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Abstract: The present study investigates the critical state behaviour of granular assemblies composed of 

clumped particles under four different drained axisymmetric triaxial stress paths, using the discrete element 

method (DEM). A series of numerical samples were prepared at initial states with different density indexes (𝐼𝐷) 

and different initial confining pressures (𝑝𝑜
′ ). These samples were sheared to large strains, at which constant 

stresses and volumes were maintained to reach the critical state. The evolution of stress ratio under the same 

loading mode (for the same intermediate principal stress ratio, b) is shown to yield an almost identical behaviour 

independent of stress paths, whereas the stress-strain response depends on the stress paths. Four different 

axisymmetric stress paths all share the same unique friction angle at critical state, indicating the Mohr-Coulomb 

failure criterion is the appropriate critical state strength criterion, which is at least true for the axisymmetric stress 

conditions. A unique coordination number (CN) is achieved at the critical state for a given 𝑝𝑜
′ , which is 

independent of the stress path. The critical state CN is found to increase with the increase in 𝑝𝑜
′ , which could be 

attributed to the decrease in the critical state void ratio (ec) as mean effective stress (𝑝′) increases. Interestingly, 

a unique linear functional relationship is found between the critical state values of CN and ec, and a unique 

polynomial functional relationship is found between the critical state values of CN and 𝑝′. These functional 

relationships indicate no dependency on the stress paths or loading modes, thus characterizing unique features 

at critical states at both macroscopic and microscopic levels for a given type of granular material. 
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Highlights: 

⚫ For axial compression (AC) stress path, a unique deviator stress, stress ratio and mean effective stress is 

achieved respectively at the critical state for a given initial confining pressure (𝑝𝑜
′ ).   

⚫ Independence of stress paths, a unique coordination number (CN) is achieved at the critical state for a given 

initial confining pressure.   

⚫ As the initial confining pressure increases, the critical CN will increase, and such an increase can be 

correlated to a decrease in the critical state void ratio (ec).  
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⚫ A unique linear relationship is found between the critical coordination numbers and the critical state void 

ratio.  

⚫ A unique polynomial relationship is found between the critical coordination numbers and mean effective 

stresses (
'p ). 

1. Introduction 

The classical critical-state theory (CST) developed by Roscoe et al. (1958) and Schofield & Wroth (1968) 

laid the foundation for critical state soil mechanics (CSSM). The uniqueness of the critical state line (CSL) has 

been debated for many years and remains an open topic in the research community (e.g., Zhao & Guo, 2013; 

Yang & Wu, 2017). The critical state refers to the state of a soil sample deforming in shear with both the stress 

state and volume of the sample maintained as constant. The critical state line, comprised of critical states for a 

given soil under axisymmetric stress conditions, is characterized by a constant stress ratio 𝑀 = 𝑞/𝑝′, where 𝑝′ 

and q commonly refer to the mean effective stress and deviator stress respectively, and M denotes the critical 

state stress ratio that may depend on the shear mode, for instance, with constant Lode angles of stress or constant 

intermediate principal stress ratios (Zhao & Guo, 2013). Xie et al. (2017) identified, from their simulation results, 

that critical state loci in the compression 𝑒 − 𝑝′ space was slightly affected by the aspect ratio but the critical 

stress ratio was found to mainly depend on the aspect ratio and intermediate stress ratio. Yang & Wu (2017) 

showed that a unique critical state line (CSL) can be approximately obtained in 𝑒 − 𝑝′ space, which seems to 

contradict earlier observations (Zhao & Guo, 2013; Yang & Wu, 2017). In addition, Li (2006) showed that the 

CSL in the 𝑒 − log(𝑝′) space obtained in triaxial extension (TE) simulations was located above that obtained in 

triaxial compression (TC) indicating a non-unique CSL. However, most discrete element method (DEM) 

investigations have shown that the CSL is unique and independent of the initial states and loading conditions. 

Zhao & Evans (2011) showed that the locus of the CSL depended on the initial density and loading paths by 

comparing the simulation data from conventional triaxial, plane strain and direct shear tests using DEM. It can 

be inferred, from these discussions, that the uniqueness or non-uniqueness of the relationships between critical 

state strength parameters and stress path parameters is worth further investigations. 

