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Abstract

It seems that during the last decades, no research was done which is related to the Steinitz

exchange theorem. However, the generalised Steinitz exchange theorem has been investigated

in books and articles . The generalized Steinitz exchange theorem is not a theorem of linear

algebra but for reaching generalization of the Steinitz exchange theorem which has applications

for example in field theory, in the theory of abelian groups and in module theory.

The objective of this study was to prove the Steinitz exchange theorem of linear algebra for

arbitrary vector spaces over arbitrary division rings. Nearly all books on linear algebra which

have the Steinitz exchange theorem explicitly state and prove this theorem only for finitely

generated vector spaces. Only one exception can be found. In another source, the Steinitz

exchange theorem is proved under the additional assumption, that the linearly independent

subset is finite.

In this study the exchange theorem of Steinitz is proved in full generality with the means of

linear algebra. The statement of the theorem of Steinitz is a statement of the following type:

under certain conditions there exists a set with certain properties.The question when this set is

uniquely determined could be completely solved. In addition, an application of the theorem of

Steinitz is presented. This is the classical application which was given already by Graßmann:

Any two bases of a vector space are equipotent.

The first chapter is about the basic concepts of the study. The second chapter reviews the

relevant literature and outlines the methodology used in the study. The literature review is

mainly about the generalized theorem of Steinitz, but also include the versions of the Steinitz

exchange theorem found in books of linear algebra. The third chapter presents the results of

the study with proofs. The study is concluded in the last chapter with proposals for further

study.
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Chapter 1

Introduction and basic concepts

1.1 Introduction

1.1.1 Background

This study is devoted to the exchange theorem of Steinitz. This theorem is a theorem of

linear algebra which appeared first in Graßmann’s book in 1844. Since this book could not be

obtained, Graßmann’s theorem is quoted as it is stated in (Graßmann, 1878). Because of the

unusual terminology used in Graßmann’s book - in those days linear algebra did not exist - the

version of this theorem as it is stated in (van der Waerden, 1930) is quoted. van der Waerden’s

version comes very close to what Graßmann’s book contains. In this context, two systems of

vectors are called equivalent if they have the same span.

Exchange theorem of Steinitz (van der Waerden, 1930)

Let y1, · · · , ys be linearly independent vectors and x1, · · · , xr vectors such that each

yj is linearly dependent on x1, · · · , xr. Then there exists a system of exactly s

vectors xi1 , xi2 , · · · , xis which can be exchanged with y1, · · · , ys such that the new

system is equivalent to x1, · · · , xr. In particular s ≤ r.

This theorem appeared again in an article of Steinitz in 1913 and, since then, it is called the

exchange theorem of Steinitz.

1.1.2 Statement of the problem

The Steinitz exchange theorem contains the following assumptions
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(1) The vector space is a real vector space.

(2) The two systems of vectors are finite.

One can ask whether these two assumptions are needed, and this is the problem that would be

solved. In this regard, (van der Waerden, 1930) made an important contribution. He proved

that the Steinitz exchange theorem is true for a vector space over a division ring, provided the

vector space is of finite dimension.

1.1.3 Objective of the study

The objective of the study is to solve the problem which has been stated in 1.1.2. The outcome

is that the two assumptions of the Steinitz exchange theorem can be deleted.

1.2 Basic concepts from set theory

This section discusses the basic definitions and theorems from set theory which will be used in

this study. In some cases, the facts presented are not readily available in the literature. In other

cases, simplified proofs are given or additions are made. Well ordered sets will be discussed

because of the articles (Hughes, 1962–1964) and (Hughes, 1965-1966).

Because the concepts binary relation and function depend on ordered pairs, the set-theoretical

definition of an ordered pair is given. This definition was introduced by Kuratowski. Also, the

set-theoretical definition of a function is required. In this thesis, if A and B, then A ⊂ B means

A is a subset of B even if A = B.

1.2.1 Ordered pairs

Definition 1.2.1. Let A and B be sets.

(A,B) := {{A}, {A,B}}

(A,B) is called the ordered pair with components A and B.

In particular, ordered pairs are sets.

Proposition 1.2.1. Let A,B,C,D be sets. Then

(A,B) = (C,D) ⇐⇒ A = C and B = D.
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Proof. (⇐) Suppose A = C and B = D. Since (A,B) and (C,D) have the same first component

and the same second component, (A,B) = (C,D).

(⇒) Suppose (A,B) = (C,D). Now {A} =
⋂

X∈(A,B)

X =
⋂

X∈(C,D)

X = {C}. Hence A = C.

Now it will be shown that B = D.

Case 1: Suppose A = B. Since (A,B) = (C,D) and (A,B) is a singleton, (C,D) is a singleton.

Hence C = D. Since A = C, all four sets A,B,C,D are equal. Therefore B = D.

Case 2: Suppose A 6= B. Since (A,B) is not a singleton, (C,D) is not a singleton. Hence C 6= D.

Further {A,B} =
⋃

X∈(A,B)

X =
⋃

X∈(C,D)

X = {C,D}. Since B ∈ {C,D} and B 6= C, B = D.

�

From the proof of the previous proposition, one sees that if (A,B) is an ordered pair, then⋂
X∈(A,B)

X = {A}. Therefore A is uniquely determined by (A,B). If A = B, B is uniquely

determined by (A,B) because A is uniquely determined. Suppose A 6= B. Then
⋃

X∈(A,B)

X =

{A,B}. Therefore B is uniquely determined by (A,B). If (A,B) is an ordered pair, one can

call A the first component of (A,B) and B the second component of (A,B).

This is used when one introduces the projections of the cartesian product X × Y of two sets

X and Y onto the factors X and Y .

p : X × Y → X defined by p(a, b) := a and q : X × Y → Y defined by q(a, b) := b.

1.2.2 Ordered sets and functions.

Definition 1.2.2. An order relation on a set X is a binary relation on X which is reflexive,

antisymmetric and transitive. A set together with an order relation is called an ordered set.

In the following it is not assumed that the ordered set is non-empty. In general, an ordered

set (X,≤) may contain elements x, y ∈ X such that x � y and y � x. If this is not the case,

(X,≤) is called a totally ordered or linearly ordered set, or a chain, and the order is called a

total order or a linear order.

To order a set X, one chooses an order relation on X and consider this set together with this

order relation. Every set can be ordered, for example, inclusion ⊂ is an order relation on every

power set.
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If (X,≤) is an ordered set and Y ⊂ X, then ≤ induces in Y an order relation. This order

relation is the intersection of ≤ and Y 2 = Y × Y . In particular, every subset of an ordered set

can be viewed as an ordered set.

Definition 1.2.3. A maximal element of an ordered set X is an element m ∈ X such that if

x ∈ X and m ≤ x, then m = x.

It is added that one must distinguish between maximal elements and the maximum of an

ordered set. If an ordered set has a maximum, the maximum is a maximal element, and it is

the only maximal element. In particular, if an ordered set has more than one maximal element,

then there is no maximum. However, if an ordered set has exactly one maximal element, the

maximal element need not be the maximum as the following example shows. Let X be an

infinite set and A ⊂ X a non-empty subset such that X − A is infinite. Consider

Ω := P(A) ∪ {Y ⊂ X − A| Y finite}

ordered by inclusion. A is a maximal element and every finite subset of X−A is not a maximal

element. Therefore, Ω has exactly one maximal element, but it is not the maximum.

Similarly, one introduces minimal elements of an ordered set.

Definition 1.2.4. A minimal element of an ordered set X is an element m ∈ X such that if

x ∈ X and x ≤ n then x = n.

For minimal elements, similar statements to those of maximal elements are true. An ordered set

need not have a minimal element and an ordered set can have more than one minimal element.

Nearly every book on set theory uses the following proposition without providing a proof.

Proposition 1.2.2. Every non-empty finite ordered set has maximal elements.

Proof. By induction on the cardinality.

Let X be an ordered set such that |X| = 1. Then X is a singleton, say X = {a}. Then a is

a maximal element of X. Let n ∈ N and assume that every ordered set of cardinality n has a

maximal element. Let X be an ordered set such that |X| = n + 1. Then there exists a ∈ X
because X 6= ∅. Form X ′ := X − {a}. By induction hypothesis, X ′ has a maximal element

m ∈ X ′. If m � a, then m is a maximal element of X. Suppose m ≤ a. Since m 6= a, m < a.

Let x ∈ X such that a ≤ x. Then m < x. Since x 6∈ X ′, x = a. Hence a is a maximal element

of X. �
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An infinite ordered set need not have maximal elements. If X is an infinite set, then the finite

subsets of X, ordered by inclusion, is an example of an ordered set which has no maximal

elements for the following reason. Take Ω := {Y ⊂ X| Y finite} ordered by inclusion. Let

M ∈ Ω. Since X is infinite and M is finite, there exist some x ∈ X −M . Since M is a finite

subset of X, M ∪ {x} is finite. Hence M ∪ {x} ∈ Ω. M ∪ {x} is strictly bigger than M . Since

M was any element of Ω, Ω has no maximal elements.

In case of infinite ordered sets, it seems that in most cases maximal elements are obtained by

applying Zorn’s lemma.

Zorn’s lemma.

Let (X,≤) be an ordered set. If every chain in X is bounded above, then (X,≤)

has maximal elements.

An ordered set which satisfies the hypothesis of Zorn’s lemma is non-empty because ∅ is a chain

in the ordered set and bounded above. It remains to mention that if X is finite, Zorn’s lemma

can be proved, compare Proposition 1.2.2.

Theorem 1.2.1 (Hausdorff Maximality Principle). Let (X,≤) be an ordered set and Γ0 ⊂ X

a chain. Then there exists a maximal chain in X which contains Γ0.

Proof. Take

Ω := {Γ ⊂ X| Γ a chain,Γ0 ⊂ Γ}

ordered by inclusion.

Since Γ0 ∈ Ω, Ω 6= ∅. Let C be a non-empty chain in Ω and consider

Γ =
⋃
Γ∈C

Γ.

Since Γ ⊂ X for all Γ ∈ C, Γ ⊂ X. Since C 6= ∅, C contains an element, say Γ1 ∈ Ω. Since

Γ0 ⊂ Γ1 and Γ1 ⊂ Γ, Γ0 ⊂ Γ. Let a, b ∈ Γ. Since Γ =
⋃

Γ∈C
Γ, there exists Γ1 ,Γ2 ∈ C such that

a ∈ Γ1, b ∈ Γ2. Since C is a chain, Γ1 ⊂ Γ2 or Γ2 ⊂ Γ1. Hence a, b ∈ Γ2 or a, b ∈ Γ1. Since

Γ1,Γ2 are chains, a and b are comparable. Therefore, Γ is a chain. Therefore Γ ∈ Ω. Since

Γ ⊂ Γ for all Γ ∈ C, Γ is an upper bound of C. Therefore Zorn’s lemma is applicable. Hence

Ω has maximal elements. Let Γ∗ ∈ Ω be a maximal element of Ω. Then Γ∗ is a chain in X

and Γ0 ⊂ Γ∗. Let Γ be a chain in X such that Γ∗ ⊂ Γ. Since Γ is a chain in X and Γ0 ⊂ Γ,

Γ ∈ Ω. Since Γ∗ is a maximal element of Ω, Γ = Γ∗. Therefore Γ∗ is a maximal chain in X

which contains Γ0. �
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From Hausdorff Maximality Principle, one obtains Zorn’s lemma in a very simple manner.

Let (X,≤) be an ordered set which satisfy the hypothesis of Zorn’s lemma. Since ∅ is a chain

in X, by the Hausdorff maximality principle, there exists a maximal chain Γ in X. By the

hypothesis of Zorn’s lemma, Γ is bounded above, i.e. there exists a ∈ X such that x ≤ a for

all x ∈ Γ. Then Γ ∪ {a} is a chain in X. Since Γ is a maximal chain, a ∈ Γ. Therefore a is a

maximum of Γ. Therefore, a is a maximal element of X.

The following seems to be worthwhile mentioning. If a maximal chain is bounded above, then it

has a greatest element. In particular, if an ordered set satisfies the condition of Zorn’s lemma,

then every maximal chain has a greatest element.

Definition 1.2.5. A function is a set f of ordered pairs such that if (x, y), (x, y′) ∈ f , then

y = y′.

Some definitions and notations are mentioned as follows.

If f is a function, then X := {x| there exists some y such that (x, y) ∈ f} is called the domain

of f . The domain of the function f will also be denoted by Df . If (x, y) ∈ f , one writes

y = f(x) or y = xf . y = f(x) or y = xf is called the image of x with respect to f . The range

of f is the set f(X) := {f(x)| x ∈ X}.
A codomain of f is a superset of the range of f . The domain and the range of a function are

uniquely determined by the function. Any superset of the range of a function is a codomain of

that function. In particular every function has many codomains. If X is the domain of f and

Y is a codomain of f , one writes f : X → Y . Note that f = {(x, f(x))| x ∈ X}. In particular

a function is equal to its graph.

Every subset of a function is a function. In particular, if f and g are functions, then f ∩ g is a

function. ∅ is a function, called the empty function. Let f and g be functions such that f ⊂ g.

Then f is called a restriction of g and g is called an extension of f . If f : X → Y and A ⊂ X,

then f|A := f ∩ (A× Y ) is called the restriction of f to A.

In general, the union of two functions is not a function.

Proposition 1.2.3. Let f and g be functions. Then

f ∪ g is a function ⇐⇒ f(x) = g(x) for all x ∈ Df ∩Dg.

Proof. Suppose f∪g is a function. Let x ∈ Df∩Dg. Since x ∈ Df and x ∈ Dg, (x, f(x)) ∈ f and

(x, g(x)) ∈ g. Therefore (x, f(x)), (x, g(x)) ∈ f ∪ g. Since f ∪ g is a function, f(x) = g(x). To
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prove the converse implication, suppose f(x) = g(x) for all x ∈ Df∩Dg. Let (x, y), (x, y′) ∈ f∪g.
If both (x, y), (x, y′) ∈ f or both (x, y), (x, y′) ∈ g, then y = y′ because f and g are functions.

Suppose (x, y) ∈ f and (x, y′) ∈ g. Then y = f(x) and y′ = g(x). Since x ∈ Df ∩ Dg,

f(x) = g(x) and hence y = y′. Therefore f ∪ g is a function. �

Proposition 1.2.4. Let Γ be a chain of functions and g :=
⋃
f∈Γ

f . Then g is a function.

