 31 1011.5
Mar 3.6 8 11 29 1012.6
April 3.5 7 7 28 1014.5
May 3.2 6 1 24 1018.1
June 3.9 6 3 23 1020
July 3.3 6 1 21 1019.5
Aug 3.4 7 1 25 1018
Sep 3.9 8 5 28 1014.9
Oct 3.1 8 11 32 1011.8
Nov 3.3 8 11 32 1011.5
Dec 3.6 8 8 32 1010.8

Averages 3.5 7.25 6.8 27.9 1014.58

5.2.2 Wind climate

Wind speed and direction data from Namibian Weather Service in Windhoek is used
in figure 5.1. Windhoek weather station was chosen, because it is where all the data is
stored in Namibia.
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Figure 5.1: Day wind direction for Walvis Bay for 2014.

5.2.3 Temperature

As shown in figure 5.2, maximum temperatures were experienced during March and
April whereas a minimum temperature was experienced during August.

Figure 5.2: Monthly temperature profile for Walvis Bay, 2014.
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5.2.4 Relative humidity

Hourly data from Windhoek Weather Station was used to plot the frequency distribu-
tion of relative humidity in certain ranges for different times of the day. Figure 5.3 shows
the frequency distribution of relative humidity at 08:00, 14:00 and 20:00.

Figure 5.3: Relative humidity for Walvis Bay, 2014.

At 08:00, most hours in the period of 2014 had relative humidity values of between
73% and 91%, and at 14:00 most hours had relative humidity values between 45% and
68% while at 20:00 showed most hours had relative humidity values ranging between 65%
and 81%.

5.2.5 Data about the Power Plant.

The results can only be as valid and good as input data. The following data was
obtained from Anixas diesel-fuelled power station:

Table 5.2: Power plant specifications and descriptions

Stack height (H) 60 m
Stack gas temperature (Ts) 280 C/ 553.15 K

Air temp at Stack Height (Ta) 27.9 C/ 301.05K
Stack gas velocity (Vs) 15 m/s

Stack diameter (D) 3 m
Pressure (P) 1014.58 mp
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5.2.6 Data from the emissions measurement system.

Minimum, maximum and averages generated by the system for the 15 - 22 August and
18 November 2013 period are given in Table 4.1 and 4.2 respectively.

Table 5.3: Average particulate and gaseous emissions for 15 - 22 August 2013.

Generator SO2(mg/m
3) NOx(mg/m

3) PM10 (%)
GEN1 152.1 122.3 5.4
GEN2 118.2 129.5 6.1
GEN3 5.9 9.8 5.4

AVERAGE 92.1 87.2 5.6

Table 5.4: Average particulate and gaseous emissions for 18 November 2013.

Generator SO2(mg/m
3) NOx(mg/m

3) PM10 (%)
GEN1 1730.6 1384.2 5.6
GEN2 1604.4 1548 52.5
GEN3 1603.2 1410 6.0

AVERAGE 1646.1 1447.4 21.4
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CHAPTER 6

RESULTS, DISCUSSION,
CONCLUSIONS AND

RECOMMENDATIONS

6.1 Results and Discussions

Meteorology offers information of various variables that are applicable to the transport
and diffusion of pollutants in the atmosphere. This section presents the outcomes founded
on the previously stated approaches. It emphasises not only on wind climate, but also
on further factors which have an impact on defining the air pollution climate of an area.
These variables comprise wind speed, stability, mixing height, temperature and relative
humidity.

The computation of concentrations and other necessary quantities have been carried
out by means of excel. The resulting quantities have been plotted, as seen from figures
that will follow. The raw results without visual effects are tabulated throughout Appendix
A.

Figure 6.1: Comparison of ground level concentration for SO2 and NOX using stability
category A

The comparison between those two gases indicated that when the wind speed is from
0 − 3 m/s for strong to moderate incoming solar radiation, the maximum ground level
concentration was 23.81µg/m3 for SO2 and 22.11µg/m3 for NOx at a distance of 0.5
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km downstream from the power plant. Considering the impact of the mixing height,
the maximum concentrations are expected to vary significantly, 9.26µg/m3 for SO2 at a
distance of 0.7 km and 14.17µg/m3 for NOx at a distance of 0.4 km. For infinite mixing
height, the maximum concentrations decreases to 4.63µg/m3 for SO2 at a distance of 0.7
km and 7.09µg/m3 for NOx at a distance of 0.4 km. Both of the pollutants are within
the regulatory limit for air quality standard outlined for both chronic and acute limits.