 

Springman et al. (2013) identified that several characteristic features, such as depression and extensions 

along with drainage conditions, may be more likely to lead to slope instabilities in the field. To mimic these 

characteristic features, more generalized loading conditions along with advanced testing devices such as the true 

triaxial apparatus were developed and these allowed the analysis of the intermediate principal stress on the shear 

strength of granular soils (e.g., Ko & Scott, 1968; Green & Bishop, 1969; Lade & Duncan, 1973; Reades & 

Green, 1976; Lam & Tatsuoka, 1988; Wang & Lade, 2001; Shapiro & Yamamuro, 2003). However, it is difficult 

to have the same initial soil samples which will be needed for subsequent experiments with different stress paths, 

and therefore the sample equivalence due to the different initial states including soil fabric could always be 
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questioned. In the recent past, the DEM has become a promising tool to investigate the mechanical behaviour of 

granular soils as an alternative, or complement, to physical experiments. Many researchers have applied DEM 

for analyzing the mechanical behaviour of granular materials under different loading conditions in relation to 

critical state behaviour (e.g., Ng, 2004, 2009; Huang et al., 2014; Fu & Dafalias, 2015; Yang & Wu, 2017; Xie 

et al., 2017; Ciantia et al., 2019; Li et al., 2020; Shi et al., 2021; Lin et al., 2022). However, the behaviour of 

granular materials is also affected by the different stress paths imposed (Jiang et al., 2013; Rodriguez & Lade, 

2013). A more generalized three-dimensional stress state can be achieved using a true triaxial apparatus (TTA) 

(Ko & Scott, 1967; Green & Bishop, 1969; Head, 1986). Moreover, each stress path has its critical field 

significance and thus the following four stress paths are adopted in this investigation for simplicity (see Fig. 1): 

• Axial compression (AC) – The specimen is loaded axially (𝛥𝜎𝑎 ↑) while the initial confining pressure 

is kept constant (𝛥𝜎𝑟 = 0). 

• Axial extension (AE) – The specimen is unloaded axially (𝛥𝜎𝑎 ↓) while the initial confining pressure is 

kept constant (𝛥𝜎𝑟 = 0). 

• Lateral compression (LC) – The specimen is loaded laterally (𝛥𝜎𝑟 ↑) while the axial pressure is kept 

constant (𝛥𝜎𝑎 = 0). 

• Lateral extension (LE) – The specimen is unloaded laterally (𝛥𝜎𝑟 ↓) while the axial pressure is kept 

constant (𝛥𝜎𝑎 = 0). 

Fig. 1 

In addition to the above-discussed aspects related to the CSL, Kodicherla et al. (2019) demonstrated that 

particle shape is an important factor in the critical state behaviour of granular materials. In general, prior DEM 

simulations have employed both discs in two-dimensions and spheres in three-dimensions (e.g., Maeda et al., 

2010), because of the lower computational cost and ease of contact detection (e.g., Ng, 2009; Sitharam & Vinod 

2009; Yan & Dong, 2011). However, these may not represent the behaviour of true granular materials. Therefore, 

in the recent past, some DEM investigations considered various particle shapes, e.g., non-spherical particles such 

as spherocylinders (Pournin et al. 2005), ellipsoids (Ng 2009), clumped spheres (Hartl & Ooi 2011), 

superellipsoids (Wellmann et al. 2008; Cleary 2010) and polyhedrons (Zhao et al. 2015). However, at present, 

there is no standard shape that can represent a generalized framework for describing arbitrary particle geometry 

to simulate the true behaviour of granular materials.  

The present paper addresses the disparities concerning the uniqueness of the CSLs previously discussed, 

based on a DEM simulation approach. The virtual samples used in this study are composed of a randomly chosen 

clumped particle generated using a multi-sphere approach in PFC3D. In total, 60 numerical samples were 

sheared comprising 3 different densities and 4 stress paths making a series of 12 simulations for each of the 5 

initial confining pressures. The four different stress paths are axial compression (AC), axial extension (AE), 

lateral compression (LC) and lateral extension (LE). Each series represents 5 simulations with different initial 
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confining pressures 𝑝𝑜
′  , as 100 kPa, 200 kPa, 400 kPa, 800 kPa and 1600 kPa. All samples were sheared to the 

critical state and the influence of stress paths was investigated to examine the uniqueness of the CSLs. Moreover, 

the microscopic quantities in terms of coordination number (CN) and fabric anisotropy considering the deviator 

fabric, strong and weak force subnetworks are discussed. 

 

2. Simulation details 

Three-dimensional DEM simulations were performed by employing a commercial program named Particle 

Flow Code (PFC3D), developed by Itasca Consulting Group (2019) on a Dell Precision T7500 workstation, 

which has the following specifications: Intel® Xeon® CPU X5690 @3.47 GHz; 12 cores; 48 GB of RAM; 

NVIDIA Quadro 4000. To consider the representative behaviour of granular materials, a randomly selected 

clump template in the form of an STL file is modelled using the multi-sphere (MS) approach (Taghavi 2000). 

