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Forage quality in grassland-savanna ecosystems support high biomass of both wild ungulates and domes-
tic livestock. Forage quality is however variable in both space and time. In this study findings from
ecological and laboratory studies, focused on assessing forage quality, are combined to evaluate the
feasibility of a remote sensing approach for predicting the spatial and temporal variations in forage qual-
ity. Spatially available ecological findings (ancillary data), and physically linked spectral data (absorption
data) are evaluated in this study and combined to create models which predict forage quality (nitrogen,
phosphorus and fibre concentrations) of grasses collected in the Kruger National Park, South Africa, and
analysed in both dry and wet seasons. Models were developed using best subsets regression modelling.
Ancillary data alone, could predict forage components, with a higher goodness of fit and predictive capa-
bility, than absorption data (Ancillary: R2

adj ¼ 0:42—0:74 compared with absorption: R2
adj ¼ 0:11—0:51,

and lower RMSE values for each nutrient produced by the ancillary models). Plant species and soil classes
were found to be ecological variables most frequently included in prediction models of ancillary data.
Models in which both ancillary and absorption variables were included, had the highest predictive capa-
bilities ( R2

adj ¼ 0:49—0:74 and lowest RMSE values) compared to models where data sources were
derived from only one of the two groups. This research provides an important step in the process of cre-
ating biochemical models for mapping forage nutrients in savanna systems that can be generalised sea-
sonally over large areas.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Grassland-savanna ecosystems support a high biomass of wild
ungulate and domestic livestock populations (Jones and Wilson,
1987). The importance of these systems has led to extensive
research on the properties that allow them to support these ungu-
late populations (du Toit, 2003; Werner, 1991). A component of
this research has targeted assessment of food quality; firstly in
terms of variations in quality, and secondly in quantifying the
quality of the food source.

Within tropical ecosystems, factors that have been linked to
differences in forage quality are numerous. Nutrients have been
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shown to fluctuate between seasons (Grant et al., 2000; McNaugh-
ton, 1987; McNaughton, 1990; Prins and Beekman, 1989), between
plant species (Jones and Wilson, 1987; McNaughton, 1988; Mutanga
et al., 2004b; Seagle and McNaughton, 1992), and between different
growth stages of plants (Jones and Wilson, 1987; McNaughton,
1988; Prins and Beekman, 1989). Soil (Allred and Snyder, 2008;
Craine et al., 2009; Heitkönig and Owen-Smith, 1998), geology
(Grant and Scholes, 2006; Ferwerda et al., 2006), slope and catenal
position (Seagle and McNaughton, 1992), and fire (Allred and Sny-
der, 2008; van de Vijver et al., 1999) are amongst other ecological
factors that have been significantly linked to variations in forage
nutrient concentrations within savannas.

Given the seasonal and spatial variability in forage quality, and
the importance of forage quality for maintaining healthy herbivore
populations (Jones and Wilson, 1987; Prins and Beekman, 1989), it
is reasonable to assume that livestock or wildlife managers would
benefit from a landscape quantification of forage quality. The col-
lection and analysis of forage using wet chemistry techniques, is
a time consuming and laborious task, which has been greatly aided
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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by the development of rapid analysis techniques using near infra-
red spectroscopy (NIRS) (Clark, 1989). Using NIRS, absorption fea-
tures related to physical bond vibrations associated with different
nutrients have been identified (Card et al., 1988; Curran, 1989;
Fourty et al., 1996). With the advent of imaging spectrometry, in
combination with the knowledge derived from the NIRS studies
(i.e. known spectral features), it is possible to map the distribution
of plant biochemicals at a landscape level (Knox et al., 2011;
Mutanga and Skidmore, 2004; Mutanga and Kumar, 2007; Skid-
more et al., 2010; Wessman et al., 1988).

In the field of imaging spectrometry for biochemicals, much
effort has been placed on predicting the quantity of nitrogen in
plants. Besides savanna and grassland systems (Gianelle and
Guastella, 2007; Mutanga and Skidmore, 2004; Skidmore et al.,
2010), extensive work has been undertaken in forest and cropping
systems, where the assessment of plant nitrogen is used as a proxy
for net primary production and plant health (Asner and Martin,
2008; Cho and Skidmore, 2006; Goel et al., 2003; Huang et al.,
2004; Johnson and Billow, 1996). Evident in these studies is that
absorption features (described by the central wavelength) that
have been physically linked to foliar nutrient concentrations, were
not the only wavelengths or spectral features used as model input
variables to predict plant and foliar nutrient content. In many of
these studies additional wavelengths and spectral regions were
identified to capture the variations in foliar nutrient concentra-
tions (Cho and Skidmore, 2006; Mutanga and Skidmore, 2004;
Huang et al., 2004; Johnson and Billow, 1996). All variables should
ideally be physically or causally related to the item under study,
e.g. for nitrogen, variables might include either known nitrogen
absorption features, or wavelengths linked to geological properties
or plant age – which have been proven to result in nitrogen varia-
tions (Ferwerda et al., 2006; Grant and Scholes, 2006; Owen-Smith,
2008; Skidmore et al., 2010).