Dg =
⋃
f∈Γ

Df and g(Dg) =
⋃
f∈Γ

f(Df ).

Proof. Let a ∈ g. Then there exists f ∈ Γ such that a ∈ f . Since f is a function, a is an ordered

pair. Hence, g is a set of ordered pairs. Let (x, y), (x, y′) ∈ g. Then there exist f1, f2 ∈ Γ such

that (x, y) ∈ f1 and (x, y′) ∈ f2. Since Γ is a chain, f1 ⊂ f2 or f2 ⊂ f1. Hence (x, y), (x, y′) ∈ f2

or (x, y), (x, y′) ∈ f1. Since f1 and f2 are functions, y = y′. Therefore g is a function.

Let x ∈ Dg. Since (x, g(x)) ∈ g, there exists f ∈ Γ such that (x, g(x)) ∈ f . Then x ∈ Df .

Therefore, Dg ⊂
⋃
f∈Γ

Df . Suppose x ∈
⋃
f∈Γ

Df . Then there exists f ∈ Γ such that x ∈ Df . Since

f ⊂ g, x ∈ Dg. Hence
⋃
f∈Γ

Df ⊂ Dg. This implies that Dg =
⋃
f∈Γ

Df . The proof for the range is

similar. �

Definition 1.2.6. Let X be a set and ≤, ≤′ order relations on X.

If ≤⊂≤′, then ≤ is called finer than ≤′ and ≤′ is called coarser than ≤ (Bourbaki, 1968).

It seems that these definitions are only used by (Bourbaki, 1968).

Since every order relation on X is reflexive, equality = is the finest order relation on X.

The following theorem shows that every order relation is contained in a coarsest order relation.

Theorem 1.2.2. Let (X,≤0) be an ordered set

Ω := {≤ | ≤ an order relation on X such that ≤0 ⊂ ≤}

ordered by inclusion. Ω has maximal elements and these are maximal order relations on X.

Proof. Ω 6= ∅ because ≤0∈ Ω. Let Γ ⊂ Ω be a non-empty chain and consider

∼
≤:=

⋃
≤∈Γ

≤ .

Now it will be shown that
∼
≤ is an order relation on X. It is clear that

∼
≤ is a set of ordered

pairs. Let x ∈ X. Since Γ 6= ∅, there exists ≤ ∈ Γ. Since ≤ is an order relation, (x, x) ∈≤.

Since ≤ ⊂
∼
≤, (x, x) ∈

∼
≤. Therefore,

∼
≤ is reflexive. Let (x, y), (y, x) ∈

∼
≤. Then there exist
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≤1,≤2∈ Γ such that (x, y) ∈≤1 and (y, x) ∈≤2. Since Γ is a chain, ≤1 ⊂ ≤2 or ≤2 ⊂ ≤1. Hence,

(x, y), (y, x) ∈≤2 or (x, y), (y, x) ∈≤1. Since ≤1 and ≤2 are order relations, x = y. Therefore,
∼
≤

is anti-symmetric. Let (x, y), (y, z) ∈
∼
≤. There exist ≤1,≤2∈ Γ such that (x, y) ∈≤1, (y, z) ∈≤2.

As above, (x, y), (y, z) ∈≤1 or (x, y), (y, z) ∈≤2. Since ≤1 and ≤2 are order relations, (x, z) ∈≤1

or (x, z) ∈≤2. Hence (x, z) ∈
∼
≤. Therefore,

∼
≤ is transitive. Thus

∼
≤ is an order relation on X

and this order relation is coarser than ≤0. Therefore
∼
≤∈ Ω. Since ≤ ⊂

∼
≤ for all ≤∈ Γ,

∼
≤ is

an upper bound of Γ. By Zorn’s lemma, Ω has maximal elements.

Let ≤′ be a maximal element of Ω and ≤ an order relation on X such that ≤′ ⊂ ≤. Since

≤0 ⊂ ≤′, ≤0 ⊂ ≤. Therefore ≤∈ Ω. Since ≤′ is a maximal element of Ω, ≤′ = ≤. Therefore

≤′ is a maximal order relation on X. �

Theorem 1.2.3. Let (X,≤) be an ordered set and r, s ∈ X non-comparable elements. Then

the following hold. The union of ≤ and {(x, y) ∈ X2| x ≤ r and s ≤ y} is an order relation on

X:

≤′:= ≤ ∪ {(x, y) ∈ X2| x ≤ r, s ≤ y}.

≤′ is the finest order relation on X which is strictly coarser than ≤ and which satisfies r ≤′ s.

Proof. Since ≤⊂≤′, ≤′ is reflexive. Let x, y ∈ X such that x ≤′ y and y ≤′ x. Then x ≤ y or

x ≤ r and s ≤ y, and y ≤ x or y ≤ r and s ≤ x. Assume x ≤ r and s ≤ y. If y ≤ x, then s ≤ r

which is a contradiction. Suppose y ≤ r and s ≤ x. Then s ≤ r, which is again a contradiction.

Since x ≤ r and s ≤ y is not a possibility, x ≤ y. Assume y ≤ r and s ≤ x. Then s ≤ r which

is a contradiction. Thus y ≤ x. Therefore x = y. Hence ≤′ is antisymmetric. Let x, y, z ∈ X
such that x ≤′ y, y ≤′ z. Then x ≤ y or x ≤ r, s ≤ y and y ≤ z or y ≤ r, s ≤ z. If x ≤ y

and y ≤ z, x ≤ z. Hence x ≤′ z. Suppose x ≤ y and y ≤ r and s ≤ z. Then x ≤′ z. Suppose

x ≤ r, s ≤ y and y ≤ z. Then x ≤ r and s ≤ z. Hence x ≤′ z. Suppose x ≤ r and s ≤ y and

y ≤ r and s ≤ z. This is impossible because s ≤ r which is a contradiction. Therefore, ≤′ is

transitive. Since r ≤ r and s ≤ s, r ≤′ s. Let
∼
≤ be an order relation on X such that ≤⊂

∼
≤ and

(r, s) ∈
∼
≤. Let (x, y) ∈ X ×X such that x ≤ r and s ≤ y. Then, (x, r), (r, s), (s, y) ∈

∼
≤ Since

∼
≤

is transitive, (x, y) ∈
∼
≤. Hence ≤′⊂

∼
≤. It follows that ≤′ is the finest order relation on X which

is strictly coarser than ≤.

�

Theorem 1.2.4. Let (X,≤) be an ordered set. Then ≤ is a coarsest order relation on X if

and only if ≤ is linear.
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Proof. Suppose ≤ is a coarsest order relation on X. Let r, s ∈ X. If r � s and s � r, then

by the previous theorem, ≤ is not a coarsest order relation on X. Therefore r ≤ s or s ≤ r.

Hence ≤ is linear.

To prove the converse implication, suppose ≤ is linear. Let ≤′ be an order relation on X such

that ≤ ⊂ ≤′. Let (r, s) ∈≤′. If r = s, (r, s) ∈≤. Suppose r 6= s. Since ≤ is linear, (r, s) ∈≤.

(s, r) ∈≤ leads to (s, r) ∈≤′ which is not possible. Therefore (r, s) ∈≤. Thus ≤′⊂≤ and this

means ≤=≤′. Hence ≤ is maximal. �

Theorem 1.2.5. Let ≤ be an order relation on X. Then
⋂
≤⊂≤1
≤1 linear

≤1=≤ .

Proof. Let
∼
≤:=

⋂
≤⊂≤1
≤1 linear

≤1 .

∼
≤ exists because by theorems 1.2.2 and 1.2.4 there exists an order relation which is coarser

than ≤ which is linear. Clearly, ≤ ⊂
∼
≤ . Let r, s ∈ X such that r � s and s � r. There

exists an order relation ≤′ on X such that ≤ ⊂ ≤′ and r ≤′ s. There exists a linear order

≤1 such that ≤′ ⊂ ≤1. Then r ≤1 s. This implies s �1 r. Similarly, there exists an order

relations ≤′′ on X such that ≤ ⊂ ≤′′ and s ≤′′ r. There exists a linear order ≤2 such that

≤′′ ⊂ ≤2. Since s ≤′′ r, s ≤2 r This implies r �2 s. Therefore, (r, s), (s, r) /∈
∼
≤. This means

that X2− ≤ ⊂ X2−
∼
≤. Therefore,

∼
≤ ⊂ ≤ and hence

∼
≤ = ≤. �

The following will be used in this section.

Definition 1.2.7. Let (X,≤) be an ordered set and a ∈ X. Then,

s(a) = {x ∈ X|x < a}, s(a) = {x ∈ X|x ≤ a},

where s(a) is called the initial segment determined by a and s(a) is called the weak initial

segment determined by a according to, for example, (Halmos, 1960).

Clearly, s(a) = s(a)− {a}.

Definition 1.2.8. Let (X,≤) be an ordered set.

A ⊂ X a section of X ⇐⇒ s(a) ⊂ A for all a ∈ A.

In some books, sections are also called down sets.
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Remark. (1) s(a), s(a) are sections.

Proof. Let x ∈ s(a) and y ∈ X such that y ≤ x. Since x < a, y < a. Hence y ∈ s(a).

Therefore s(a) is a section. The proof for s(a) is similar. �

(2) {s(a)| a ∈ X} is isomorphic to X.

Proof. Define ϕ : X → {s(a)| a ∈ X} defined by ϕ(a) = s(a). Let a, b ∈ X with a ≤ b.

Let x ∈ X with x ≤ a. Then, by transitivity, x ≤ b. Hence ϕ(a) ⊂ ϕ(b). Let a, b ∈ X with

ϕ(a) = ϕ(b). Since a ∈ ϕ(a) = ϕ(b), a ≤ b. Since b ∈ ϕ(b) = ϕ(a), b ≤ a. Hence a = b.

Thus ϕ is injective. It is clear from the definition of ϕ that ϕ is surjective. Therefore ϕ is

an isomorphism. �

Proposition 1.2.5. Let (X,≤) be an ordered set and (Ai)I a non-empty family of sections of

(X,≤). Then
⋂
I

Ai and
⋃
I

Ai are sections of (X,≤).

Proof. Let a ∈
⋂
I

Ai and x ∈ X such that x ≤ a. Let j ∈ I. Then a ∈ Aj. Since x ≤ a and Aj

is a section, x ∈ Aj. Hence x ∈
⋂
I

Ai. Therefore
⋂
I

Ai is a section of X.

Let a ∈
⋃
I

Ai and x ∈ X such x ≤ a. Then there exists j ∈ I such that a ∈ Aj. Since x ≤ a

and Aj is a section, x ∈ Aj. Hence x ∈
⋃
I

Ai. Therefore
⋃
I

Ai is a section of X. �

There is an interesting relationship between linear orders on a set X and maximal chains of

the powerset of X. According to (Lüneburg, 1989), Hessenberg observed this in 1906. It seems

that Hessenberg has never published this fact.

Theorem 1.2.6. (1) Let (X,≤) be a linearly ordered set. Then the set of all sections of (X,≤)

is a maximal chain of P(X).

(2) Let X be a set and Γ a maximal chain of P(X). If x, y ∈ X, consider

x ≤ y ⇐⇒ if A ∈ Γ such that y ∈ A, then x ∈ A.

≤ is a linear order and Γ is the set of all the sections of (X,≤).

Proof. (1) Let

Γ := {A ⊂ X| A a section of (X,≤)}.
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Let A,B ∈ Γ such that A 6⊂ B. Then there exists z ∈ A − B. Since z ∈ A and A is a

section of X, s(z) ⊂ A. Since z /∈ B and B is a section, every element of B is smaller

than z. Hence B ⊂ s(z). Therefore, B ⊂ A. Thus Γ is a chain. Let D ⊂ X such that

Γ∪ {D} is a chain. Let d ∈ D. Since s(d) is a section of X, s(d) ∈ Γ. Since Γ∪ {D} is a

chain, s(d) ⊂ D or D ⊂ s(d). Since d /∈ s(d) and d ∈ D, D ⊂ s(d) is not possible. Hence

s(d) ⊂ D. Therefore D is a section. Thus Γ∪ {D} = Γ. Therefore, Γ is a maximal chain

of P(X).

(2) By proposition 1.4.5, Ix ∈ Γ. If x, y ∈ A, then x ≤ y if an only if if every section which

contains y also contains x. Let x, y ∈ X such that x ≤. Since {A ∈ Γ| A ∈ A} ⊂ {A ∈
Γ| x ∈ A}, Ix ⊂ Iy. Suppose Ix ⊂ Iy. Let A ∈ Γ such that y ∈ A. Then Iy ⊂ A. Therefore

x ∈ A. Hence x ≤ y. This means x ≤ y ⇐⇒ Ix ⊂ Iy. Since Ix ⊂ Ix, x ≤ x for all x ∈ X.

Therefore ≤ is reflexive. Suppose x, y ∈ X such that x ≤ y and y ≤ x. Since Ix ⊂ Iy and

Iy ⊂ Ix, Ix = Iy. Consider Ix − {x}. Let D ∈ Γ. Suppose x ∈ D. Then Ix ⊂ D which

implies Ix − {x} ⊂ D. Suppose x /∈ D. Since Ix and D are comparable, D ⊂ Ix. Since

x /∈ D, D ⊂ Ix − {x}. This implies that Ix − {x} ∈ Γ. Similarly, Iy − {y} ∈ Γ. Now

Ix − {x} ⊂ Iy − {y} or Iy − {y} ⊂ Ix − {x}. This is a contradiction if x 6= y. Therefore

x = y and hence ≤ is anti-symmetric. Suppose x, y, z ∈ X such that x ≤ y and y ≤ z.

Since Ix ⊂ Iy and Iy ⊂ Iz, Ix ⊂ Iz. Hence x ≤ z and this implies that ≤ is transitive.

Let x, y ∈ X. Since Ix, Iy ∈ Γ, Ix ⊂ Iy or Iy ⊂ Ix. Hence x ≤ y or y ≤ x. Therefore, ≤ is

linear. Let A ∈ Γ and x ∈ A. Then Ix ⊂ A. Therefore, A is a section of (X,≤).

�

The following theorems 1.2.7 and 1.2.8 are taken from Lüneburg (1989).

Theorem 1.2.7. Let X be a set and Γ a maximal chain of P(X). Let A ∈ Γ− {X}. Take

IA :=
⋂
X∈Γ
A(X

X.

Then IA = A or |IA − A| = 1.