The following morphological descriptors were adopted: 𝜉 = 0.5 representing the ratio of the smallest to the 

largest pebble diameter within a clump (i.e., particle geometry) and 𝛽 = 150°  representing the maximum 

pebble-pebble intersection angle (i.e., particle surface texture), taking the computational limitations into account. 

More details on the effects of morphological descriptors of clumped particles are discussed by Kodicherla et al. 

(2019, 2020). 

A cuboid assembly of dimensions 50 × 50 × 50 mm was modelled using rigid wall boundaries with each 

assembly limited to 2,845 clumped particles i.e., each clump consisting of 27 pebbles which means that a total 

of 76,815 pebbles in the whole assembly (see Fig. 2). The distribution of the equivalent diameter of the particle, 

where 6eqd V / = , in which V is the volume of a clump and the inset in Fig. 3 shows different orientations 

of the clumped particle.  

Fig. 2, 3 

In terms of clump-clump and clump-wall contact interactions, a simple linear force-displacement law was 

assigned, see also Yan (2009), Abedi & Mirghasemi (2011), Stahl & Konietzky (2011), Gu et al. (2014), Yang 

et al. (2016), Kodicherla et al. (2019) among others. The effective modulus and stiffness ratio were taken as E* 

=1.0 × 108 Pa and 𝑘∗ =4/3 (Goldenberg & Goldhirsch 2005), respectively. The mass density of a clump was 

considered as 2700 kg/m3. To achieve various states of assemblies, different interparticle friction coefficients 

were assigned at the sample preparation phase and those were replaced by 0.5 during shearing. A density index 

( ( ) ( )D up up lowI e e / e e= − − ) is used to classify the samples with different initial void ratios, to examine 

dilatancy and critical state behaviour. More details on how to achieve different density index (𝐼𝐷) values are 

presented in Appendix A. 
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During the isotropic compression, a built-in stress-controlled servo mechanism was triggered to achieve the 

desired stress levels. The walls were permitted to move at a persistent loading rate of 0.004 m/s, which is small 

enough to ensure the existence of quasi-static shear (Zhao & Zhao 2019). Moreover, the assemblies were 

monitored by the inertia number (𝐼), which is given by (da Cruz et al. 2005): 

i gI d / p = &                                                                                                    (1) 

where 𝜀̇ is the axial strain rate, 𝑑𝑖 is the diameter of the ith particle, 𝑝′ is mean effective normal stress and 𝜌𝑔 is 

the particle density. Quasi-static shear can be achieved by a small value of I, thus I was maintained at a value 

less than 10−4 throughout the simulation. Further details on the choice of loading rate and loading scheme were 

discussed by Li et al. (2013). 

 

3. Simulation program 

In total, 60 numerical samples were sheared from 12 different series of numerical simulations to the critical 

state under various stress paths. In each stress path test, three different initial states of assemblies, i.e., loose, 

medium and dense based on their ID values with five different '

op  ( = 100, 200, 400, 800 and 1600 kPa) are 

considered. For loose, medium and dense soils, the ID values vary from 15%–35%, 35%–65% and 65%–85%, 

respectively. All samples were found to reach a steady value under constant stress and volume beyond an axial 

strain level of approximately 40% which satisfies the classical definition of the critical state (Kodicherla et al., 

2021). The summary of the initial characteristics of DEM assemblies is presented in Table 1.  

Table 1 

4. Results and discussion 

All the samples obtained from the isotropic compression stage with varying initial confining pressures and 

densities are then sheared to the critical state under drained triaxial test conditions. Four modes of shear are 

considered in this investigation (i.e., AC, AE, LC and LE). All samples are sheared to large strains with constant 

stress and volume as the requirement of critical state theory (CST). The results are presented at both macroscopic 

and microscopic levels, and for Section 4.1, only the isotropically compressed samples at 𝑝𝑜
′ = 400 kPa are 

presented for brevity. The results for the other stress paths with varying 𝑝𝑜
′  exhibit similar behaviour. 

4.1 Evolution of macroscopic behaviour 

The macroscopic behaviour of granular materials during shearing can be evaluated using a Cauchy stress 

tensor (e.g., Christoffersen et al. 1981; Mehrabadi et al. 1982). Supplementary information on the stress tensor 

is furnished in Appendix B. The macroscopic behaviour of the AC stress path tests with different density indexes 
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is shown in Fig. 4.  The loose sample (i.e., 𝐼𝐷𝑜= 0.204) exhibits strain-hardening behaviour while the dense 

sample (i.e., 𝐼𝐷𝑜= 0.741) shows initial hardening with a post-peak strain softening response (see Fig. 4(a)–(c)). 