Most of the studies quantifying the spatial distribution of
biochemicals have been site-specific. By investigators including
not only wavelengths that have been physically linked to the foliar
nutrient under investigation, they have limited the use of their
models to a single moment in time, or a single location. If, however,
it is the aim of biochemical remote sensing studies to provide algo-
rithms that can be utilised in multiple sites, and monitor behaviour
over time, then variables in a model should be interpretable and
transferable between sites and time periods.

The objective of this study was to investigate the potential of
combining findings from ecological and NIRS laboratory research
to create remote sensing models that can be used to map and mon-
itor forage quality in heterogeneous savanna landscapes. This al-
lows an evaluation as to whether in unison the quality of forage
in a savanna can be predicted and monitored in an interpretable
and transferable manner from remote sensing data. Combining
ancillary and spectral data would provide a sound platform for pre-
dicting forage nutrients from remote sensing data and would pro-
vide techniques for mapping and monitoring forage nutrients in
these systems at a landscape level.

Three sub-goals were defined to provide inputs that allow us to
evaluate and discuss the above overall objective. Firstly the ability
of environmental factors that have previously been identified as
being significantly related to variations in forage nutrient concen-
trations, and available or potentially available as spatial data, were
tested for their ability to estimate forage nutrient concentrations
(referred to as ancillary variables from here-on). Secondly the
potential and predictive ability of spectral features, identified
through NIRS that have been physically linked to different nutri-
ents, in predicting forage nutrient concentrations, (referred to as
absorption variables from here-on) were evaluated. Finally, ancil-
lary and absorption variables were combined to evaluate their
combined ability to predict forage nutrient concentrations. We
conducted this investigation using spectral, environmental and for-
age nutrient data collected on grasses, in a wet and dry season,
within a sub-tropical savanna system. Our findings are discussed
in terms of creating algorithms that can be generalised to tempo-
rally map nutrients at multiple sites.
2. Methods

2.1. Study area

The study area was located on the Northern Plains of the Kruger
National Park (KNP), South Africa (Fig. 1a), the area is located be-
tween 22�490S, 31�010E and 22�440S, 31�220E, covering an area of
approximately 25 � 6 km (Fig. 1b). The location of the study area
captures a geological transition, variation in fire treatments, and
a herbivore enclosure for rare game species.

The study area is underlain by a geological complex dividing it
into granites (west) and basalts (east) (Gertenbach, 1983). The
underlying geological complexes have implications for soil nutri-
ent concentrations and consequently on the forage chemistry of
the vegetation (Ferwerda et al., 2006; Mutanga et al., 2004a). The
vegetation comprises a savanna system with a mixed species grass
layer and a tree layer dominated by Colophospermum mopane. On
the shallow to moderate melanic and vertic clay soils, of the gran-
ites, the mopane forms woodlands with an open herbaceous
understory. On the moderate deep to deep calcareous duplex clay
soils, of the olivine rich basalts, the mopane forms an open shrub-
land, with a dense herbaceous understory (Venter, 1990).

The herbivore enclosure (‘‘N’washitsumbe’’ or ‘‘Roan Enclo-
sure’’2), was created in 1967 to act as a breeding area for roan antelope
(Hippotragus equinus). The exclusion of large browsing herbivores over
this extended period, has resulted in an altered woody vegetation
structure when compared with the surroundings (Asner et al., 2009;
Levick and Rogers, 2008). The enclosure has a greater woody struc-
tural diversity in terms of tree species and size variation of the trees.
Differential fire management inside and outside the enclosure has
further contributed to the aforementioned structural variation
(Ferwerda et al., 2006; Levick et al., 2009).
2.2. Data collection

2.2.1. Field sampling
Field sampling (collection of spectra and grass samples) was

carried out twice in 2007. Sampling was first conducted in the late
wet (late growing) season (mid March to beginning April), and
again in the early dry season (May) to capture grass senescence.
In the wet season 43 sites were sampled, these sites were again
resampled in the dry season thereby creating a paired seasonal
dataset. Due to improved weather conditions for spectral measure-
ments, an additional 19 sites were sampled in the dry season
(totalling 62 sites for the dry season) (Fig. 1b).

The location of the field sites were defined in an earlier study by
Mutanga et al. (2004a). Mutanga et al. (2004a) selected 96 sites
using a stratified clustered-random sampling. The area was strati-
fied into open grasslands, mixed woodland and woodland based
upon a land cover classification map obtained from the scientific
services division of the KNP. Using S-PLUS, x–y coordinates were
randomly generated, plots were then located in the field using
GPS (Garmin 12XL, with an estimated 3 m accuracy). Purposive
sampling included five samples on known natural salt licks.
Sixty-two of these sites were sampled in this study. During an
earlier study it was determined that for these sample sites there

http://www.sanparks.org/parks/kruger/conservation/scientific/exclosures


Fig. 1. (a) Location of study area within the Kruger National Park (KNP), South Africa. (b) distribution of the field plots, within the study area, measured in the dry and wet
season. The study area delineated in (a) is the border of sub-figure (b) with the field plots distributed diagonally across this study area.
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was no obvious spatial dependence, or spatial clustering of the
samples (Skidmore et al., 2010).