Proof. It is clear that IA ⊃ A. Suppose IA 6= A. Let Y ∈ Γ. Since Γ is a chain, A and Y are

comparable. Therefore, Y ⊂ A or A ( Y . Hence Y ⊂ A or IA ⊂ Y . There exists x ∈ IA − A.

Since Y ∈ Γ, Y ⊂ A or A ∪ {x} ⊂ IA ⊂ Y. Therefore, A ∪ {x} and Y are comparable. Hence

Γ∪{A∪{x}} is a chain. Since Γ is a maximal chain, Γ∪{A∪{x}} = Γ. Therefore, A∪{x} ∈ Γ.

Since A ( A ∪ {x}, IA ⊂ A ∪ {x}. Since A ( IA, IA = A ∪ {x}. Therefore, |IA − A| = 1. �
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As stated earlier, well ordered sets are discussed in this study because of the articles of Hughes,

(Hughes, 1962–1964) and (Hughes, 1965-1966).

Definition 1.2.9. A well ordered set is an ordered set such that every non-empty subset has

a minimum.

Remark. Every well-ordered set is linearly ordered.

Proof. Let X be well-ordered. Let a, b ∈ X. Take Y := {a, b}. Y is a non-empty subset of

X. Since X is well-ordered, m :=min(Y ) = min{a, b} exists. If m = a, then a ≤ b. If m = b,

b ≤ a. Hence X is linearly ordered. �

Theorem 1.2.8. Let (X,≤) be a linearly ordered set. The following statements are equivalent.

a) (X,≤) is well-ordered.

b) If A is a section of (X,≤) and A 6= X, IA 6= A.

c) If A is a section of (X,≤) and A 6= X, |IA − A| = 1.

Proof. a)⇒ b) Suppose (X,≤) is well-ordered. Let A be a section of (X,≤) such that A 6= X.

Since X − A 6= ∅ and (X,≤) is well-ordered, s :=min(X − A) exists. Let Y be a section of

(X,≤) such that A ( Y . Then Y ∩ (X − A) 6= ∅. Let x ∈ Y ∩ (X − A). Then s ≤ x. Since Y

is a section and s ≤ x, s ∈ Y . This implies s ∈ IA. Since s /∈ A, IA 6= A.

b) ⇒ c) From theorem 1.2.7, |IA − A| = 1.

c) ⇒ a) Suppose |IA −A| = 1 for each section A of (X,≤) such that A 6= X. Let Y ⊂ X such

that Y 6= ∅. Take

B := {a ∈ X − Y | a ≤ x for all x ∈ Y }.

Let a ∈ B and b ∈ X such that b ≤ a. Let x ∈ Y . Since a ≤ x, b ≤ x. Assume b ∈ Y . Since

b ≤ a and a ≤ x for all x ∈ Y , a ≤ b. Hence a = b. This implies a ∈ Y which is a contradiction.

Therefore, b /∈ Y . Since b ∈ X − Y , b ∈ B. Therefore, B is a section. Since Y 6= ∅, B 6= X.

By hypothesis IB − B is a singleton, say IB − B = {z}. Let x ∈ Y . Suppose x ≤ z. Since IB

is a section and z ∈ IB, x ∈ IB. Since Y ∩B = ∅, x /∈ B. Therefore x = z. Hence z ≤ x for all

x ∈ Y . Since z /∈ B, z ∈ Y . Therefore z is a minimum of Y .

�

Theorem 1.2.9 (Transfinite induction). Let (X,≤) be a well-ordered set and I ⊂ X which has

the following property: if a ∈ X and s(a) ⊂ I, then a ∈ I. Then I = X
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Proof. Assume I 6= X. Then X − I 6= ∅. Since X is well-ordered, m := min(X − I) exists. Let

x ∈ s(m). Since x < m, x /∈ X − I. Since x ∈ X, x ∈ I. Therefore, s(m) ⊂ I. By hypothesis

m ∈ I. This is a contradiction because m ∈ X − I. Therefore I = X. �

The following theorem is of fundamental importance.

Theorem of Zermelo. Every set can be well-ordered.

The proofs of this theorem and the next theorem will be skipped.

Let W be a well-ordered set, X any set and a ∈ W . A function t : s(a) → X is called a

sequence in X of type a.

Transfinite recursion. Let f be a function with co-domain X whose domain is

the set of all sequences in X of type a for any a ∈ W . Then there exists exactly

one function U : W → X such that U(a) = f(U|s(a)) for all a ∈ W .

Definition 1.2.10. Let X be a set. A partition of X is a subset Π ⊂P(X) such that:

(1)
⋃
A∈Π

A = X

(2) If A, B ∈ Π, then A ∩B = ∅ or A = B

(3) ∅ /∈ Π

The elements of a partition are called components.

Note that the empty set is the partition of the empty set.

Definition 1.2.11. Let Π be a partition of a set X. A transversal or a complete system of

representatives of Π is a subset T ⊂ X such that |T ∩ A| = 1 for all A ∈ Π.

In the following theorem, the Axiom of Choice will be used. Therefore the axiom of choice is

stated.

Axiom of Choice.

Let (Xi)I be a family of non-empty sets. Then there exists a function f : I →
⋃
I

Xi

such that f(i) ∈ Xi for all i ∈ I.

f is also called a choice function. Zorn’s lemma is equivalent to the Axiom of Choice. This

means the following: If one assumes that Zorn’s lemma is true, one can prove the Axiom of

Choice and if one assumes that the Axiom of Choiche is true, one can prove Zorn’s lemma. For

a proof compare, for example, (Halmos, 1960).

The proof of the next theorem is an application of the Axiom of Choice.
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Theorem 1.2.10. Every partition has a transversal.

Proof. Let Π be a partition of X. (A)A∈Π is a family of non-empty sets because ∅ /∈ Π. By the

axiom of choice, there exists a function f : Π→ X such that f(A) ∈ A for all A ∈ Π. Choose

T := f(Π).

Clearly, T ⊂ X. Let A ∈ Π. Then f(A) ∈ A and f(A) ∈ T . Hence f(A) ∈ T ∩ A. Let

Z ∈ T ∩ A. Since Z ∈ T , there exists B ∈ Π such that f(B) = Z. Since Z ∈ B and

Z ∈ A, Z ∈ A ∩ B. Since A and B are components of a partition, A = B. Since Z = f(A),

T ∩ A = {f(A)}. Thus T is a transversal. �

1.2.3 Equipotent sets

Definition 1.2.12. Let X, Y be sets.

X is equipotent to Y :⇐⇒ there exists a bijection f : X → Y.

This means two sets are said to be equipotent if and only if they contain the same number of

elements. Note that this also makes sense if X and Y are infinite sets.

It is remarkable that the relation equipotent was studied long before set theory came into

existence. Set theory started in 1872 with an article of Georg Cantor. Around 1650, the physi-

cist Galilei published an article where it was verified that the set N of the natural numbers is

equipotent to the set Z of the integers, inspite of the fact that N is a proper subset of Z.

‘Equipotent’ is an equivalence relation on the class of all sets. Take note that the collection of

all sets is not a set. In particular, the equivalence class of a non-empty set is not a set.

If one must prove that two sets are equipotent, in many cases one uses the theorem of Schröder-

Bernstein. The proof of this theorem will be skipped here.

Schröder-Bernstein theorem (Halmos, 1960). Let X and Y be sets such that X

is equipotent to a subset of Y and Y is equipotent to a subset of X. Then X and

Y are equipotent.

The theorem of Schröder-Bernstein is a theorem about arbitrary sets. However the proof of

this theorem does not depend on the Axiom of Choice.

For the proof of the following theorem it will be used that if X and Y are any two sets, then

X is equipotent to a subset of Y or Y is equipotent to a subset of X.
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Definition 1.2.13. A set X is called countable if and only if it is equipotent to a subset of

N. If X is countable, then X is finite or equipotent to N. Sets which are equipotent to N are

called countably infinite or denumerable.

Theorem 1.2.11. Every infinite set contains a countably infinite subset.

Proof. Let X be infinite. Then X is equipotent to a subset of N or N is equipotent to a subset

of X. If X is equipotent to a subset of N, then X is countably infinite. Hence X is a countably

infinite subset of X. If N is equipotent to a subset of X, then X contains a countably infinite

subset. �

To prove the next theorem, some preparations are needed. In particular, the product theorem

of set theory is required.

Product Theorem of Set Theory.

If X is infinite, then X2 is equipotent to X.

The following proposition is a simple consequence of the product theorem.

Proposition 1.2.6. Let X be an infinite set.

1. Xn is equipotent to X for all n ∈ N. 2.
∞⋃
n=1

Xn is equipotent to X.

Proof. 1. Proof by induction on n.

X1 is equipotent to X.

Let n ∈ N and assume Xn is equipotent to X. Xn+1 is equipotent to Xn × X. Since Xn is

equipotent to X, Xn ×X is equipotent to X ×X. Since X ×X is equipotent to X, Xn+1 is

equipotent to X.

2. Since Xn is equipotent to X and X is equipotent to X × {n}, Xn is equipotent to X × {n}
for all n ∈ N. Therefore

∞⋃
n=1

Xn is equipotent to
∞⋃
n=1

(X×{n}) = X×N. Since X is infinite, N is

equipotent to a subset of X. Therefore,
∞⋃
n=1

Xn is equipotent to a subset of X×X. Since X×X

is equipotent to X,
∞⋃
n=1

Xn is equipotent to a subset of X. Since X is equipotent to X1 and

X1 ⊂
∞⋃
n=1

Xn, X is equipotent to a subset of
∞⋃
n=1

Xn. By the theorem of Schröder-Bernstein,

∞⋃
n=1

Xn is equipotent to X.

�
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The following notation will be used: if X is any set,

Fin(X) := {A ⊂ X| A finite}.

Theorem 1.2.12. If X is infinite, Fin(X) is equipotent to X.

Proof. Let f :
∞⋃
n=1

Xn → Fin(X) be defined by f(a) = {a1, · · · , am}

f(
∞⋃
n=1

Xn) = Fin(X) − {∅}. Hence Fin(X) − {∅} is equipotent to a subset of
∞⋃
n=1

Xn. Since

Fin(X) is infinite, Fin(X) is equipotent to Fin(X) − {∅}. Therefore, Fin(X) is equipotent to

a subset of
∞⋃
n=1

Xn. Since
∞⋃
n=1

Xn is equipotent to X, Fin(X) is equipotent to a subset of X.

x ∈ X 7→ {x} ∈ Fin(X) is injective. Therefore, X is equipotent to a subset of Fin(X). Thus

by the theorem of Schröder-Bernstein, Fin(X) and X are equipotent. �

The following fact will be used in the proof of the next theorem: the range of any function is

equipotent to a subset of the domain of the function.

The next theorem is known but not stated explicitly in books. It seems to be an interesting

theorem. Later in this study, it will be used to prove the theorem of Löwig.

Theorem 1.2.13. Let X be infinite and Γ a collection of finite subsets of X such that
⋃
A∈Γ

A =

X. Then Γ is equipotent to X.

Proof. By Theorem 1.2.12, Fin(X) is equipotent to X. Since Γ ⊂ Fin(X), Γ is equipotent to

a subset of X. In order to prove that X is equipotent to a subset of Γ, take

S := {A× {A}| A ∈ Γ}

and consider

C :=
⋃
B∈S

B = {(x,A)| A ∈ Γ, x ∈ A}.

Let x ∈ X. Since
⋃
A∈Γ

A = X, x ∈
⋃
A∈Γ

A. Therefore there exists A ∈ Γ such that x ∈ A.

Then ϕ(x,A) := x defines a function from C to X. It is clear that ϕ is surjective. Therefore,

X is equipotent to a subset of C. Let A ∈ Γ. Since Γ is infinite, by theorem 1.4.13, Γ

contains a subset B ⊂ Γ which is equipotent to N. Then B contains a subset B1 ⊂ B which

is equipotent to A. Since A is equipotent to a subset of Γ, there exist an injection ψ : A→ Γ.

(x,A) ∈ A × {A} → (ψ(x), A) ∈ Γ × Γ is injective because ϕ is injective. Since the elements

of S are disjoint in pairs, out of these functions, one makes an injection from C to Γ × Γ.

Therefore C is equipotent to a subset of Γ×Γ. Since Γ×Γ is equipotent to Γ, C is equipotent

to a subset of Γ. This implies that X is equipotent to a subset of Γ. Therefore, by the theorem

of Schröder-Bernstein, Γ is equipotent to X. �

16



1.3 Basic concepts from group theory and ring theory

For the definition of a vector space, one must know what groups and rings are. This section

contains the very basics from group theory and ring theory. Definitions in this section can be

found in (Cohn, 1974).

Definition 1.3.1. Let X be a set. A binary operation on X is a function · : X ×X → X. If

(a, b) ∈ X ×X, the image of (a, b) under · is denoted by ab.

A setX together with a binary operation · is called a groupoid and is denoted by (X, ·) or justX.

Binary operations are also denoted by +. Depending on the notation, one has multiplicatively

written groupoids and additively written groupoids. The concept of a binary operation is a

very general concept, on a finite set X, there exists |X||X|2 binary operations. Therefore one is

interested in properties a binary operation may have.

Definition 1.3.2. An identity element of a groupoid (X, ·) is an element e ∈ X such that

ex = x = xe for all x ∈ X.

Proposition 1.3.1. Every groupoid (X, ·) has at most one identity element.

Proof. Suppose e, e′ ∈ X are identity elements. Then ee′ = e′ because e is an identity element.

Also, ee′ = e because e′ is an identity element. Therefore, e = e′. �

One of the most important properties of a binary operation may have is associativity.

Definition 1.3.3. Let (X, ·) be a groupoid. · is associative if and only if a(bc) = (ab)c for all

a, b, c ∈ X.

In a groupoid, a product of more than two elements is not defined. To make it meaningful, one

must insert brackets. The brackets constitute an instruction how to compute the product. If

a binary operation is associative, then a product of more than two factors does not depend on

the manner of computation.

Definition 1.3.4. A semigroup is an associative groupoid. A monoid is a semigroup with an

identity element.

Definition 1.3.5. Let (X, ·) be a monoid and a ∈ X. An inverse of a ∈ X is an element b ∈ X
such that ab = e = ba.
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Proposition 1.3.2. Every element of a monoid (X, ·) has at most one inverse.