The medium sample (i.e., 𝐼𝐷𝑜= 0.514) exhibits initial hardening with minor post-peak strain-softening behaviour. 

For a given 𝑝𝑜
′ , a unique value of deviator stress, stress ratio and mean effective stress is achieved at the critical 

state. Also, similar observations were reported in DEM simulations of granular materials by Kodicherla et al. 

(2021). 

The evolution of mobilized friction angle ( ) ( )1 3 1 3sin /    = − +  for dense samples (i.e., 𝐼𝐷𝑜 = 

0.741) under different stress paths is shown in Fig. 5. For an intuitive observation of the variations in sin𝜙, 

dense samples are considered. Although, the trend of sin𝜙 for AC followed the same trend as LE while AE 

followed the same trend as LC, an approximate unique value of sin𝜙𝑐𝑠 = 0.48 at the critical state is identified. 

Moreover, the peak values of sin𝜙 under AE and LC were found to be higher than those of AC and LE.  

The comparison of stress-strain behaviour of the granular assembly sheared under various stress paths is 

shown in Fig. 6. According to standard soil mechanics convention, the deviator stress ( )1 3q  = −  is positive 

for compression samples and negative for extension samples. If the absolute value of q is used to evaluate the 

stress ratio (as shown in Fig. 6(c)), the evolution of the stress ratio for AC is essentially the same as that for LE 

and similarly, the evolution of the stress ratio for AE is essentially the same as that for LC. Among the stress 

paths, LC is found to have the highest deviator stress against the axial strain (see Fig. 6(a)) and the volumetric 

strain for the AC sample followed that of the LC sample while the volumetric strain of the AE sample followed 

that of LE sample. The evolution of the stress ratio under the same loading mode with the same b yields an 

almost identical behaviour independent of stress paths, whereas the stress-strain response depends on the stress 

paths (see Fig. 6(b) and (c)). 

Fig. 4, 5, 6 

4.2 Evolution of critical state parameters 

The relationship between critical state void ratio (𝑒𝑐) and mean effective normal stress (𝑝′) can be expressed 

in ( )loge p−   space. The critical state framework usually assumes the existence of a unique critical state line 

(CSL) for a given soil sample in e q p− −   space. The soil sample is expected to shear up to large strains under 

constant stress and volume. According to Roscoe & Burland (1968), and Schofield & Wroth (1968), the CSL 

was originally derived from the tests conducted on remoulded clays and it was found to be a straight line in 

( )log 'e p−  space. However, this may not be true for real sands (Been et al. 1991; Verdugo & Ishihara 1996; 

Riemer & Seed 1997). Li & Wang (1998) proposed a linearization approach for describing the CSL in the 

( )ae p / p


−   space, which can be expressed as: 
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( )c ae p / p


  = −                                                                                              (2) 

where 𝛤 is the intercept of the CSL on the y-axis at 𝑝′ = 0 and 𝜆 is the slope of CSL and 𝜉 is the parameter used 

for fine-tuning during the optimization, taken as 0.7 and 𝑝𝑎 is the atmospheric pressure serving as a reference 

pressure for normalization, which is taken as 101 kPa.  

Fig. 7 shows the relationship between the void ratio (𝑒𝑐) and the mean stress ( )ap'/ p  at critical state for 

the stress paths (AC, AE, LC and LE), where the curve in the ( )'

c ae p / p−  space is found to depend on the 

stress paths and the relationship is not linear for any of the stress paths considered in the study. The huge 

scattering might be due to the clumped system/particle’s morphological features and limited number of particles 

used. 

Fig. 8 shows the relationship between the void ratio (𝑒𝑐) and mean stress at a critical state for the stress 

paths (AC, AE, LC and LE), where the curve in the 0 7( ) .

c ae p / p−  space is found to depend on the stress paths 

and the relationship is linear for each stress path.  

Based on the values of the intermediate principal stress ratio (b = (σ2 – σ3)/(σ1 – σ3), where σ1 is major 

principle stress, σ2 is intermediate principle stress and σ3 is minor principle stress), the critical state lines of AC 

& LE and LC & AE are grouped (i.e., the b values for AC & LE and LC & AE are 0 and 1 respectively). The 

critical state data points in 𝑞 − 𝑝′ space are linearly fitted and considered to pass through the origin as presented 

in Fig. 9. The critical stress ratio (M) for AC & LE and LC & AE are found to be MAC&LE = 𝑞/𝑝′ = 1.08 and 

MLC&AE = 0.78, respectively. The ratio of MAC&LE/MLC&AE =1.38 which is slightly high compared to the typical 

range of sand as discussed in the literature (Yoshimine et al. 1998; Yang et al. 2008; Kodicherla et al. 2021). 