A plot of 15�15 m was laid out at each site. Within each plot,
cover of trees, grasses and bareground were independently visually
estimated by two researchers. The results were then compared to
ensure that they did not differ by more than 5% from one another.
Through this method it was confirmed that for cover estimations
between 25–80% cover both researchers agreed on more than
95% of their estimates. In this way the researchers felt confident
that they could identify the species covering greater than 30% of
the plot, and thus the dominant species could be recorded. The
dominant grass and tree species were recorded. Using a hand-held
ASD Fieldspec Pro FR spectrometer (Analytical Spectral Devices,
Inc.) spectra were taken of the dominant grass species and any
other grass species that was estimated to cover an area greater
than 30%. The ASD Fieldspec Pro FR spectrometer has a 512 ele-
ment Si photodiode array that covers the 350–1000 nm range, with
a spectral resolution of 3 nm, and a sampling interval of 1.4 nm,
and two separate, TE cooled, graded index InGaAs photodiodes that
cover the 1000–2500 nm spectral range, with spectral resolutions
of 10 nm and sampling intervals of 2 nm. On collection of a spec-
trum the instrument internally resamples the spectrum to produce
a continuous spectrum with 1 nm resolution. These resampled
spectra were used in this study. The spectral sampling was per-
formed from a height of approx. 1 m above the grass canopy with
an 8� fore-optic creating an IFOV with a diameter of approx. 14 cm.
Five spectra were taken per plant canopy, and a minimum of five
separate plants of a species were measured in each plot, therefore
a minimum of 25 spectra per dominant species per plot were
recorded. During spectral measurement it was ensured that bare
ground was minimised. Prior to spectral measurement of each
plant, a spectrum was taken of a calibrated spectralon panel (Lab-
sphere, Inc, Sutton, NH), this allowed radiance measurements to be
converted to reflectance values. Spectra collected per measured
species in each plot were averaged to create a single species per
plot sample spectrum.

Following spectral measurements, grass samples, of each mea-
sured species, were collected. For each species five whole grass
plants were clipped at approximately 2 cm above ground level.
Per species the clipped samples were pooled, bagged, and dried
at 70 �C for 48 h. Following drying, samples were ground through
a 1 mm steel mill and transported to The Netherlands for chemical
analysis.
2.2.2. Spectra evaluation
Prior to model building all sample spectra were visually-

assessed for noise. Particular attention was paid to noise within
the blue and short wave infrared spectral regions (SWIR), being re-
gions strongly affected by atmospheric conditions including cloud
cover. From all spectra the following spectral regions were consis-
tently noisy and were therefore removed from the analysis, these
include wavelengths between 989–1010 nm which are linked to
the detector overlap of the spectrometer, regions 1375–1475 nm
and 1775–1990 nm associated with strong water absorption
features, and wavelengths above 2340 nm associated with the in-
creased SNR as the edge of the detector range. In addition to these
spectral regions six spectra, three taken in the wet season and
three in the dry season were found to be noisy (i.e. have high var-
iation) across the entire spectrum. The field notes were compared
against these identified spectra and it was verified that during
collection of these samples there had been cloud presence there-
fore increasing the likelihood of spectral noise. These six samples
were therefore excluded from further analysis. In total, therefore,
40 samples were included in the wet season analysis, and 59 sam-
ples for the dry season.



Table 1
Description of the ancillary variables used in this study.

Variables Type Description

Slope Continuous Expressed in degrees
Altitude Continuous Expressed in metres above sea level (m asl)
Aspect Categorical Initially calculated in degrees, and then converted into four cardinal points N(315��45�), E(45��135�), S(135��225�) and W(225��315�)
Geology Categorical Broad geological division of basalt or granite
GeoVen Categorical Geological classes based on work of Venter (1990). Within the study area four geological classes were defined
SlKnp Categorical Soils map based on the South African soils classification system (Macvicar et al., 1977). Within the site seven soil layers were identified
SlVen Categorical Soils map based on the work of Venter (1990). Within the site, three soil layers were identified
Fire Categorical Frequency of fires over a five year period prior to sampling. Three classes were defined in terms of fire frequency: none, once and twice
Species Categorical Plant species sampled in the field. Eight separate species were identified, plus a mixed species class, yielding nine separate categories
Plant age Continuous Plant age variation using a continuous scale was generated using the spectral data collected in the field, and applying the PhIX algorithm

(Knox, 2010)
REP⁄ Continuous Two methods for calculating the red-edge were applied, REPd was derived by determining the wavelength location of the maximum first

derivative, between the Red and NIR spectral regions, and REPc was calculated using the linear extrapolation method of Cho and Skidmore
(2006)