Proof. Let a ∈ X and suppose b, b′ ∈ X are inverses of a. Then b = be = b(ab′) = (ba)b′ =

eb′ = b′. �

Definition 1.3.6. A group G is a set with a binary operation · such that:

i) · is associative

ii) there exists e ∈ G such that ae = a for all a ∈ G

iii) for each a ∈ G there exists b ∈ G such that ab = e.

In most books of algebra, ii) and iii) above are stated as follow:

ii) G has an identity element.

iii) Every element of G has an inverse.

This is unnecessary because of the next proposition.

Proposition 1.3.3. Every group has exactly one identity element and every element of the

group has exactly one inverse.

Proof. Let G be a group.The uniqueness property follow from propositions 1.3.1 and 1.3.2. Let

a ∈ G. By iii), there exists b ∈ G such that ab = e. Again by iii), there exists c ∈ G such that

bc = e. Then ec = (ab)c = a(bc) = ae = a. Multiplying this relation by e from the left, one

gets ea = e(ec) = (ee)c = ec = a. Therefore, e is an identity element. Since ec = a, c = a.

Therefore b is an inverse of a. �

If M be a monoid and a ∈ M , then a is called invertible or a unit if the inverse of a exists.

The inverse of a is denoted by a−1. The invertible elements of M form a group U(M) called

the units group of M .

Let G be a group. A subset of G is called a complex.

In the following definition, ⊂ means subset of.

Definition 1.3.7. Let X, Y ⊂ G.

XY := {xy| x ∈ X, y ∈ Y }
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is called the complex product of X and Y .

The complex product is associative.

Proposition 1.3.4. Let G be a group and S ⊂ G. Then (S, ·) is a group if and only if i)

xy ∈ S for all x, y ∈ S, ii) x−1 ∈ S for all x ∈ S and iii) S 6= ∅.

Proof. Suppose S is a group. Then ab ∈ S for all a, b ∈ S. Since S is a group, there exists an

identity e′ ∈ S. Multiplying e′e′ = e′ by e
′−1 results in e′ = e. Let x ∈ S. There exists y ∈ S

such that xy = e′. Since e′ = e, xy = e. Hence y = x−1. Therefore x−1 ∈ S. Since S is a

group, S 6= ∅. To prove the converse inclusion, because of i), · is a binary operation on S and

it is associative. Since S 6= ∅, there exists x ∈ S. Since x−1 ∈ S, xx−1 = e ∈ S. Every element

of S has an inverse. Therefore, (S, ·) is a group.

�

Definition 1.3.8. Let G be a group. A subgroup of G is a subset S of G such that:

i) xy ∈ S for all x, y ∈ S

ii) x−1 ∈ S for all x ∈ S

iii) S 6= ∅

If S is a subgroup of G, one writes S ≤ G.

Definition 1.3.9. Let G be a group, S ≤ G and x ∈ G.

xS := {x}S = {xs|s ∈ S}, Sx := S{x} = {sx|s ∈ S}

xS is called the left coset of S represented by x and Sx is called the right coset of S represented

by x.

It is simple to prove that the left cosets of G and the right cosets of G form partitions of G.

In general these two partitions are not equal. They are equal if and only if the subgroup is a

normal subgroup.

Definition 1.3.10. Let G be a group. A normal subgroup of G is a subgroup N ≤ G such

that xN = Nx for all x ∈ G.

If N is a normal subgroup of G one writes N EG.
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A group (G, ·) is called abelian if · is commutative. That is ab = ba for all a, b ∈ G. It is

evident that every subgroup of an abelian group is normal.

In group theory, one normally uses exponential notations. If x is an element of a group G and

α is a function with domain G, then xα denotes the image of x with respect to α.

Definition 1.3.11. Let G and H be groups. A homomorphism from G to H is a function

α : G→ H such that (xy)α = xαyα for all x, y ∈ G.

An isomorphism from G to H is a bijective homomorphism from G to H.

G ∼= H (G isomorphic to H) ⇐⇒ there exists an isomorphism from G to H.

The basic facts about isomorphisms are the following.

Remarks.

1. Let α : G→ H be an isomorphism. Then α−1 : H → G is an isomorphism.

Proof. α−1 : H → G is bijective. Let x, y ∈ H.

(xy)α
−1

= ((xα
−1

)α(yα
−1

)α)α
−1

= ((xα
−1
yα
−1

)α)α
−1

= xα
−1
yα
−1

. �

2. Let G, H, K be groups, α : G → H and β : H → K be isomorphisms. Then αβ : G → K

is an isomorphism.

Proof. αβ is bijective since it is a composition of two bijective functions. (xy)αβ = ((xy)α)β =

(xαyα)β = (xα)β(yα)β = xαβyαβ for all x, y ∈ G. �

3. Let G be a group. id : G→ G is an isomorphism.

What has been stated above means that “isomorphic” is an equivalence relation.

Definition 1.3.12. Let α : G→ H be a homomorphism.

im α := Gα, kerα := {x ∈ G| xα = e}.

im α is called the image of α and kerα is called the kernel of α.

Remarks.

1. im α ≤ H.

2. {e}α−1
= {x ∈ G| xα ∈ {e}} = {x ∈ G| xα = e} = kerα.

3. α injective ⇐⇒ kerα = {e}.
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Proof. (⇒) Suppose α is injective. Let x ∈ kerα. Then xα = e = eα. Since α is injective,

x = e. Therefore, kerα = {e}.
(⇐) Suppose kerα = {e}. Let x, y ∈ G such that xα = yα. Then e = (xα)−1xα = (xα)−1yα =

(x−1y)α. Since x−1y ∈ kerα = {e}, x−1y = e. Hence x = y. �

4. kerαEG

Proof. Let K := kerα and x ∈ G. Let a ∈ K. (x−1ax)α = (x−1)αaαxα = (x−1)αexα =

(x−1)αxα = e. Hence x−1ax ∈ K. This implies x−1Kx ⊂ K. Hence Kx ⊂ xK. This is

also true for x−1: Kx−1 ⊂ x−1K. Multiplying by x from both sides: xK ⊂ Kx. Therefore

Kx = xK. �

Definition 1.3.13. Let G be a group and suppose N EG.

G/N := {xN | x ∈ G}.

G/N with the complex product as the binary operation is a group called the factor group or

quotient group of G modulo N .

Let G be a group and X ⊂ G. The intersection of all subgroups of G which contain X is also

a subsgroup of G. This subgroup is denoted 〈X〉 and is called the subgroup generated by X.

〈X〉 is the smallest subgroup of G containing X.

Definition 1.3.14. A cyclic group is a group that can be generated by a single element.

Let G be a group and x ∈ G.

< x >=< {x} >=
⋂

x∈S≤G

S.

Remarks.

1. Let x ∈ Z. Then < x >= {kx| k ∈ Z}.

Proof. Since x ∈< x > and < x > is a subgroup, kx ∈< x > for all k ∈ Z. Therefore,

{kx| k ∈ Z} ⊂< x >. Let k, l ∈ Z. Then kx − lx = (k − l)x and −kx = (−k)x. Therefore,

{kx| k ∈ Z} is a subgroup of Z which contains x. Now < x >⊂ {kx| k ∈ Z} and hence the

equality follows. �

2. Every cyclic group is abelian.
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Proof. Suppose G is cyclic. Then there exists x ∈ G such that G =< x >. Let a, b ∈ G. Then

there exists r, s ∈ Z such that a = xr, b = xs. ab = xrxs = xr+s = xs+r = xsxr = ba. �

If G is a group, then |G| is called the order of G. If G is infinite, one writes |G| =∞ and one

says that G is of infinity order.

Definition 1.3.15. Let G be a group and x ∈ G.

o(x) := | < x > |

is called the order of x.

The order of an element of a group is a natural number or infinity.

Definition 1.3.16. Let G be a group.

Aut G := {α : G→ G| α a bijective homomorphism}.

The elements of AutG are called automorphisms of G.

Definition 1.3.17. Let G be a group.

Z(G) := {a ∈ G| ax = xa for all x ∈ G}.

Z(G) is called the centre of G.

The centre of G is a normal subgroup of G.

Now a brief compilation of basic concepts about rings follows.

Definition 1.3.18. A ring is a set R with two binary operations +, · which satisfy the following

conditions:

1. (R,+) is an abelian group

2. (R, ·) is a monoid

3. a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.
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Remarks.

(1) If · is commutative, R is called commutative.

(2) (R,+) is called the additive group of R and denoted by R+. The zero of (R,+) is called

the zero of R and denoted by 0.

(3) The identity of (R, ·) is called the identity of R and denoted by 1.

(4) If a ∈ R, then x ∈ R 7→ ax ∈ R and x ∈ R 7→ xa ∈ R are endormorphisms of R+. In

particular, a0 = 0 = 0a, a(−b) = −ab = (−a)b.

(5) Assume 1 = 0. Let x ∈ R. x = 1x = 0x = 0. Hence R = {0}. R = {0} is called a zero ring.

(6) Let a, b ∈ R such that ab = ba. Then (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k for all n ∈ N0.

Definition 1.3.19. The units of (R, ·) are called the units of the ring R. R× = {a ∈
R| a is a unit} is called the units group of the ring.

Simple examples are, units group of R is R− {0}, units group of Z is {−1, 1}.

Definition 1.3.20. Let a ∈ R.

a is a zero divisor of R ⇐⇒ a 6= 0 and there exists b ∈ R− {0} such that ab = 0 or ba = 0.

Definition 1.3.21. R is an entire ring ⇐⇒

{
(1) R 6= {0}
(2) R has no zero divisors.

Definition 1.3.22.

charR =

{
0 if oR+(1) =∞
oR+(1) if OR+(1) <∞

CharR is called the characteristic of R.

Definition 1.3.23. Let A be an additively written abelian group.

EndA := {α : A→ A| α an endomorphism}.

If α, β ∈ EndA, then α+ β, αβ : A→ A are defined by xα+β = xα + xβ, xαβ = (xα)β. EndA

with these operations is a ring called the endomorphism ring of an abelian group A.

Definition 1.3.24. A subring of R is a subset S ⊂ R such that

1. x− y ∈ S for all x, y ∈ S,
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2. xy ∈ S for all x, y ∈ S,

3. 1 ∈ S.

Remark. Every subring of a ring is a ring.

Proof. Let R be a ring and S a subring of R. Since xy ∈ S for all x, y ∈ S, · is a binary

operation on S. Since 1 ∈ S, 0 = 1 − 1 ∈ S. If y ∈ S, −y = 0 − y ∈ S. If x, y ∈ S,

x+ y = x− (−y) ∈ S. Addition is a binary operation on S. Since S is a subroup of R+, (S,+)

is an abelian group. (S, .) is a monoid. The two distributive laws are true. Therefore S is a

ring. �

Definition 1.3.25. Let R, S be rings. A homomorphism is a function f : R → S which has

the following properties:

1. f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x, y ∈ R,

2. f(1) = 1.

Remarks. Suppose f : R→ S is a homomorphism.

(1) Since f(x + y) = f(x) + f(y) for all x, y ∈ R, f : R+ → S+ is a homomorphism. In

particular, f(0) = 0, f(−x) = −f(x) and f(kx) = kf(x) (x ∈ R, k ∈ Z).

(2) Let a ∈ R×. Then aa−1 = 1 and a−1a = 1.

1 = f(1) = f(aa−1) = f(a)f(a−1) and 1 = f(1) = f(a−1a) = f(a−1)f(a). Hence f(a) ∈ S×.

x ∈ R× 7→ f(x) ∈ S× is a homomorphism. In particular f(a−1) = f(a)−1 for all a ∈ R×.

Proposition 1.3.5. Let R, S be rings and f : R→ S a ring homomorphism.

(a) If T ⊂ R is a subring, then f(T ) ⊂ S is a subring.

(b) If V ⊂ S is a subring, then f−1(V ) ⊂ R is a subring.

Proof. (a) Suppose T is a subring of R. Let y, y′ ∈ f(T ). Then there exist x, x′ ∈ T such that

f(x) = y and f(x′) = y′. Since T is a subring, x−x′ ∈ T and f(x−x′) = f(x)−f(x′) = y−y′.
Hence, y − y′ ∈ f(T ). Since T is a subring, xx′ ∈ T . f(xx′) = f(x)f(x′) = yy′. Hence

yy′ ∈ f(T ). Since 1 ∈ T , 1 = f(1) ∈ f(T ).

(b) Suppose V is a subring of S. Let x, y ∈ f−1(V ). Since f(x), f(y) ∈ V and V is a subring,

f(x− y) = f(x)− f(y) ∈ V . Hence x− y ∈ f−1(V ). This means that f(xy) = f(x)f(y) ∈ V .

Hence xy ∈ f−1(V ). Since f(1) = 1 ∈ V, 1 ∈ f−1(V ).

�
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Definition 1.3.26. Let f : R→ S be a ring homomorphism.

imf := f(R), ker f := {x ∈ R| f(x) = 0}.

imf is called the image of f and ker f is called the kernel of f .

Remarks

1. im f is a subring of S.

2. ker f is the kernel of f : R+ → S+. Hence ker f is a subgroup of R+. If ker f is a subring

then S is a zero ring. The converse is also true.

Definition 1.3.27. An ideal of R is a subset I ⊂ R such that

1. x+ y ∈ I for all x, y ∈ I

2. If x ∈ I and r ∈ R, then rx, xr ∈ I

3. I 6= ∅

Remark.

f injective ⇐⇒ ker f = {0}.

The proof of this remark is done similarly as in group theory.

Proposition 1.3.6. Let R be a ring and (Iλ)Λ be a non empty family of ideals of R. Then⋂
Λ

Iλ is an ideal.

Proof. Let x, y ∈
⋂
Λ

Iλ. Since x, y ∈ Iλ and Iλ is an ideal, x + y ∈ Iλ for all λ ∈ Λ. Hence,

x + y ∈
⋂
Λ

Iλ. Let x ∈
⋂
Λ

Iλ and r ∈ R. Since x ∈ Iλ and Iλ is an ideal, rx, xr ∈ Iλ for all

λ ∈ Λ. Hence rx, xr ∈
⋂
Λ

Iλ. Since 0 ∈ Iλ for all λ ∈ Λ, 0 ∈
⋂
Λ

Iλ. �

Definition 1.3.28. Let X ⊂ R.

(X) :=
⋂

X⊂I⊂R
I ideal of R

I.

(X) is called the ideal generated by X.