Figure 6.2: Comparison of ground level concentration for SO2 and NOX using stability
category B

The comparison between those two gases indicated that when the wind speed is from 0−
5 m/s for strong, moderate to slight incoming solar radiation, the maximum ground level
concentration directly downwind during the day are 17.72µg/m3 for SO2 and 16.45µg/m3

for NOx at a distance of 0.9 km downstream from the power plant. Considering the impact
of the mixing height, the maximum concentrations are expected to vary significantly,
12.64µg/m3 for SO2 at a distance of 0.7 km and 19.35µg/m3 for NOx at a distance of
0.4 km. Assuming an infinite mixing height, the maximum concentrations decreases to
6.32µg/m3 for SO2 at a distance of 0.7 km and 9.68µg/m3 for NOx at a distance of 0.4
km. Both pollutants are within the regulatory limit for air quality standard outlined for
both chronic and acute limits.

Figure 6.3: Ground level concentration directly downwind using stability category C [SO2

and NOX ]

The comparison between those two gases indicated that when the wind speed is from 2−
6 m/s for strong, moderate to slight incoming solar radiation, the maximum ground level
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concentration directly downwind during the day are 15.4µg/m3 for SO2 and 14.29µg/m3

for NOx at a distance of 1.5 km downstream from the power plant. Considering the impact
of the mixing height, the maximum concentrations are expected to vary significantly
during the day, with 18.96µg/m3 for SO2 at a distance of 0.7 km and 29.03µg/m3 for
NOx at a distance of 0.4 km from the power plant. Now, assuming an infinite mixing
height, the maximum concentrations decrease to 9.48µg/m3 for SO2 at a distance of 0.7
km and 14.51µg/m3 for NOx at a distance of 0.4 km. Both of the pollutants are still
within the regulatory limit for air quality standard outlined for both chronic and acute
limits.

Figure 6.4: Ground level concentration directly downwind using stability category D [SO2

and NOX ]

The comparison between those two gases indicated that when the wind speed is 3− 6
m/s for moderate to slight incoming solar radiation and the ground level concentration
are expected to decrease during the night, with 8.29µg/m3 for SO2 and 7.70µg/m3 for
NOx at a distance of 4 km downstream from the power plant, taking into consideration
the prevailing wind direction with the wind speed of 3.5 m/s. This is due to the climatic
conditions that are prevalent during the night such as fog and cloud cover resulting in
concentration build up.

However, considering the impact of the mixing height, the maximum concentrations are
expected to vary significantly during the night, with 28.99µg/m3 for SO2 and 29.03µg/m3

for NOx at a distance of 0.7 km and 0.4 km respectively. Now, assuming an infinite mixing
height, the maximum concentrations decrease to 14.5µg/m3 for SO2 at a distance of 0.7
km and 22.2µg/m3 for NOx at a distance of 0.4 km. Hence, both pollutants are still
within the regulatory limit for air quality standard outlined for both chronic and acute
limits.
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Figure 6.5: Comparison of ground level concentration for SO2 and NOX using stability
category E

The comparison between those two gases indicated that when the wind speed is 2− 5
m/s for thinly overcast or greater than 50 % clouds to clear or less than 37.5% clouds, the
ground level concentration are expected to very low during the night, with 4.96µg/m3

for SO2 and 4.60µg/m3 for NOx at a distance of 9 km downstream from the power
plant, taking into consideration the prevailing wind direction. This is due to the climatic
conditions that are prevalent during the night such as fog and cloud cover resulting in
concentration build up.

However, considering the impact of the mixing height, the maximum concentrations are
expected to vary significantly during the night, with 39.04µg/m3 for SO2 and 59.78µg/m3

for NOx at a distance of 700 m and 400 m respectively. Now, assuming an infinite mixing
height, the maximum concentrations decrease to 19.52µg/m3 for SO2 at a distance of 0.7
km and 29.89µg/m3 for NOx at a distance of 0.4 km. Hence, both of our pollutants are
still within the regulatory limit for air quality standard outlined for both chronic and
acute limits.

Figure 6.6: Comparison of ground level concentration for SO2 and NOX using stability
category F

The comparison between those two gases indicated that when the wind speed is 2− 3
m/s for clear or less than 37.5% clouds, the ground level concentrations are expected
to be very high during the night, with 1.98µg/m3 for SO2 and 1.84µg/m3 for NOx at
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the distance of 10 km downstream from the power plant, taking into consideration the
prevailing wind direction. This is due to the climatic conditions that are prevalent during
the night such as fog and cloud cover resulting in concentration build up.

However, considering the impact of the mixing height, the maximum concentrations are
expected to vary significantly during the night, with 57.99µg/m3 for SO2 and 88.79µg/m3

for NOx at a distance of 700 m and 400 m respectively. Now, assuming an infinite mixing
height, the maximum concentrations decrease to 28.99µg/m3 for SO2 at a distance of 0.7
km and 44.39µg/m3 for NOx at a distance of 0.4 km. Hence, both of our pollutants are
still within the regulatory limit for air quality standard outlined for both chronic and
acute limits.