REP⁄ = Red Edge Position.
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2.2.3. Nutrient analysis
The dried and ground samples were analysed for their chemical

constituents, in the laboratory of the Resource Ecology Group,
Wageningen University, The Netherlands. The three forage compo-
nents that we considered in this study are nitrogen and phospho-
rus and fibre content. Nitrogen and phosphorus were analysed
using a modified Kjeldahl procedure, samples were initially
digested in a mixture of sulphuric acid, selenium and salicylic acid
(Novozamsky et al., 1983). Digestion was then followed by colori-
metric measurement using a continuous flow analyser (SKALAR
SAN plus). Fibre content (Acid Detergent Fibre – ADF) was
determined according to the ANKOM filter bag procedure, using
an ANKOM200/220 fibre analyser (ANKOM Technology, Macedon,
NY, USA). All concentrations are expressed as percentage nutrient,
on a dry matter basis (% DM).
2.2.4. Ancillary variables
Ancillary variables that were either available or potentially

producible in vector or raster format or could be generated from
remote sensing data, and had been linked to variations in forage
nutrient concentrations, were compiled for each sample site. Geol-
ogy, soil and fire data were obtained from the GIS and Remote
Sensing Centre,3 Scientific Services, Kruger National Park. Slope,
aspect and altitude data were generated from a resampled Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) –
digital elevation model, obtained for the site, in June 2006. The
DEM product has a spatial resolution of 30 m and is recorded to have
an absolute vertical and horizontal accuracy of 10 m. Plant age and
the Red Edge Position were generated from the spectra taken in
the field. The red edge position is identified as an ancillary variable
as this variable although influenced by the width of the red absorp-
tion feature, has been shown to correlate with both leaf area index
(LAI) and biomass estimation (Cho and Skidmore, 2006; Darvish-
zadeh et al., 2008a). Both LAI and biomass are environmental vari-
ables considered important in the description of vegetation
condition and structure. Although no grass species map currently ex-
ists for this area, studies have shown that imaging spectroscopy
potentially provides a means to create such maps (Irisarri et al.,
2009; Schmidt and Skidmore, 2003). Species data collected in the
field was therefore included in the analysis, based on the premise
that given the appropriate collection of data and analysis such a
map could be generated from spectroscopic data. A description of
all the ancillary variable layers that were used in this analysis are
presented in Table 1.
3 www.sanparks.org/parks/kruger/conservation/scientific/gis/.
2.2.5. Absorption variables
Only wavelengths that have been physically linked to each of

the forage nutrients were selected for this analysis. These physi-
cally linked wavelengths have been determined through near
infrared spectroscopic (NIRS) studies (detailed in Table 2). The fea-
tures are associated with the excitation and reaction of molecular
bonds at specific wavelengths.

Nitrogen, phosphorus and fibre concentrations are not directly
measured, but rather their association with plant compounds are
used to derive their concentrations. Total nitrogen measured is
associated with molecular bonds of protein, chlorophyll and nitro-
gen molecules found within the plant (Curran, 1989).

Within plants, phosphorus concentration is much lower than
the concentrations of either nitrogen, or fibre. The low phosphorus
concentrations reduce the ability to directly detect this nutrient
through spectral signatures (Kokaly et al., 2009), therefore an asso-
ciated link is made with respect to the functioning of phosphorus
in a plant’s development. Within plants, phosphorus is primarily
associated with plant metabolic processes (Schachtman et al.,
1998). We therefore spectrally associated phosphorus concentra-
tions to sugars and starches, as representative end products of
metabolism.

Fibre is located within plant cell walls, and is a combination of
hemicellulose, cellulose and lignin compounds. In NIRS studies for
determining forage quality, cellulose and lignin have been exten-
sively studied and their absorption features identified (Curran,
1989; Fourty et al., 1996; Himmelsbach, 2000). The spectral fea-
tures associated with both of these compounds are used to predict
the concentration of fibre within the samples. The spectral absorp-
tion features, used as input for the modelling for each of the forage
nutrients, are listed in Table 2.

For each of these forage components some of the identified
absorption features coincided with noise regions identified in the
spectral evaluation (identified with a d in Table 2), these have
therefore been omitted from the remainder of the analysis.
2.3. Model development

One of the assumptions of applying linear regression modelling
is that variables are not collinear (Crawley, 2006). The selected
wavelengths for each of the nutrients (in both seasons) were found
to be highly correlated. By applying a principal component analysis
to these absorption feature wavelengths the collinearity between
bands was reduced. These principal components (PC) were then
used as input variables for the models. Within the ancillary vari-
ables, collinearity was found between variables that measured
the same environmental parameters, e.g. the geological classes, soil

http://www.sanparks.org/parks/kruger/conservation/scientific/gis/


Table 2
The wavelength absorption features selected for predictive analysis of the forage nutrient concentrations. These wavelength centres have been physically linked (through bond
vibrations, excitations) to each of the forage nutrients.

Nutrient Absorption feature wavelength centres (nm)

Nitrogena 430, 460, 640, 660, 910, 1020, 1510, 1690, 1730, 1940,d 1950,d 1980,d 2060, 2130, 2180, 2240, 2300, 2350d

Phosphorusb 970, 990,d 1450,d 1490, 1530, 1540, 1580, 1780,d 1900,d 1940,d 1950,d 1960,d 2000, 2080, 2100, 2250, 2270, 2280, 2320
Fibrec 1120, 1200, 1420,d 1450,d 1490, 1540, 1690, 1730, 1736, 1780,d 1820,d 1924,d 1940,d 1950,d 2100, 2232, 2262, 2270, 2280, 2310, 2320, 2340,d 2350,d