Definition 1.3.29. Let a ∈ R. The ideal generated by {a} is called the principal ideal and

denoted by (a).
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Definition 1.3.30.

Z(R) := {z ∈ R| xz = zx for all x ∈ R}.

Z(R) is called the centre of R.

Remarks.

1. Z(R) is sometimes denoted by C(R).

2. Z(R) is a subring of R.

Proof. Let z, w ∈ Z(R). x(z − w) = xz − xw = zx − wx = (z − w)x for all x ∈ R. Hence

z − w ∈ Z(R). x(zw) = (xz)w = (zx)w = z(xw) = z(wx) = (zw)x for all x ∈ R. Hence

zw ∈ Z(R). Since x1 = x = 1x for all x ∈ R, 1 ∈ Z(R). Therefore Z(R) is a subring of R. �

Proposition 1.3.7. Let a ∈ Z(R). Then (a) = {ra| r ∈ R}

Proof. Take

I := {ra| r ∈ R}.

Let x, y ∈ I. Then there exist r, s ∈ R such that x = ra, y = sa. x+y = ra+sa = (r+s)a ∈ I.

Let t ∈ R. tx = t(ra) = (tr)a ∈ I, xt = (ra)t = r(at) = r(ta) = (rt)a ∈ I. a = 1a ∈ I. Thus I

is an ideal of R. Since a ∈ I, (a) ⊂ I. Let r ∈ R. Since (a) is an ideal containing a, ra ∈ (a).

Hence I ⊂ (a). Therefore, I = (a). �

Definition 1.3.31. Let R be a ring and I an ideal of R. The cosets of I are called the residue

classes of I. The set

R/I := {a+ I| a ∈ R}

of all reisdue classes of I with the following operations

(a+ I) + (b+ I) := a+ b+ I

(a+ I)(b+ I) := ab+ I where a, b ∈ R

is called the residue class ring of R modulo I.

Zn := Z/(n) is called the residue class ring of Z modulo n.

Proposition 1.3.8. Let n ∈ N. Then Zn = {0 + (n), 1 + (n), · · · , n− 1 + (n)}. Furthermore,

|Zn| = n.

26



Proof. {0 + (n), 1 + (n), · · · , n − 1 + (n)} ⊂ Zn is clear. Let k ∈ Z. Division with remainder:

There exist q, r ∈ Z such that 0 ≤ r < n and k = qn + r. k + (n) = qn + r + (n) = r + (n).

To prove that |Zn| = n, let 0 ≤ k, l ≤ n − 1 and k + (n) = l + (n). Then k − l ∈ (n). Since

n|k − l and |k − l| < n, k − l = 0. Hence k = l. �

Definition 1.3.32. A division ring is a ring R such that R× = R−{0}. A field is a commutative

division ring.

Remark. Every division ring is an entire ring.

Proof. Let R be a division ring. Since R× = R − {0}, R 6= {0}. Let a, b ∈ R such that

ab = 0 and a 6= 0. 0 = a−1(ab) = (a−1a)b = b. Similarly, if ab = 0 and b 6= 0, then a = 0.

Therefore R has no zero divisors. �

Remark. If n is a prime then Zn is a field.

Proof. Suppose n is a prime. Let 1 ≤ k ≤ n− 1. Since gcd{k, n} = 1, there exist r, s ∈ Z such

that rk+ sn = 1. 1 + (n) = rk+ sn+ (n) = rk+ (n) + sn+ (n) = rk+ (n) = (r+ (n))(k+ (n)).

Therefore, k + (n) is a unit. �

Definition 1.3.33. Let p ∈ N be a prime.

GF (p) := Zp

is called Galois field of order p.

1.4 Basic concepts from Linear Algebra

The starting point is the definition of a vector space.

Definition 1.4.1. Let K be a division ring and V an additively written abelian group. V is

called a K-left vector space if an operation (λ, x) ∈ K × V → λx ∈ V is given which satisfies

the following conditions:

(i) λ(x+ y) = λx+ λy (ii) (λ+ µ)x = λx+ µx

(iii) (λµ)x = λ(µx) (iv) 1x = x

for all λ, µ ∈ K and x, y ∈ V .
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The fact that the operation (λ, x) ∈ K × V → λx ∈ V is given which satisfies (i)-(iv) is ex-

pressed saying that the division ring K operates on the abelian group V . This is a classical

description of a vector space due to E. Noether.

The zero of the abelian group (V,+) is called the zero vector of V and denoted by 0.

Definition 1.4.2. Let V be a K-left vector space and λ ∈ K. Let h(λ) : V → V be defined by

h(λ)(x) := λx.

h(λ) is called the homothety with factor λ.

hλ is sometimes used for h(λ).

Theorem 1.4.1. (1) h : K →End(V,+) is a ring homomorphism. Furthermore, V 6= {0} if

and only if h is injective.

(2) C(h(K)) is the ring of the endomorphisms of the vector space V .

Proof. (1) Let x, y ∈ V and λ ∈ K. h(λ)(x + y) = λx + λy = h(λ)(x) + h(λ)(y). Hence

h(λ) ∈End(V,+). Let λ, µ ∈ K. h(λ + µ)(x) = (λ + µ)(x) = λx + µx = h(λ)(x) + h(µ)(x) =

(h(λ) + h(µ))(x) for all x ∈ V . Hence h(λ + µ) = h(λ) + h(µ). h(λµ)(x) = (λµ)x = λ(µx) =

h(λ)(h(µ)x) = (h(λ) ◦ h(µ))(x) for all x ∈ V . Hence h(λµ) = h(λ) ◦ h(µ). h(1)(x) = 1x =

x =idV (x) for all x ∈ V . Hence h(1) =idV . Therefore, h : K →End(V,+) is a ring homomor-

phism.

Suppose h is injective. Since K is a division ring, 0, 1 ∈ K and 0 6= 1. Since h(0) = 0 and

h(1) = idV , V 6= {0}. Suppose V 6= {0}. Since h is a ring homomorphism, kerh is an ideal of

K. Since h(1) = idV , 1 /∈ kerh. Therefore kerh 6= K. Since (0) and K are the only ideals of

K, kerh = (0). Therefore, h is injective.

(2) Let f ∈ C(h(K)). Since f ∈End(V,+), f(x + y) = f(x) + f(y) for all x, y ∈ V . Let

λ ∈ K and x ∈ V . f(λx) = f(h(λ)(x)) = (f ◦ h(λ))(x) = (h(λ) ◦ f)(x) = h(λ)(f(x)) = λf(x).

Therefore f is linear. Now suppose f : V → V is linear. Since f(x + y) = f(x) + f(y) for

all x, y ∈ V , f ∈End(V,+). Let λ ∈ K. (f ◦ h(λ))(x) = f(h(λ)(x)) = f(λx) = λf(x) =

h(λ)(f(x)) = (h(λ) ◦ f)(x) for all x ∈ V . Hence f ◦ h(λ) = h(λ) ◦ f . Therefore f ∈ C(h(K)).

�
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A non-zero vector space is the same as a non-zero abelian group together with a subring of the

endomorphism ring of the abelian group which is a division ring. This is sometimes used as a

description of a vector space.

Theorem 1.4.2. (1) If λ ∈ K and x ∈ V , then

λx = 0⇐⇒ λ = 0 or x = 0

(2) Let λ ∈ K and x ∈ V . Then (−λ)x = −λx = λ(−x).

Proof. (1) ⇐ Suppose λ = 0. Let a ∈ V . If α, β ∈ K, (α + β)a = αa + βa. Hence

α ∈ K → αa ∈ V is a homomorphism from K+ to (V,+). Therefore 0a = 0. Let µ ∈ K

If a, b ∈ V , µ(a + b) = µa + µb. Hence a ∈ V → µa ∈ V is an endomorphism. Therefore,

µ0 = 0.

⇒ Suppose λx = 0 and λ 6= 0. Since K is a division ring, λ−1 exists. 0 = λ−1(λx) = (λ−1λ)x =

1x = x.

(2) λx+ (−λ)x = (λ+ (−λ))x = 0x = 0. Hence (−λ)x = −λx.

λx+ λ(−x) = λ(x+ (−x)) = λ0 = 0. Hence λ(−x) = −λx. �

Definition 1.4.3. Let V be a K-left vector space. A subspace S of V is a subset S ⊂ V such

that

(1) x+ y ∈ S for all x, y ∈ S,

(2) λx ∈ S for all λ ∈ K, x ∈ S,

(3) S 6= ∅.

If S is a subspace of V , one writes S ≤ V . S < V means that S is a proper subspace of V .

Remark. Every subspace of a K-left vector space is a K-left vector space.

Proof. Suppose S ≤ V . Because of (1), addition is a binary operation on S. This operation is

associative and commutative. Since S 6= ∅, there exists x ∈ S. 0 = 0x ∈ S and a + 0 = a for

all a ∈ S. Let a ∈ S. Then −a = (−1)a ∈ S and a+ (−a) = 0. Therefore (S,+) is an abelian

group. (λ, x) ∈ K × S → λx ∈ S satisfies the four axioms of a vector space. �

Theorem 1.4.3. Let Γ be a non-empty set of subspaces of V . Then
⋂
S∈Γ

S is a subspace of V .
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Proof.
⋂
S∈Γ

S ⊂ V because Γ 6= ∅. Let x, y ∈
⋂
S∈Γ

S. Then x, y ∈ S for all S ∈ Γ. Since

S ≤ V, x + y ∈ S for all S ∈ Γ. Hence x + y ∈
⋂
S∈Γ

S. Let λ ∈ K and x ∈
⋂
S∈Γ

S. Since

x ∈ SandS ≤ V, λx ∈ S for all S ∈ Γ. Hence λx ∈
⋂
S∈Γ

S. Since 0 ∈ S for all S ∈ Γ, 0 ∈
⋂
S∈Γ

S.

Hence
⋂
S∈Γ

S 6= ∅. Therefore,
⋂
S∈Γ

S ≤ V . �

The following definition is as it is in (Greub, 1967).

Definition 1.4.4. Let V be a K-left vector space and X ⊂ V .

[X] :=
⋂

X⊂S≤V

S

[X] is called the span of X or the subspace generated by X.

Remark. [∅] = {0}

Proof. {0} is a subspace and ∅ ⊂ {0}. Hence [∅] ≤ {0}. Since [∅] 6= ∅, [∅] = {0}. �

Let V be a vector space and X, Y ⊂ V . Then one defines X + Y as follows

X + Y = {x+ y| x ∈ X, y ∈ Y }.

If S, T are subspaces of V then S + T is a subspace of V .

Theorem 1.4.4. Let S, T ≤ V . Then S + T ≤ V and S + T = [S ∪ T ].

Proof. Let x, x′ ∈ S + T . Then there exist s, s′ ∈ S, t, t′ ∈ T such that x = s+ t, x′ = s′ + t′.

x+x′ = (s+ t) + (s′+ t′) = (s+ s′) + (t+ t′). Since s+ s′ ∈ S and t+ t′ ∈ T , x+x′ ∈ S+T. Let

λ ∈ K. λx = λs+λt. Since λs ∈ S and λt ∈ T, λx ∈ S+T . S+T 6= ∅ as S, T 6= ∅. Therefore,

S + T ≤ V . Since S ⊂ S + T and T ⊂ S + T, S ∪ T ⊂ S + T . Since S + T is a subspace,

[S ∪ T ] ≤ S + T . It is clear that S, T ≤ [S ∪ T ]. Since [S ∪ T ] is a subspace, S + T ≤ [S ∪ T ].

Therefore, S + T = [S ∪ T ]. �

Remark. Let R, S, T ≤ V . Then R ∩ S +R ∩ T ≤ R ∩ (S + T ).

Proof. Since S ≤ S + T, R ∩ S ≤ R ∩ (S + T ). Since T ≤ S + T, R ∩ T ≤ R ∩ (S + T ). Since

R ∩ (S + T ) is a subspace, R ∩ S +R ∩ T ≤ R ∩ (T + S). �

Theorem 1.4.5 (Dedekind’s rule). Let R, S, T ≤ V . If S ≤ R, then

R ∩ (S + T ) = S +R ∩ T.
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Proof. Suppose S ≤ R. Since S ≤ R and S ≤ S + T, S ≤ R ∩ (S + T ). Since R ∩ T ≤ R and

R∩T ≤ S+T, R∩T ≤ R∩(S+T ). Since R∩(S+T ) is a subspace, S+R∩T ≤ R∩(S+T ). Let

x ∈ R∩(S+T ). Since x ∈ R and s ∈ S ≤ R, t ∈ R. Since t ∈ R∩T and x = s+t, x ∈ S+R∩T .

Therefore, R ∩ (S + T ) ≤ S +R ∩ T . �

Theorem 1.4.6. Let X ⊂ V . If X 6= ∅, then

[X] = {
n∑
i=1

λixi|λ1, · · · , λn ∈ K, x1, · · · , xn ∈ X}.

Proof. Let

S := {
n∑
i=1

λixi|λ1, · · · , λn ∈ K, x1, · · · , xn ∈ X}.

Now it will be shown that [X] = S.

Let a, b ∈ S. Then there exist λ1, · · · , λm, µ1, · · · , µn ∈ K and x1, · · · , xm, y1, · · · , yn ∈ X such

that a =
∑m

i=1 λixi, b =
∑n

i=1 µiyi. a + b =
∑m

i=1 λixi +
∑n

i=1 µiyi is a linear combination

of elements of X. Therefore a + b ∈ S. Let α ∈ K. αa = α
∑m

i=1 λixi =
∑m

i=1 α(λixi) =∑m
i=1(αλi)xi ∈ S. S 6= ∅ as X 6= ∅. Hence S ≤ V . let a ∈ S. Then there exist λ1, · · · , λn ∈

K, x1, · · · , xn ∈ X such that a =
∑n

i=1 λixi. Since x1, · · · , xn ∈ [X] and [X] ≤ V , a ∈ [X].

Hence S ≤ [X]. Since X ⊂ S and S ≤ V , [X] ≤ S. Therefore S = [X]. �

Definition 1.4.5. Let V be a K-left vector space. A spanning set of V is a subset S ⊂ V such

that [S] = V .

Lemma 1.4.7. Let V be a K-left vector space.

(a) [X ∪ Y ] = [X] + [Y ] for all X, Y ⊂ V .

(b) If Γ is a non-empty chain of subspaces of V , then
⋃
U∈Γ

U is a subspace of V .