Nonetheless, regardless of the climatic conditions and direction of the prevailing wind
directions, installing a stack height of +50 m for the power plant and the current moder-
ate average wind speed, the observed annual maximum ground level concentrations are
expected to be within the regulatory limit outlined in the air quality standard for acute
level of 350µg/m2 for SO2 and 200µg/m2 for NOx concentration for x ≥ 1km directly
downwind and/or downstream.

6.2 Conclusions

In this study, the effect of air emission from diesel power plant using air quality was
assessed. A typical case of Anixas Power Plant on air pollution impact forecasting due to
SO2 and NOX emissions from the given stack through mathematical modelling approach
was presented. The study revealed that the contribution of atmospheric contaminants of
air emission due to the studied power plant (Anixas Power Plant, Walvis Bay) was very
low. The study mostly concentrated only on SO2 and NOX since the emission of PM
was very low compared to SO2 and NOX .

Data from the power plant measuring system indicates that the hourly averages from
07h00 - 23h00 for SO2 and NOX was above 1000µg/m3 in all the three generators. The
results of the comparisons between the calculated and measured concentrations for the
ground level measurements, both short term averages and long term averages, indicated
that the model could predict ground level concentrations within the limit.

For any one stability category, raising the point of emission (increasing the value of H)
lowers the calculated ground-level concentrations for all points near the stack. For points
far enough away from the plume to be well mixed up to the mixing height, the calculated
concentration becomes independent of the stack height. Raising the height of emissions
would lower all nearby concentrations and not change the concentrations at a distance.

Analysis of the emission of the pollutant has the following parameters; wind speed,
wind direction, atmospheric stability conditions, the mixing heights, temperature and
relative humidity. All these parameters have an impact on atmospheric dispersion of
contaminants from the given power plant in the region. For example, low wind speeds,
mixing height and stable conditions will cause the conditions of small amount of emissions
dispersion in the atmosphere.
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Although the Gaussian plume model is based upon many simplifying assumptions
about the dispersion of pollutants in the atmosphere, it is applied to a wide array of
dispersion scenarios. Some form of this model is adopted in most regulatory air pollution
models for continuous release. In order to extend the application of the Gaussian plume
model to realistic cases, the model makes use of different mathematical equations.

Pollutant concentration models are rely on known emission rates and meteorology.
These models play an important role in the Air Quality Management type of air pollution
control strategy currently used in the United States and much of the rest of the world.
Gaussian plume models are widely used for point sources. They depends on several
simplifying assumptions but have been reasonably successful in predicting experimental
results for single, elevated point sources.

The dispersion of contaminants in the atmosphere is commonly investigated in both
Eulerian and Lagrangian frameworks. The Lagrangian approach considers the trajec-
tory of marked fluid particles in the flow. Lagrangian particle models are very useful for
describing the turbulent dispersion of passive contaminants because they can take into
account essential aspects of turbulence, although they are limited to a simplified set of
reacting species. The Eulerian approach, on the other hand, is based on the mass conser-
vation equation and can incorporate the various second and high-order chemical kinetic
equations necessary to describe photochemical smog generation, which is a challenging
open problem.
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6.3 Recommendations

It is very difficult and expensive to relocate a plant which is in existence, but a new plant
can be situated where its emissions will have their greatest impact in non-populated areas.
This reasoning is the basis for most industrial zoning and land-use planning regulations.
We therefore recommend that for a new power plants which is use diesel fuel, it must be
placed far from people and it must have stuck height which is above 60m.

Modelling results should be carefully analysed and interpreted. The uncertainties as-
sociated with the input data, and with the model itself, need to be properly evaluated
before their predictions can be used with confidence. Dispersion is primarily controlled
by turbulence, which is random by nature, and thus cannot be precisely described or
predicted by means of basic statistical properties. As a result, there are spatial and tem-
poral variability that occur naturally in the observed concentration field. On the other
hand, uncertainty in the model results could also be due to factors such as errors in the
input data and model formulation. Because of the effects of uncertainty and its inherent
randomness, it is not possible for an air quality model ever to be perfect, and there is
always a base amount of scatter that cannot be removed.
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APPENDIX A

Tables

Table A.1: Truncated data for SO2 using stability category A
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Table A.2: Truncated data for NOx using stability category A
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Table A.3: Truncated data for SO2 using stability category B
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Table A.4: Truncated data for NOx using stability category B
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Table A.5: Truncated data for SO2 using stability category C
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Table A.6: Truncated data for NOx using stability category C
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Table A.7: Truncated data for SO2 using stability category D
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Table A.8: Truncated data for NOx using stability category D
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Table A.9: Truncated data for SO2 using stability category E
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Table A.10: Truncated data for NOx using stability category E
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Table A.11: Truncated data for SO2 using stability category F
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Table A.12: Truncated data for NOx using stability category F
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