2380d

a Features associated with protein, chlorophyll and nitrogen (Curran, 1989; Fourty et al., 1996).
b Features associated with starch and sugar (Curran, 1989; Fourty et al., 1996).
c Features associated with cellulose and lignin (Curran, 1989; Fourty et al., 1996; Himmelsbach, 2000).
d Features not analysed because they coincide with regions removed because of high signal noise (see Section 2.2.2).
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classes and the two REP calculations. All variables were included as
input into the modelling process, but selected output models were
checked to ensure they did not include collinear ancillary variables
(Crawley, 2006). Prior to the modelling each variable was corre-
lated against the respective nutrients to determine how each indi-
vidually explained the nutrient concentrations. For the continuous
variables a Pearson’s correlation was calculated and the r values
are presented. For categorical variables a linear model was created
between the variable and nutrient and the Adjusted R2 R2

adj

� �

values are presented. The results from these analyses are presented
in the Supplementary tables S1–S3.

Although stepwise regression is effective for developing multi-
variate models, it has been shown to be affected by the order in
which variables are entered into the modelling procedure
(Crawley, 2006; Grossman et al., 1996). An exhaustive best subsets
regression method, is an effective means to minimise this limita-
tion of the stepwise regression procedure. This regression
approach can also be set to limit the number of variables contained
within a model, thereby avoiding the problem of over-fitted mod-
els (Furnival and Wilson, 1974).

‘‘Best subsets regression’’ (Implemented in R (R Development
Core Team, 2008), using the ‘‘leaps’’ (absorption) or ‘‘bestglm’’
(ancillary) packages (Furnival and Wilson, 1974)) was imple-
mented, for each forage component, in each season, based firstly
on ancillary variables, and then on absorption variables (as the
converted PCs). The ‘‘best subsets regression’’, compared and
selected models based on the lowest Akaikes Information Criteria
(AIC) value (Crawley, 2006). The generalised linear modelling
(GLM) applied in the ‘‘bestglm’’ package to the ancillary data,
transforms each of the ancillary variables into a dummy variable
prior to modelling. Because the ancillary input variables contained
collinear features, it was verified that the variables selected in the
top model, by the ‘‘best subset regression’’ method, were free from
collinearity. If collinear variables were found, the next best model
was evaluated, until a model free from collinearity was found.

For each forage component, in each season, the ancillary and
absorption (PC) variables selected in the analysis above, were com-
bined into an ancillary + absorption model. Stepwise regression
(including backward and forward selection), was then applied to
these combined models, to create a significant parsimonious model
that predicted forage component concentrations in a particular
season. It was verified that the variables included in these final
models were free from collinearity.

On all the final models selected in the analysis, the selected
models where then run through a leave one cross validation
(LOOCV) procedure. For each iteration in the LOOCV procedure
the Adjusted R2 R2

adj

� �
and root mean square error (RMSE) values

were recorded. These R2
adj and RMSE values were then averaged

and the final values presented are the mean Adjusted R2 and RMSE
value. For validation the R2 and RMSE value were calculated by
relating the predicted value generated during the LOOCV proce-
dure to the observed value.
Using AIC, for each forage nutrient, in each season the three se-
lected models were then compared (i.e. the ancillary, absorption
and combined models). The models with the lowest AIC values
were considered to be the best models for predicting forage nutri-
ent concentrations. The results of this analysis allow us to provide
suggestions as to model variables suited to analyse forage nutri-
ents in a heterogeneous savanna ecosystem, using remote sensing
data.
3. Results

In agreement with earlier studies (Grant and Scholes, 2006;
McNaughton, 1990) we found that the forage component concen-
trations differed significantly between the dry and wet seasons
(Table 3). The values for the different forage nutrients are compa-
rable with those observed for this region (Grant and Scholes, 2006;
Treydte et al., 2008).

3.1. Ancillary variables

Models built using ancillary variables alone (i.e. environmental
links to nutrients), showed that between 42–74% of the variation in
forage nutrients could be explained. The selected models derived
from the ‘‘best subsets regression’’ are presented in Table 4 (the
respective model coefficients are presented in the Supplementary
tables S1–S3). All variables, included in these models, were signif-
icant contributors to explaining the respective forage nutrient
concentrations.

Species explained the concentration of forage components, irre-
spective of the season. Soil type variables were also significant in
their contribution to explaining differences in forage concentra-
tions, being a variable type selected in four out of the six models.
The finer detail provided by the South African soil classification
system (Macvicar et al., 1977), compared to the classification sys-
tem of Venter (1990), enhanced the ability of most models to esti-
mate the forage contents. The REP is only selected to estimate
nitrogen concentrations, supporting the earlier findings of Cho
and Skidmore (2006) and Mutanga and Skidmore (2007). Plant
age significantly contributed to explaining nitrogen, and fibre in
the wet season (Table 4).

Within the KNP the geological stratification into the basaltic
east and granitic west has been used to describe broad variations
observed in nutrients (Grant et al., 2000; Grant and Scholes,
2006; Skidmore et al., 2010). Our findings show that when trying
to estimate the concentrations of nutrients that geological strata,
in combination with soil strata, significantly contributed to
explaining foliar phosphorus levels in the dry season.