(c) If Γ is a non-empty chain of subsets of V , then [
⋃
A∈Γ

A] =
⋃
A∈Γ

[A]

Proof. (a) Since X ⊂ X∪Y , [X] ≤ [X∪Y ]. Similarly, [Y ] ≤ [X∪Y ]. Since [X∪Y ] is a subspace,

[X] + [Y ] ≤ [X ∪ Y ]. Since X ⊂ [X] ≤ [X] + [Y ] and Y ⊂ [Y ] ≤ [X] + [Y ], X ∪ Y ⊂ [X] + [Y ].

SinceX∪Y ⊂ [X]+[Y ] and [X]+[Y ] is a subspace, [X∪Y ] ≤ [X]+[Y ]. Hence [X∪Y ] = [X]+[Y ]

(b) Let x, y ∈
⋃
U∈Γ

U and λ ∈ K. Then there exists U1, U2 ∈ Γ such that x ∈ U1 and y ∈ U2.

Since Γ is a chain, U1 ≤ U2 or U2 ≤ U1. Then x, y ∈ U1 or x, y ∈ U2. Since U1 and U2 are

subspaces, x+y ∈ U1 or x+y ∈ U2. Since U1, U2 ⊂
⋃
U∈Γ

U, x+y ∈
⋃
U∈Γ

U . Since x ∈ U1, λx ∈ U1.
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Since U1 ⊂
⋃
U∈Γ

U, λx ∈
⋃
U∈Γ

U .
⋃
U∈Γ

U 6= ∅ and subspaces are non-empty.

(c) If B ∈ Γ, B ⊂
⋃
A∈Γ

A. Hence [B] ≤ [
⋃
A∈Γ

A] Therefore
⋃
A∈Γ

[A] ⊂ [
⋃
A∈Γ

A]. Let B,C ∈ Γ. Since

Γ is a chain, B ⊂ C or C ⊂ B. Hence [B] ≤ [C] or [C] ≤ [B]. Hence ([B])B∈Γ is a chain of

subspaces and nonempty. By b),
⋃
B∈Γ

[B] is a subspace. Let C ∈ Γ. Then C ⊂ [C] ⊂
⋃
B∈Γ

[B].

Hence
⋃
C∈Γ

C ⊂
⋃
B∈Γ

[B]. Since
⋃
B∈Γ

[B] is a subspace, [
⋃
C∈Γ

C] ⊂
⋃
B∈Γ

[B]. Let B ∈ Γ. Since

B ⊂
⋃
C∈Γ

C, [B] ≤ [
⋃
C∈Γ

C]. Therefore,
⋃
B∈Γ

[B] ≤ [
⋃
C∈Γ

C].

�

Definition 1.4.6. Let V be a K-left vector space and X ⊂ V . X is called linearly independent

if and only if X has the following property: if x1, · · · , xn ∈ X are distinct and λ1, · · · , λn ∈ K
such that

∑n
i=1 λixi = 0, then λ1 = λ2 = · · · = λn = 0.

If X is not linearly independent then X is called linearly dependent.

Remarks.

(1) Suppose X ⊂ V is linearly dependent. Then there exist distinct x1, · · · , xn ∈ X and

λ1, · · · , λn ∈ K, not all zero such that
∑n

i=1 λixi = 0.

(2) ∅ is linearly independent.

(3) Every set of vectors which contains 0 is linearly dependent.

(4) Every subset of a linearly independent set is linearly independent.

The definitions in this section are taken from (Greub, 1967).

Definition 1.4.7. Let V be a K-left vector space. A basis of V is a linearly independent

spanning set.

One can show that a basis of a K-left vector space V is a minimal spanning set of V .

Definition 1.4.8. Let V be a K-left vector space.

V finitely generated :⇐⇒ there exists a finite S ⊂ V such that [S] = V.

Remark. Later on it will be shown that any two bases of a vector space are equipotent, therefore

one can introduce the dimension of a vector space.

Definition 1.4.9. Let V be a K-left vector space and B a basis of V . Then |B| is called the

dimesion of V .

dimV := |B|.
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Theorem 1.4.8. Let B be a basis of V and take

Σ(B) := {[X]|X ⊂ B}.

Then (P(B),⊂) and (Σ(B),≤) are ordered sets. ϕ : P(B)→ Σ(B) defined by ϕ(X) := [X] is

an isomorphism and ϕ−1(U) = U ∩B for all U ∈ Σ(B). Further, if X ⊂ B, then [X]∩B = X.

Proof. Let X, Y ⊂ B such that X ⊂ Y . ϕ(X) = [X] ≤ [Y ] = ϕ(Y ). Let X, Y ⊂ B such

that X 6⊂ Y . Then there exists a ∈ X − Y . Assume a ∈ ϕ(Y ) = [Y ]. Then there exist

distinct y1, · · · , yn ∈ Y and λ1, · · · , λn ∈ K − {0} such that a =
∑n

k=1 λiyi. This implies

(−1)a+
∑n

k=1 λiyi = 0. Hence {a, y1, · · · , yn} is linearly dependent. This set is a subset of B,

therefore there is a contradiction. Hence a /∈ ϕ(Y ). Therefore, ϕ(X) � ϕ(Y ). Now, X ⊂ Y if

and only if ϕ(X) ≤ ϕ(Y ) for all X, Y ⊂ B. Suppose X,X ′ ⊂ B such that ϕ(X) = ϕ(X ′). Since

ϕ(X) ≤ ϕ(X ′), X ⊂ X ′. Since ϕ(X ′) ≤ ϕ(X), X ′ ⊂ X. Therefore X = X ′. Thus ϕ is injective.

By definition of Σ(B), ϕ is surjective. Therefore, ϕ is bijective and hence ϕ : P(B) → Σ(B)

is an isomorphism. Let U ∈ Σ(B). Since U ∩ B ⊂ B, ϕ(U ∩ B) = [U ∩ B] ≤ U . Since U ∩ B
is a spanning set of U , [U ∩B] = U . Therefore ϕ(U ∩B) = U . Hence, ϕ−1(U) = U ∩B.

Suppose X ⊂ B. Then X ⊂ [X] ∩ B and [X] ≤ [[X] ∩ B]. Since [X] ∩ B ⊂ [X], [[X] ∩ B] ≤
[X]. Therefore, [X] = [[X] ∩ B]. Since X and [X] ∩ B are bases of [X] and X ⊂ [X] ∩ B,

X = [X] ∩B. �

Theorem 1.4.9. Let (Xi)I be a family in P(B). Then

(1)

ϕ(
⋃
I

Xi) =
∑
I

ϕ(Xi).

(2) If I 6= ∅,
ϕ(
⋂
I

Xi) =
⋂
I

ϕ(Xi).

Proof. (1) Let j ∈ I. Since Xj ⊂
⋃
I

Xi, ϕ(Xj) ⊂ ϕ(
⋃
I

Xi). Since ϕ(
⋃
I

Xi) is a subspace

which contains all terms of
∑
I

ϕ(Xi),
∑
I

ϕ(Xi) ≤ ϕ(
⋃
I

Xi). Let j ∈ I. Since Xj ⊂ ϕ(Xj) and

ϕ(Xj) ≤
∑
I

ϕ(Xi), Xj ⊂
∑
I

ϕ(Xi). Since this true for all j ∈ I,
⋃
I

Xi ⊂
∑
I

ϕ(Xi). Therefore,

ϕ(
⋃
I

Xi) ≤
∑
I

ϕ(Xi). Therefore, ϕ(
⋃
I

Xi) =
∑
I

ϕ(Xi).

(2) Let j ∈ I. Since
⋂
I

Xi ⊂ Xj, ϕ(
⋂
I

Xi) ≤ ϕ(Xj). Therefore, ϕ(
⋂
I

Xi) ≤
⋂
I

ϕ(Xi). Let
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w ∈
⋂
I

ϕ(Xi). Since w ∈ ϕ(Xi), there exists xi ∈ Xi such that ϕ(xi) = w for all i ∈ I. Since ϕ

is injective, (Xi)I is constant. Let X := Xi(i ∈ I). Then w = ϕ(X) ∈ ϕ(Xi) for all i ∈ I. Hence

w ∈ ϕ(
⋂
I

Xi) and this implies
⋂
I

ϕ(Xi) ⊂ ϕ(
⋂
I

Xi). Therefore
⋂
I

ϕ(Xi) = ϕ(
⋂
I

Xi) follows. �

Theorem 1.4.10. Let X be a non-empty subset of V and let a ∈ [X]. Then there exist

x1, · · · , xn ∈ X and λ1, · · · , λn ∈ K such that

a =
n∑
i=1

λixi.

Let 1 ≤ l ≤ n such that λl 6= 0. Then

[(X − {xl}) ∪ {a}] = [X]

Proof. Since X − {xl} ⊂ [X] and a ∈ [X], [(X − {xl}) ∪ {a}] ≤ [X]. a =
∑n

i=1 λixi =∑n
i=1,i 6=l λixi + λlxl.

Then xl = λ−1
l a − λ−1

l

∑n
i=1,i=l λixi ∈ [(X − {xl}) ∪ {a}]. Since (X − {xl}) ∪ {a}] contain X,

[X] ≤ [(X − {xl} ∪ {a}]. Hence the proof is complete. �

Definition 1.4.10. Let V be a K-left vector space and R ≤ V . A compliment of R in V is a

subspace S ≤ V such that R + S = V and R ∩ S = {0}. If S is a complement of R in V , one

writes R⊕ S = V .

In order books, the complement of a subspace is called a suplement.

Proposition 1.4.1. Let V be a K-left vector space, U ≤ V and W ≤ V a complement of U in

V . Then W ∼= V/U . In particular, any two complements of U in V are isomorphic.

Proof. Let f : W → V/U be defined by f(x) := x + U . Let x, y ∈ W and λ ∈ K. Then

f(x+ y) = x+ y+U = (x+U) + (y+U) = f(x) + f(y), f(λx) = λx+U = λ(x+U) = λf(x).

Hence f is linear. Let x ∈ ker f . Then f(x) = x + U and f(x) = 0 = U . Since x + U = U ,

x ∈ U . Since x ∈ W , x ∈ U ∩W = {0}. Hence x = 0. Since ker f = {0}, f is injective.

Let y + U ∈ V/U . Since y ∈ V = U + W , there exist u ∈ U, w ∈ W such that y = u + w.

y+U = u+w+U = (u+U) + (u+W ) = U +w+U = w+U = f(w). Hence f is surjective.

Since f is linear and bijective, f is an isomorphism.

�

Theorem 1.4.11. Let R ≤ V, X ⊂ V such that R + [X] = V . Then there exists Y ⊂ X such

that [Y ] is a complement of R in V .

34



Proof. Let

Ω := {Z ⊂ X| R ∩ [Z] = {0}}

, ordered by inclusion. Ω 6= ∅ as ∅ ∈ Ω. Let Γ be a non-empty chain in Ω. Take

W :=
⋃
Z∈Γ

Z.

It is clear that W ⊂ X. If W = ∅, R ∩ [W ] = R ∩ {0} = {0}. Hence W ∈ Ω. Suppose

W 6= ∅. Let x ∈ R ∩ [W ]. Since x ∈ [W ], there exist w1, · · · , wn ∈ W and λ1, · · · , λn ∈ K

such that x =
n∑
i=1

λiwi. For each 1 ≤ i ≤ n, there exists Zi ∈ Γ such that wi ∈ Zi. Since

Γ is a chain and {Z1, Z2, · · · , Zn} is finite, {Z1, Z2, · · · , Zn} has a greatest element Z∗. Then

w1, w2, · · · , wn ∈ Z∗. Now x ∈ R∩ [Z∗] = {0}. Therefore, R∩ [W ] = {0}. Hence W ∈ Ω. Since

Z ⊂ W for all Z ∈ Γ, W is an upper bound of Γ. By Zorn’s lemma, Ω has a maximal element

Y . Since Y ∈ Ω, Y ⊂ X and R ∩ [Y ] = {0}. Let x ∈ X − Y and form

Y ′ := Y ∪ {x}.

Then Y ′ ⊂ X and Y ′ strictly bigger than Y . But Y is a maximal element of Ω. Hence Y ′

is not an element of Ω. Thus R ∩ [Y ′] 6= {0}. Choose z ∈ R ∩ [Y ′] − {0}. This z is a linear

combination of some of the vectors in Y ′. Since R∩ [Y ] = {0}, in this representation, x occurs.

Hence there exist y1, · · · , yn ∈ Y, λ1, · · · , λn, λ ∈ K such that z =
n∑
i=1

λiyi +λx. If λ = 0, z = 0

which is a contradiction because z ∈ R ∩ [Y ′]− {0}. Therefore λ 6= 0. Now

x = −λ−1

n∑
i=1

λiyi + λ−1z ∈ [Y ] +R.

Since X − Y ⊂ R+ [Y ], R+ [X] ⊂ R+ [Y ]. Hence R+ [Y ] = V . Thus [Y ] is a complement of

R in V . �

Later on it will be shown that Theorem 1.4.11. is closely related to the Steinitz exchange

theorem. To simplify the refering to Theorem 1.4.11., this theorem will be named. In the

following its will be called the complement theorem. The proof of the following theorem will

be skipped.

Theorem 1.4.12. Let V be a K-left vector space and B a basis of V . Let U ⊂ V . Then

U ∈ Σ(B)⇐⇒ U has only one complement in Σ(B).
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Definition 1.4.11. Let V be a K-left vector space. A hyperplane of V is a maximal proper

subspace of V .

Theorem 1.4.13. Let V be a K-left vector space and a ∈ V − {0}. Then there exists a

hyperplane of V such that a /∈ H

Proof.

Ω := {U ≤ V | a /∈ U}

, odered by inclusion. Ω 6= ∅ as {0} ∈ Ω. Let Γ ⊂ Ω be a non empty chain and

W :=
⋃
U∈Γ

U.

Since W is equal to the union of a collection of subspaces of V , W ⊂ V . Let x, y ∈ W . Then

there exist U1, U2 ∈ Γ such that x ∈ U1 and y ∈ U2. Since Γ is a chain, U1 ≤ U2 or U2 ≤ U1.

Hence x, y ∈ U1 or x, y ∈ U2. Since U1 and U2 are subspaces, x + y ∈ U1 or x + y ∈ U2. Since

U1, U2 ⊂ W, x + y ∈ W . Let λ ∈ K. Since x ∈ U1, λx ∈ U1. Hence λx ∈ W . W 6= ∅ because

Γ 6= ∅ and subspaces are non empty. Therefore, W ≤ V . Since a 6∈ U for all U ∈ Γ, a /∈ W .