3.1.1. Absorption variables
The model variables, and predictive ability of models, developed

with only spectral data (converted to PC data), associated with



Table 4
The significant model variables for ancillary variables, for each forage nutrient in the dry and wet season. The model selection was made by applying a ‘‘best subsets regression,a’’
with all the variables included in Table 1. All variables had a significant (p)-value less than 0.05, the model coefficients are presented in the Supplementary data S1–S3.

Nutrient Season calb R2
adj

cal RMSE (% DM) LOOCVb R2
adj

LOOCV RMSE (% DM) Model variables

Nitrogen Wet 0.74 0.19 0.55 0.15 Aspect, Fire, Plant Age, REPc, Species
Dry 0.67 0.12 0.31 0.17 Plant Age, REPd, SlVen, Species

Phosphorus Wet 0.42 0.07 0.12 0.09 SlKnp, Species
Dry 0.64 0.05 0.52 0.06 GeoVen, SlKnp, Species

Fibre Wet 0.70 1.94 0.49 2.41 Plant Age, SlKnp, Species
Dry 0.50 2.24 0.44 2.34 Species

a Best subsets regression’’ implemented in R (R Development Core Team, 2008), using the ‘‘bestglm’’ library.
b cal = average of the R2

adj and RMSE calculated while implementing a leave one out cross validation (LOOCV).

Table 3
Results from the chemical analysis of the field samples.a In the final column results of t-testsb comparing the mean forage nutrient levels in the wet (40 samples) and dry (59
samples) seasons are shown.

Nutrient Season Range (% DM) Mean (% DM) t-test

Nitrogen Wet 0.6–2.2 1.1 ± 0.37
Dry 0.4–1.5 0.7 ± 0.20 t = 7.02,⁄⁄⁄ df = 62.25

Phosphorus Wet 0.1–0.5 0.2 ± 0.09
Dry 0.1–0.4 0.2 ± 0.09 t = 2.84,⁄⁄⁄ df = 89.33

Fibre Wet 34.1–49.7 41.4 ± 3.53
Dry 35.8–51.1 43.4 ± 3.18 t = �2.89,⁄⁄⁄ df = 77.51

± the standard deviation of the mean.
a As a result of rounding some values appear similar.
b t-tests (using a Welch modification for unequal variances) were calculated after the data were arc-sine transformed.
⁄⁄⁄ Significance level of t-tests, 0.01.

Table 5
The significant principal components (PC) selected using ‘‘best subset regressionsa’’ for each forage nutrient, in each season. The values in parenthesis are the wavelengths (nm)
with the highest eigen loading values (greater than ±0.5) associated with that PC. The model coefficients for these selected models are presented in the Supplementary data S1–S3.

Nutrient Season calc

R2
adj

cal RMSE (% DM) LOOCVc

R2
adj

LOOCV RMSE (% DM) Model variables

Nitrogen Wet 0.45 0.27 0.38 0.29 PC2(910, 1020), PC4(640, evenb), PC11(2180)
Dry 0.42 0.16 0.23 0.18 PC2(910, 1020), PC4(even), PC5(430, 460), PC9(2240),

PC10(2060), PC11(2130)
Phosphorus Wet 0.34 0.08 0.23 0.08 PC2(970), PC5(1490, 2000), PC7(2320, even), PC8(2270)

Dry 0.24 0.08 0.17 0.08 PC2(970), PC7(2100), PC10(1530, even- 1490, 1540, 1580)
Fibre Wet 0.11 3.33 0.02 3.49 PC9(2262), PC14(1730,1736)

Dry 0.51 2.22 0.44 2.38 PC3(even), PC6(2232), PC8(2310), PC9(2310), PC10(2100)

a Best subsets regression implemented in R (R Development Core Team, 2008), using the ‘‘leaps’’ library.
b ‘‘even’’ the remaining wavelengths either listed or indicated, for a particular forage nurient (Table 2). The ‘‘even’’ wavelengths had loading weights less that ±0.5 but were

similar in value.
c cal = average of the R2

adj and RMSE calculated while implementing a leave one out cross validation (LOOCV).
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physical bond vibrations, are presented in Table 5 (the respective
model coefficients are presented in the Supplementary tables S1–
S3).

Absorption feature variables could better predict (higher R2
adj

and lower RMSE values) the concentration of a forage component,
when the concentration levels were highest in the plant (e.g. nitro-
gen/phosphorus in the wet season) (Table 3 vs. Table 5). Thirty four
percent of the variation in foliar phosphorus concentrations, was
explained by using absorption features, associated with sugars
and starch.

3.1.2. Combined data
A combination of absorption data and ancillary data did not al-

ways lead to forage nutrient models with higher prediction accura-
cies (Table 6 vs. Tables 4 and 5). By combining both data sources
and applying the stepwise regression procedure resulted in only
half of the tested models being more parsimonious and having low-
er RMSE values. For the remaining models the ancillary variable
models proved to be the most parsimonious model. The respective
model coefficients derived from these models are presented in the
Supplementary tables S1–S3. Similar to the result where only ancil-
lary variables were used for modelling, we found that when com-
bining ancillary and absorption variables, the species variable was
again a significant contributor in all the selected forage component
models. Soil type data also significantly contributed to four out of
the six forage models.

3.1.3. Model comparisons
The concentrations of any of the forage components studied

here, in either the wet or dry season, could be predicted with a
higher degree of precision, using the ancillary data alone compared
to using only the absorption datasets (Table 4 vs. Table 5).

A statistical comparison of the models (using AIC), showed that
the six models selected in the combined data approach were the
most suitable models (in terms of parsimony and predictive abil-
ity) for estimating forage nutrient concentrations (Table 6). Only



Table 6
Combined (ancillary+absorption) model variables. Model variables were selected through a stepwise selection procedure. The input variables were a combination of the variables
included in the best models from the ancillary (Table 4) and absorption spectral data (Table 5). The model coefficients for these selected models are presented in the
Supplementary data S1–S3.

Nutrient Season cala R2
adj

cal RMSE (% DM) LOOCVa R2
adj

LOOCV RMSE (% DM) Model variables

Nitrogen Wet 0.74 0.19 0.55 0.15 Aspect, Fire, Plant Age, REPc, Species
Dry 0.70 0.11 0.37 0.18 PC2, PC10, REPd, Slven, Species

Phosphorus Wet 0.49 0.07 0.12 0.1 PC8, Slknp, Species
Dry 0.64 0.05 0.52 0.06 Geoven, Slknp, Species

Fibre Wet 0.70 1.94 0.49 2.41 Plant Age, Slknp, Species
Dry 0.64 1.92 0.36 2.14 PC3, PC8, Species

a cal = average of the R2
adj and RMSE calculated while implementing a leave one out cross validation (LOOCV).
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three of these models contained data from both ancillary and
absorption spectral sources, the remaining three models were
identical to the ancillary data models.

Validation of the predictive models showed that in particular
Phosphorus during the wet season is poorly predicted. In general
the validation results were highest in the combined models, except
for the dry season fibre which had higher predictive capabilities
with the ancillary data and spectral data alone.

4. Discussion

In this study we show that using remote sensing and imaging
spectrometry it is possible to map forage biochemicals in a repeat-
able and ecologically sensible way. We have identified for three
forage components (nitrogen, phosphorus and fibre) remote sens-
ing derived variables – based on ecological and spectroscopic the-
ory, that predict each of the respective forage components in both
the dry and wet season. These variables, could be used as a base
from which to generate algorithms, for estimating forage quality
in savanna regions.

This study has shown that irrespective of the forage compo-
nents being considered, temporally universal prediction models
cannot be created. Although there are variables that significantly
contribute to forage component models irrespective of season
(e.g. species and soil type data for foliar phosphorus), additional
variables are required in different seasons.

For all forage components, species were found to contribute sig-
nificantly to prediction models. For multiple plant nutrients, it has
been shown that different species display variations in the means
they store, or translocate nutrients through the plant (Chapin,
1980). These interspecific differences would be the likely reason
that the species variable is found to be significant in explaining
nutrient variations in different seasons.

In this study, species information was not derived from remote
sensing data. Species were clearly demonstrated to be the single
most important variable in modelling savanna forage components
(Table S1-S3), this outcome highlights the need for research to be
pursued in species mapping with remote sensing. In generating
this variable from imaging spectrometry data, it is likely that infor-
mation will be required from numerous regions of the spectrum
(Schmidt and Skidmore, 2001; Schmidt and Skidmore, 2003). Stud-
ies where species have been spectrally separated, have highlighted
that spectral features selected have been related to physico-chem-
ical regions (Vaiphasa et al., 2007), and that vegetation structure
strongly influenced the separability of species (RibeirodaLuz and
Crowley, 2010). In using species information for mapping of nutri-
ents, in combination with absorption features, the relationship be-
tween variables associated with nutrients and plant physical status
should be investigated.

During the wet season water absorption features dominate veg-
etation spectra. These effects are particularly prominent in the
SWIR region (1400–3000 nm) of the spectrum (Elvidge, 1990;
Kokaly and Clark, 1999), and the cellulose and lignin features are
masked by water features. For nitrogen and particularly fibre we
see this influence in the outcomes of the components selected.
During the wet season few PC with high loadings of wavelengths
within the SWIR2 (2000–2300 nm) regions are included as model
variables. Our results show that during the wet season fibre is bet-
ter estimated through ecological features that explain the environ-
ment (soil type), and plant morphology (plant age and species).
Conversely during the dry season when cell water content is neg-
ligible, then the SWIR features of lignin and cellulose can be used
to predict the concentration of fibre.

Soil type descriptions, significantly explained variations in the
phosphorus concentrations in both the wet and dry seasons (Table
4). The soil phosphorus pool is correlated with measured concen-
trations of foliar phosphorus (Schachtman et al., 1998). Hartshorn
et al. (2009) showed the catenal position was associated with vari-
ations in phosphorus levels within the soil, supporting the use of
the detailed soil classification provided by the South African soil
classification system (Macvicar et al., 1977), as this classification
system details the catenal soil strata.