Therefore, W ∈ Ω. Since U ≤ W for all U ∈ Ω, W is an upper bound of Γ. By Zorn’s lemma,

Ω has maximal elements. Let H ∈ Ω be a maximal element. Since a /∈ H, H < V . Let L ≤ V

such that H < L. Since L /∈ Ω, a ∈ L. Then H + [a] ≤ L. Assume H + [a] 6= L. Then there

exists b ∈ L− (H + [a]). Since H + [b] /∈ Ω, a ∈ H + [b]. There exists h ∈ H and λ ∈ K such

that a = h + λb. If λ = 0, then a = h ∈ H which is a contradiction. Therefore λ 6= 0. Thus

b = λ−1(−h + a) ∈ H + [a] which is again a contradiction. Therefore H + [a] = L. Since H is

a proper subspace of V , H + [a] = V . Therefore, H is a hyperplane. �

Definition 1.4.12. A linear form of a K-left vector space V is a linear mapping from V to K.

Theorem 1.4.14. Let V be a K-left vector space, H ≤ V a hyperplane and a ∈ V −H. There

exists exactly one linear form α : V → K such α(a) = 1 and ker α = H.

Proof. Existence. Since a /∈ H, H < H + [a] ≤ V . Since H is a hyperplane, H + [a] = V .

Since H ∩ [a] = {0}, [a] is a complement of H in V . Let x ∈ V . Since x ∈ H + [a], there exist

h ∈ H and λ ∈ K such that x = h+λa. Suppose x = h′+λ′a where h′ ∈ H and λ′ ∈ K. Since

h+λa = h′+λ′a, h−h′ = (λ′−λ)a. Since a /∈ H, λ′−λ = 0,i.e. λ′ = λ. Then h′ = h. Therefore

α(x) := λ defines a function α : V → K. Let x, x′ ∈ V . Then there exist h, h′ ∈ H, λ, λ′ ∈ K
such that x = h+λa, x′ = h′+λ′a. x+x′ = (h+λa) + (h′+λ′a) = (h+h′) + (λ+λ′)a. Hence
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α(x + x′) = λ + λ′ = α(x) + α(x′). Let µ ∈ K. µx = µ(h + λa) = µh + µ(λa) = µh + (µλ)a.

Therefore, α(µx) = µλ) = µα(x). Hence α is linear. Since a = 0 + 1a, α(a) = 1. If

h ∈ H, h = h+ 0a. Hence α(h) = 0. thus H ≤ kerα. kerα 6= V because α(a) = 1. Since H is

a hyperplane, kerα = H.

U niqueness. Let β : V → K be a linear form such that β(a) = 1 and kerβ = H. Let x ∈ V .

Then there exists h ∈ H and λ ∈ Ksuch that x = h+ λa. β(x) = β(h+ λa) = β(h) + λβ(a) =

0 + λ.1 = λ = α(x). Therefore, β = α. �

Remarks.

Let V be a K-left vector space and B a basis of V and b ∈ B.

(1) Then [B − {b}]is a hyperplane.

Proof. Since B is a minimal spanning set of V , [B − {b}] < V . Since [B − {b}] + [b] =

[(B−{b})∪{b}] = [B] = V , one obtains W = W ∩V = W ∩([B−{b}]+[b]) = [B−{b}]+W ∩[b]

for a subspace W ≤ which satisfy [−{b}] < W ≤ V . Since W ∩ [b] 6= {0}, [b] ≤ W . Therefore

W = V . Hence [B − {b}]is a hyperplane. �

(2) Since [B − {b}]is a hyperplane and b 6∈ [B − {b}], there exists a linear form εb : V → K

such that εb(b) = 1 and ker εb = [B−{b}]. (εb)B is the family of the coordinate forms of V with

respect to B.

(3) Let x ∈ V −{0}. Since B is a basis of V , there exist distinct b1, · · · , bn ∈ B and λ1, · · · , λn ∈
K such that x =

∑n
i=1 λibi. Let 1 ≤ j ≤ n. εbj(x) = εbj(

∑n
i=1 λibi) =

∑n
i=1 λiεbj(bi) =

λjεbj(bj) = λj. Hence x =
∑n

i=1 εbi(x)bi. If b ∈ B − {b1, · · · , bn}, εb(x) = 0.

Only finitely many terms of (εb(x))B are non-zero. If x ∈ V , one writes x =
∑
b∈B

εb(x)b.
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Chapter 2

Review of relevant literature and

methodology used in this research

2.1 Review of relevant literature

2.1.1 The Steinitz exchange theorem

Here are versions of the Steinitz exchange theorem found in the literature. (Cohn, 1974) states

the exchange theorem of Steinitz as follow:

Let x1, x2, · · · , xr be a linearly independent set of elements of a vector space V

and let Y be a spanning set consisting of s elements. Then r ≤ s and we can

find a spanning set of the form {x1, x2, . . . , xr, yr+1, . . . , ys} where yi ∈ Y for i =

r + 1, . . . , s.

Twenty nine years later, the same author (Cohn, 2003) stated the Steinitz exchange theorem

as follows:

If {v1, · · · , vm} is a set of m linearly independent vectors in a vector space V and

{w1, · · · , wn} spans V , then m ≤ n and possibly after reordering the wi, the set

{v1, · · · , vm, wm+1, · · · , wn} spans V .

Another version is in (Oeljeklaus & Remmert, 1974) which is stated in German as follows:

Austauschsatz (E. Steinitz) Es seien I und J disjunkte endliche Mengen und

(vi)i∈I , (vj)j∈J Familien in V mit folgenden Eigenschaften:
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1) Die Familie (vi)i∈I erzeugt V ,

2) Die Familie (vj)j∈J ist frei.

Dann gibt es eine Teilmenge I ′ von I, so daß die ’Vereinigungsfamilie’ (vk)k∈I′∪J

eine Basis von V ist.

This is translated to English as follow:

Let I and J be disjoint finite sets and (vi)i∈I , (vj)j∈J families in V which satisfy

the following conditions:

1) The Family (vi)i∈I generates V

2) The Family (vj)j∈J is Linearly independent.

Then there exists a subset I ′ of I such that (vk)k∈I′∪J is a basis of V .

In this version |J | ≤ |I| is missing.

As in (Cohn, 2003) and (Cohn, 1974), the vector space is finitely generated. All the versions

of the Steinitz exchange theorem which have been found in the literature are stated for finitely

generated vector spaces except one case. The exception is (Tietz, 1973). In Greub (1967), this

version appears as an exercise. The following is a translation from (Tietz, 1973).

Let V be a vector space, S ⊂ V a spanning set and T ⊂ V a finite linearly

independent set. Then there exists T ′ ⊂ S such that T ′ is equipotent to T and

(S − T ′) ∪ T is a spanning set.

2.1.2 The generalized Steinitz exchange theorem

Those articles on the Steinitz exchange theorem which have been examined make no statements

whether the Steinitz exchange theorem is true for infinite dimensional vector spaces. Eventu-

ally, the generalized Steinitz exchange theorem was found. This theorem has been discussed and

proved in (Cohn, 2003), (Jacobson, 1951–1964), (Lenz, 1976) , (Fuchs, 1970) and (Lüneburg,

1989). The presentations in these books are similar and there are no doubts that the proofs

are correct. Since the generalized Steinitz exchange theorem implies the Steinitz exchange the-

orem, the Steinitz exchange theorem is true for vector spaces of infinite dimensions, compare

(Lüneburg, 1989). What remains is to briefly comment on the articles of Hughes, which are

(Hughes, 1962–1964) and (Hughes, 1965-1966), and the article of Graczynska, (Graczynska,

2010). In (Hughes, 1962–1964), dependent spaces were introduced. The introduction of these
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spaces went in two steps. One consider an arbitrary set S and a set ∆ of finite subsets of S

which contains atleast two elements. A subset of S is called dependent if it is a superset of an

element of ∆. A subset of S which is not dependent is called independent or a basis. Now one

gets into a first conflict with (Graczynska, 2010). In this article, it is claimed that the existance

of bases is a consequence of transitivity which has not been defined yet. This is false and it can

be proven by the following.

Proposition 2.1.1. Let S be a set and ∆ a set of finite subset of S containing at least two

elements. If Γ is an independent subset of S, then there exists a basis of S such that Γ ⊂ ∆.

Proof. Suppose Γ ⊂ S is independent. Form

Ω := {Λ ⊂ S| Γ ⊂ Λ, Λ an indepent chain}

ordered by inclusion. Ω 6= ∅ as Γ ∈ Ω. Let C be a nonempty chain in Ω and form

Ψ :=
⋃

Σ∈C

Σ.

Since no element of C contains an element of ∆, Ψ is indepedent. Since C is non-empty, Γ ⊂ Ψ.

Hence Ψ ∈ Ω. Since Σ ⊂ Ψ for all Σ ∈ C, Ψ is an upper bound of C. Therefore, by Zorn’s

lemma, Ω has maximal elements. Let M be a maximal element of Ω and N ⊂ S a chain of

independent subsets of S such that M ⊂ N . Since N ∈ Ω and M is a maximal element of Ω,

N = M . Therefore, M is a maximal element and then a basis. �

Now the second step of the construction of a covering space comes. A relation between elements

of S and subsets of S was defined as follows. Let x ∈ S and A ⊂ S. Then x depends on A,

denoted by x ∼
∑
A if either x ∈ A or x /∈ A and there exist finitely many elements of A

say x1, · · · , xn ∈ A such that {x, x1, · · · , xn} ∈ ∆. Now one assumes that ∼ is transtive. This

means that if A and B are subsets of S and x ∈ S such that x ∼ ΣA and a ∼ ΣB for all a ∈ A
then x ∼ ΣB.

In (Hughes, 1962–1964), the following theorem was proven.

If A is basis and B an independent subset (both being well ordered) of the dependence

space S, then there is a definite subset A′ of A,such that B+(A−A′) is also a basis

of S, and a definite one-one correspondence between A′ and B.

40



In this context, one will ask what a definite subset A′ of A is and what a definite one-one

correspodence between A′ and B is.

In (Hughes, 1965-1966), the following theorem, which is called the improved Steinitz’ exchange

theorem in this article was proven.

If A is a basis and B an independent subset, both being well ordered, of the depen-

dence space S, there exists an explicitly defined, one-one mapping ϕ of B onto A′,

a subset of A, such that ϕ is the identity map on B ∩A and B+ (A−A′) is a basis

of S.

In this context, one will ask what an explicitly defined, one-one mapping is.

The problem of Hughes’ articles is the notations he is using. If one looks at relation (1) in

(Hughes, 1962–1964), on the left, one has an n + 1 tuple of elements of S and on the right,

a set of subsets of S. But an n + 1 tuple is not an element of ∆. On page 113 of (Hughes,

1962–1964), there is ΣA. It is known that A is a subset of S but Σ is not defined and hence

ΣA is not defined. In this article, + has two meanings. It may mean the union of two disjoint

sets or part of a relation like relation (2). The same applies to ∼.

Let A ⊂ S and x ∈ S. If x is dependent on A in the sense of Hughes and x 6∈ A, then there

exists x0, x1, · · · , xn ∈ A such that {x0, x1, · · · , xn} ∈ ∆. In the sence Cohn et. al. in addition

it is assumed that {x1, · · · , xn} is independent.

(Graczynska, 2010) tried to prove that the two definitions are equivalent. On page 155 of

(Graczynska, 2010), the last 4 lines of the proof of lemma 8 are not correct.

2.2 Methodology used in this research

The methods used in this study are from set theory, linear algebra and algebra.

2.2.1 Methods from set theory

• The set theoretical definition of a function

This is needed in connection with section 4.1, where the set Ω is introduced. As defined

in chapter 1, functions are sets of ordered pairs. They are used in this study to prove

that two sets are equipotent if there exists an injective function between them.

• Ordered sets, maximal elements and Zorn’s lemma

For vector spaces of infinite dimensions, one needs Zorn’s lemma. Zorn’s lemma works
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with ordered sets. To prove that a set has maximal elements, the set need to be ordered.

As ssen in section 4.1, the set Ω of functions needs to be ordered and it is ordered by

inclusion. Zorn’s lemma is also needed to prove basic facts about vector spaces, like the

existance of a basis or existance of complements for subspaces.

2.2.2 Methods from linear algebra and algebra

Vector spaces of arbitrary dimensions over arbitrary division rings are considered in this study.

The Steinitz exchange theorem will be derived from the following fact: every spanning set of a

vector space contains a subset which generates a complement to a given subspace. To get the

full Steinitz exchange theorem, the theorem of Löwig is required, which states that any two

bases of a vector space are equipotent.
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Chapter 3

Results of the study

This chapter presents the results of the study and their proofs.

3.1 The Steinitz exchange theorem

To begin with, the Steinitz exchange theorem will be stated for arbitrary vector spaces. This

version is equivalent to the versions in the literature.

Theorem 3.1.1 (The exchange theorem of Steinitz). Let V be a K-left vector space, S ⊂ V a

spanning set of V and I ⊂ V a linearly independent subset. Then there exists a subset A ⊂ S

such that A is equipotent to I and I ∪ (S − A) is a spanning set of V .

It remains to compare the above theorem to what Graßmann has. In case of Graßmann, V is

a real vector space, S is a finite subset of V and I is a finite linearly independent subset of the

span of S. Graßmann concludes that S contains a subset A ⊂ S which is equipotent to I and

the span of I ∪ (S − A) is equal to the span of S.

There exists an obvious modification of the Steinitz exchange theorem. If S is a basis of V then

the conclusion of the theorem holds because a basis is a spanning set. On the other hand, if

one knows that the Steinitz exchange theorem holds for a basis, then the above version of the

Steinitz exchange theorem is true because every spanning set of V contains a basis of V .

Now it will be explored how to prove the Steinitz exchange theorem. A first possibility is to set

up an ordered set of functions. In this context, the domain of the function f will be denoted

by Df .
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Ω := {f : Df → S| Df ⊂ I, f injective,Df ∪ (S − f(Df )) spanning set of V }.

This set will be ordered by inclusion. If f, g ∈ Ω, then f ⊂ g means that g is an extension of f .

The focus is on maximal elements of Ω, as it will become apparent soon.

Theorem 3.1.2. Let f ∈ Ω. Then f is a maximal element of Ω if and only if Df = I.

Proof. Suppose f ∈ Ω and Df = I. Let g ∈ Ω such that f ⊂ g. Since I = Df ⊂ Dg and

Dg ⊂ I, Dg = Df . Since f ⊂ g, g = f . Therefore f is a maximal element of Ω.

To prove the converse implication, let f ∈ Ω such that Df 6= I. Since Df is a proper subset of I,

there exists some x ∈ I−Df . Since Df∪(S−f(Df )) is a spanning set of V , [Df ]+[S−f(Df )] =

V . Hence there exist u ∈ [Df ], v ∈ [S − f(Df )] such that x = u + v. Since I is linearly

independent and x ∈ I − Df , x 6∈ [Df ]. Therefore v 6= 0. Since v ∈ [S − f(Df )], there exist

y1, · · · , yn ∈ S − f(Df ) and λ1, · · · , λn ∈ K such that v =
n∑
i=1

λiyi. Since v 6= 0, there exists

1 ≤ j ≤ n such that λjyj 6= 0. Hence x = u + v = u +
n∑
i=1

λiyi = u + λjyj +
n∑

i=1,
i 6=j

λiyi and this

leads to

−λjyj = u− x+
n∑

i=1,
i 6=j

λiyi.

Now

f̄ := f ∪ {(x, yj)}

will be considered. f̄ is a function because x 6∈ Df . Since yj 6∈ f(Df ), f̄ is injective. Further,

Df̄ = Df ∪ {x} ⊂ I. Since u ∈ [Df ] and x ∈ Df̄ , u− x ∈ [Df̄ ]. Since {yi| 1 ≤ i ≤ n, i 6= j} ⊂

S− f̄(Df̄ ), −λjyj = u−x+
n∑

i=1,
i6=j

λiyi ∈ [Df̄ ]+[S− f̄(Df̄ )]. Since λj 6= 0, yj ∈ [Df̄ ]+[S− f̄(Df̄ )].

Since S−f(Df ) ⊂ [Df̄ ]+ [S− f̄(Df̄ )], [Df̄ ]+ [S− f̄(Df̄ )] = V . Therefore, f̄ ∈ Ω. Since f ( f̄ ,

f is not a maximal element of Ω. �

Suppose g ∈ Ω is a maximal element. Then Dg = I. Choose A := g(I). Then A ⊂ S and A is

equipotent to I because g is injective and I ∪ (S −A) = I ∪ (S − g(I)) is a spanning set of V .

Therefore A is a subset of S which has the properties which are stated in the Steinitz exchange

theorem. The converse is also true. Let I ⊂ V be linearly independent, S ⊂ V a spanning set

and A ⊂ S such that I ∪ (S − A) is a spanning set. Since I is equipotent to A, there exists
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a bijection f : I → A. f is injective and Df = I. Further, I ∪ (S − A) is a spanning set.

Therefore f is a maximal element of Ω.

Proposition 3.1.1. If I is finite, Ω has maximal elements.

Proof. Suppose I is finite. If f ∈ Ω, then Df ⊂ I and hence, |Df | ≤ |I|. Consider

Γ := {Df | f ∈ Ω}.

Since Ω is non-empty, Γ has maximal elements. Let Dg ∈ Γ be a maximal element of Γ. Then

g is a maximal element of Ω. �

If I is infinite, Ω has maximal elements. Since the Steinitz exchange theorem is true, Ω has

maximal elements. All attempts to prove that every non-empty chain in Ω is bounded above

have failed.

That the Steinitz exchange theorem is true if I is finite and V is an arbitrary vector space

is a known fact as it appears in (Tietz, 1973), page 48 ff. However, Tietz’s proof is totally

different. It is a proof by induction on the cardinality of I.

The following is an application of the Steinitz exchange theorem to finitely generated vector

spaces. the statements which will be proved, can be found in nearly every book on linear

algebra.

Theorem 3.1.3. Let V be a finitely generated K-left vector space. Then the following state-

ments holds.

a) Every linearly independent subset of V is finite.

b) Every subspace of V is finitely generated.

c) Any two bases of V are equipotent.

Proof. a) Since V is finitely generated, there exists a finite subset S ⊂ V such that [S] = V .

Let I ⊂ V be linearly independent and let I0 be a finite subset of I. By the exchange theorem

of Steinitz, there exists A ⊂ S such that A is equipotent to I0 and I0 ∪ (S − A) is a apanning

set of V . Now |I0| = |A| ≤ |S|. Since every finite subset of I contains atmost |S| elements, I

is finite.
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b) Let U ≤ V and let B be a basis of U . Since B is linearly independent, B is finite. Therefore,

U is finitely generated.

c) Let B and B′ be bases of V . By a), B and B′ are finite. B is linearly independent and

B′ is a spanning set. By the Steinitz exchange theorem, there exists A ⊂ B′ such that A is

equipotent to B and B ∪ (B′−A) is a spanning set. In particular, |A| ≤ |B′|. Since |A| = |B|,
one obtains |B| ≤ |B′|. Interchanging B and B′ results in B′| ≤ |B|. Therefore, |B| = |B′|.

�

The next theorem was first proved by Löwig and appeared in (Löwig, 1934).

Theorem 3.1.4 (Theorem of Löwig). Any two bases of a K-left vector space V are equipotent.

Proof. Let B and B′ be bases of V . If B and B′ are finite, By Theorem 3.1.3. c), |B| = |B′|
and hence B and B′ are equipotent. Now suppose B and B′ are infinite. Let (εb)B be the

family of the coordinate forms of V with respect to B. If c ∈ B′, consider

Bc := {b ∈ B| εb(c) 6= 0}.

Bc is finite for all c ∈ B′. Assume {Bc| c ∈ B′} does not cover B. Then
⋃
c∈B′

Bc is contained

in a hyperplane of V . This is a contradiction because this hyperplane contains B′. Therefore,

{Bc| c ∈ B′} covers B. By theorem 1.2.12., {Bc| c ∈ B′} is equipotent to B. Since x ∈ B′ →
Bx ∈ {Bc| c ∈ B′} is surjective, {Bc| c ∈ B′} is equipotent to a subset of B′. Therefore, B is

equipotent to a subset of B′. Interchanging B and B′ results in B′ is equipotent to a subset of

B. By the theorem of Schr”onder-Bernstein, B and B′ are equipotent. �

Note that in the proof of the theorem of Löwig, cardinal numbers have not been used.

Now the proof of the Steinitz exchange theorem for arbitrary vector spaces follows.

Proof of the Steinitz exchange theorem. Let V be a K-left vector space, I ⊂ V linearly inde-

pendent and S ⊂ V a spanning set of V . Since [I] + [S] = V , by the complement theorem,

there exists C ⊂ S such that [I] ⊕ [C] = V . Since [C] + [S − C] = V , by the complement

theorem, there exists D ⊂ S − C such that [C] ⊕ [D] = V . Since [I] and [C] have a common

complement, [I] ∼= [D]. There exists a basis A for [D] such that A ⊂ D. Since D ⊂ S, A ⊂ S.

Thus [I] ∼= [A] and I and A are bases. By the theorem of Löwig, |I| = |A|. Since D ⊂ S − C,

C ⊂ S −D. Since S −D ⊂ S − A, C ⊂ S − A. Since [I]⊕ [C] = V , [I ∪ (S − A)] = V . �
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From the Steinitz exchange theorem, one obtains a subset A ⊂ S which satisfies two conditions.

One can ask the question: When is this set A uniquely determined? This question is answered

by the following theorem.

Theorem 3.1.5. A is uniquely determined if and only if I = ∅ or I 6= ∅ and finite, S is a basis

of V and [[I] ∩ S] = [I]

It will be shown that the condition is sufficient.

Proof. Suppose I = ∅. Since A is equipotent to I, A = ∅. Now suppose that I 6= ∅ and finite,

S is a basis of V and [[I] ∩ S] = [I]. Since A ⊂ S and S is a basis of V , [A] ⊕ [S − A] =V .

Since I ∪ (S − A) is a spanning set, V = [I ∪ (S − A)] = [I] + [S − A] = [[I] ∩ S] + [S − A] =

[([I] ∩ S) ∪ (S − A)]. Since S is a basis, (([I] ∩ S) ∪ (S − A)) = S. This implies A ⊂ [I] ∩ S.

Since |[I] ∩ S| = dim[I] = |I| = |A|, A = [I] ∩ S.

To prove the converse implication, suppose A is uniquely determined. Assume I is infinite.

Since A is infinite, there exists a ∈ A. Consider A′ := A − {a}. Since A′ is equipotent to A,

A′ is equipotent to I. Since I ∪ (S − A) ⊂ I ∪ (S − A′) and I ∪ (S − A) is a spanning set,

I ∪ (S − A′) is a spanning set. This is a contradiction because A′ 6= A. Therefore, I is finite.

One may assume that I 6= ∅. Assume S−A is linearly dependent. Then S−A is not a minimal

spanning set of [S−A]. Hence there exist c ∈ S−A such that [S− (A∪{c})] = [S−A]. With

a ∈ A, form A′ := (A−{a})∪{c}. Then |A′| = |I|. Since A′ ⊂ A∪{c}, S− (A∪{c}) ⊂ S−A′.
V = [I] + [S − (A ∪ {c})] ≤ [I] + [S − A′] = [I ∪ (S − A′)]. Hence I ∪ (S − A′) is a spanning

set. This is a contradiction because A′ 6= A. Therefore, S − A is linearly independent.

Assume [I] ∩ [S − A] 6= {0}. Choose z ∈ ([I] ∩ [S − A]) − {0}. Since z ∈ [S − A] there

exist s1, ..., sn ∈ S − A and λ1, ..., λn ∈ K× such that z =
n∑
i=1

λisi. Let a ∈ A and consider

A′ := (A − {a}) ∪ {s1}. Then A′ ⊂ S and |A′| = |I|. One has z −
n∑
i=2

λisi = λ1s1. Since

λ1s1 ∈ [I]+[S−A] and λ1 6= 0, s1 ∈ [I]+[S−A′]. Since S−A′ ⊂ [I]+[S−A′], (S−A′)∪{s1} =

(S − ((A − {a}) ∪ {s1})) ∪ {s1} = S − (A − a) ⊃ S − A. Since S − A ⊂ [I] + [S − A′] and

I ⊂ [I] + [S − A′], [I] + [S − A′] = V . Hence I ∪ (S − A′) is a spanning set. This is a

contradiction because A′ 6= A. Therefore, [I] ∩ [S − A] = {0}. Hence [I]⊕ [S − A] = V . Since

S is a spanning set, [A] + [S − A] = V . There exists a linearly independent E ⊂ A such that

[E] ⊕ [S − A] = V . Since [I] and [E] have a common complement, [I] ∼= [E]. Hence |I| =dim

[I] = dim[E] = |E| ≤ |A| = |I|. Hence |E| = |A|. Since E ⊂ A, E = A. This implies

[A]⊕ [S − A] = V . Since A and S − A are linearly independent, S is a basis of V .
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Assume [[I] ∩ S] 6= [I]. By theorem 1.4.12., there exists F ⊂ S such that F 6= S − A and

[I]⊕ [F ] = V . Consider A′ := S − F . Obviously A′ ⊂ S and F = S −A′. Since [I] + [F ] = V ,

I ∪ F = I ∪ (S − A′) is a spanning set. A′ 6= A because F 6= S − A. Since [I]⊕ [S − A′] = V

and [A′] ⊕ [S − A′] = V , [I] = [A′]. Hence |I| = |A′|. This is a contradiction. Therefore,

[[I] ∩ S] = [I]. �

[[I] ∩ S] = [I] means that [I] can be generated by a subset of the basis S.

3.2 Application of Steinitz exchange theorem

Some books on linear algebra claim that there exist many applications of the Steinitz exchange

theorem. But all the books which have been examined have only one application namely to

prove that two bases of a finitely generated vector space are equipotent. Since the Steinitz

exchange theorem is true for arbitrary vector spaces, one obtains the theorem of Löwig.

Theorem 3.2.1. Any two bases of a K-left vector space V are equipotent.

Proof. Let B and B′ be bases of V . Since B is linearly independent and B′ is a spanning set,

there exists a subset A ⊂ B′ such that A is equipotent to B and I ∪ (B′ − A) is a spanning

set. Since A is equipotent to B and A ⊂ B′, B is equipotent to a subset B′. Interchanging of

B and B′ results in B′ is equipotent to a subset of B. By the theorem of Schrönder-Bernstein,

B and B′ are equipotent. �

The above proof of the thorem of Löwig is a transparent proof which does not use cardinal

numbers.
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Chapter 4

Conclusions and recommendations

4.1 Conclusions

For the classical version of the Steinitz exchange theorem, i.e. the Steinitz exchange theorem for

finitely generated vector spaces, a simplified proof has been given. In (Tietz, 1973), the theorem

is proved by induction on the cardinality of the linearly independent set. The alternative is

that one can set up an ordered set of functions. From maximal elements of this ordered set,

one obtains the Steinitz exchange theorem.

In section 4.1, it was proven that the Steinitz exchange theorem holds for arbitrary vectors over

arbitrary division rings. It was proved that the Steinitz exchange theorem implies the theorem

of Löwig and complement theorem and that the theorem of Löwig together with the comple-

ment theorem implies the exchange theorem of Steinitz. However it remains open whether for

the proof of the Steinitz exchange theorem the theorem of Löwig is needed.

The only application of the Steinitz exchange theorem which could be found in the literature

is to prove that any two bases of a finitely generated vector space are equipotent. In addition

to that, in this study the Steinitz exchange theorem is used to prove that every subspace of a

finitely generated vector space is finitely generated.

The Steinitz exchange theorem is a statement of the following type: under certain conditions,

there exists a set which satisfies given conditions. In this study it has been investigated when

this set is uniquely determined. It was found that the subset A ⊂ I of the linearly independent

set is uniquely determined if and only if either the linearly independent set is empty or it is

non-empty but finite, the spanning set is a basis and the span of the linearly independent set
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is generated by a subset of the basis.

4.2 Recommendations

• The results in this study can be used for a book on Linear Algebra.

• A topic for further research is to investigate whether the Steinitz exchange theorem can

be derived from the complement theorem.

• One could investigate maximal chains of arbitrary vector spaces. There could be a rela-

tionship between maximal chains of vector spaces and ordered bases.

• One may also consider topological vector spaces and investigate the Steinitz exchange

theorem from this perspective.
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