For nitrogen, if only environmental variables were considered,
then plant age and REP, in addition to species, were significant con-
tributors in both seasons (Table 4). When combining absorption
features linked to nitrogen, with the environmental variables, only
REP and species remained significant in both seasons. REP, has
been associated with nitrogen (Cho and Skidmore, 2006; Gianelle
and Guastella, 2007; Mutanga and Skidmore, 2007), but also esti-
mating LAI, plant biomass (Darvishzadeh et al., 2008b; Darvish-
zadeh et al., 2008a; Gianelle and Guastella, 2007), and in
combination with the SWIR region, vegetation condition (Asner
et al., 2005). Thus, although REP has been found to be an indicator
for forage nutrient concentrations, it has also been linked to plant
physical state. When applied to a forage nutrient algorithm, REP
should be verified as a variable explaining the forage nutrient var-
iance, and not biomass or plant status.

Findings from earlier studies (Curran, 1989; Darvishzadeh et al.,
2008b, 1996; Jacquemoud et al., 1995), showed that bands selected
in studies on fresh leaves frequently did not coincide with bands
directly linked to the nutrient under investigation. Our studies
showed that prediction using only features associated with physi-
cal bond vibrations yielded poor predictions of forage component
concentrations. The wavelengths (as highest loadings in the PC)
attributed to predicting the forage concentrations also varied be-
tween seasons. With the addition of ancillary data, to models of
physically linked wavelengths, there was a significant improve-
ment in model performances.

What is clear from the findings presented here, is that prediction
of nutrients using remote sensing techniques is greatly aided by
inclusion of environmental variables. Inclusion of suitable variables
not only improves model predictions, but also provides grounds for
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creating models that can be generalised temporally. In this study
we considered as ancillary data, variables that have been ecologi-
cally tied to variations in nutrients. Asner and Martin (2008) and
Kokaly and Clark (1999) highlighted remote sensing features that
are associated to changes in vegetation structure (water content)
and morphology (architecture, leaf area index), and how these opti-
cal effects, may influence the detection of biochemicals. Inclusion of
such features in combination with environmental variables would
provide a logical step for creating generalisable forage nutrient
models. In this study we did not analyse for any spatial relation-
ships within the different forage components. A study by Cheng
et al. (2007) showed spatial dependence of nitrogen and phospho-
rus plant nutrients at short ranges (between 47–80 cm ranges) in
five grass dominated vegetation communities. It would be expected
that such spatial properties exist within these systems and there-
fore a valuable follow on to this study would be to create a sampling
scheme that would allow for such analysis to take place, and deter-
mine if there are multiple ranges of spatial dependence.

In terms of creating generalisable algorithms for predicting for-
age component concentrations in savanna grasses, this research
showed that, while a base algorithm can be defined for each forage
component, additional variables should be included in the wet and
dry season if accurate (i.e. where accuracy is defined as above 70%
of variation explained) estimations are required. In this study we
focused only on grass forage, in savanna systems there is a mixed
tree-grass layer, therefore when upscaling to landscape scale with
imagery it would be necessary to take into account the tree layer,
this could be performed prior to model inversion through a method
such as binary slicing (Skidmore et al., 2010), or through utilising
the spectral value ranges used in training the model at the time
of model inversion (Knox et al., 2011).

The method outlined here can potentially be generalised to
other ecosystems but would require the identification of environ-
mental variables that are relevant to these ecosystems. In order
to apply the method to generate landscape scale forage quality
maps in heterogeneous landscapes would require sensors of both
high spectral and spatial resolution. Considering these spectral
and spatial requirements there are currently limited sensors avail-
able with this capability. Examples of such sensors include the Car-
negie Airborne Observatory (CAO), HyMAP sensor, perhaps
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), however
the spatial resolution is rather coarse for mapping of heteroge-
neous grasslands, or for very high resolution mapping the use of
Unmanned Airborne Vehicles (UAV).

Although this linear regression method is an attractive and sim-
ple approach to implement, we believe the following aspects need
further consideration:

1. Error propagation is a factor which has not been considered
here, but could have implications for the stability of model out-
comes. With each created data layer, there is a certain level of
uncertainty attached to it, e.g. the possibility of a misclassifi-
cation of a species, or perhaps a geological boundary shift. Thus
with the inclusion of data into the modelling of biochemicals
there is a need to critically assess the quality of the data.

2. A second aspect for consideration is the selection of the appro-
priate data layers. In this study for example we decided to use a
fire layer based on the frequency of burns over a time interval, a
feature shown to influence vegetation structure (Levick et al.,
2009). The effect of fire on savannas is complex, and it might
well be that a more appropriate layer could be fire intensity,
or time since last fire (van de Vijver et al., 1999; Knox et al.,
2011).

3. A spectrum taken of vegetation, not only captures the physical
contents of the plants, but also aspects of plant structure. In
using environmental variables for modelling, there needs to
be an assessment of the relationship between these variables
to other plant physical variables measured in a spectrum, e.g.
LAI or biomass.

5. Conclusion

In this study our main findings were:

1. Combining ancillary and absorption data for mapping of forage
nutrients in savanna produces ecologically sensible outcomes
with high predictive capabilities in both dry and wet seasons.

2. Species and categorical soil classifications were two ecological
variables that repeatedly (temporally and between forage com-
ponents) significantly contributed to the estimation of forage
quality.

3. Ancillary data could model forage component concentrations
with higher goodness of fit and prediction outcomes in both
the wet and dry seasons, than absorption data alone.
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