Fig. 7, 8, 9 

4.3 Microscopic parameters 

4.3.1 Coordination number (CN) 

The coordination number, CN (=2C/N) is a key microscopic parameter to investigate the structural stability 

of granular assemblies, where C is the number of contacts in the assembly and N is the total number of particles. 

The number “2” indicates that each contact is formed by two entities. For a clumped system, the number of 

contacts refers to the contacts between clumps. 

The evolution of CN against axial strain for all stress paths is shown in Fig. 10. For the extension stress 

path, there is an initial decline (i.e., ~10% axial strain) whereas for the compression path there is an initial 

increase and eventually both cases reach a critical value at large strain. Moreover, a unique value of CN is 

achieved at the critical state, which is found to be independent of the considered stress path for a given sample. 
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The relationships of CN against 𝑒𝑐  and 𝑝′ is presented in Fig. 11. Overall, a unique linear relationship 

between CN and ec exists (see Fig. 11(a)), while a polynomial relationship is found between the CN and 𝑝′ (see 

Fig. 11(b)). These functional relationships are unique and show no dependency on the stress paths or loading 

modes. In addition, the critical state CN is found to increase with the increase in mean 𝑝′ at a critical state, 

corresponding to a decrease in ec, the conclusion of which agrees with that reported by Kodicherla et al. (2020). 

Fig. 11 indicates that the fitting functions are empirical and statistical in nature, which are interestingly found to 

be unique. It is also interesting to find the intercept (when 0'p = ) is 5.92 in the fitting equation of CNcritical 

against p', very close to 6, which is the limit value of CN for identifying granular instability for a frictionless 

system following the approach derived for a frictional granular system as provided by Zhu et al. (2021). 

However, such a macro-micro functional relationship is still an open question and it is not always feasible to 

associate the parameters or constants in such equations with a physical interpretation. More simulation or 

experimental data with general stress paths may be needed in order to better verify this point. In addition, the 

critical state is characterized by unique features at both macroscopic and microscopic levels and these plots show 

the unique correlations between the macroscopic and microscopic descriptors at the critical state. 

Fig. 10, 11 

4.3.2 Fabric anisotropy 

The fabric of a granular assembly may evolve during the loading process. Thus, it is essential to understand 

the impact of fabric anisotropy on the mechanical behaviour of soils (Oda 1982; Yang et al. 2008; Fonseca et al. 

2013). Supplementary information on the basic formulation of the fabric tensor and anisotropy in terms of 

deviator fabric is presented in Appendix C. 

Fig. 12 presents the deviator fabrics against axial strain for overall, strong and weak deviator fabrics under 

four different stress paths. As can be seen from Fig. 12(a) at the critical state, a unique value of the overall 

deviator fabrics is achieved for AC & LE and LC & AE whereas for the strong and weak subnetworks, the 

deviator fabrics are biased. The magnitudes of deviator fabrics follow: 
d ,overall d ,weak d ,strong    , which 

means that the main contribution to the stress-fabric relationship is due to the strong force subnetworks only. 

Moreover, this observation agrees with the study in triaxial test simulations of granular materials by Thornton 

(2015). 

All the critical deviator fabrics for overall, strong and weak subnetworks are presented in Fig. 13. The trends 

of overall deviator fabric are less scattered than those from the data points of strong and weak deviator fabrics 

for both compression and extension paths. Overall, the data points for all deviator fabrics seem to not correlate 

with ap / p . In this regard, the interpreted trends for AC & LE and LC & AE are illustrated for overall, strong 

and weak deviator fabric in Figs. 13(a, b and c), respectively. For the overall deviator fabric, an average of 0.171 
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with a coefficient of variance (CoV) of 0.048 for both (i.e., AC & LE and LC & AE) stress paths. Moreover, 

there is not much variation in the deviator fabrics of AC & LE and LC & AE.  

Fig. 12, 13 

5. Conclusions 

The present study investigates the critical state behaviour of granular materials under different drained 

triaxial stress paths. Sixty numerical simulations were performed and their behaviours at macroscopic and 

microscopic levels are explored. Based on the observations, the following conclusions can be drawn: 

(1) Unique values of deviator stress, stress ratio and mean effective stress are achieved at the critical state 

for a given initial confining pressure under an AC stress path.  

(2) The evolution of stress ratio under the same loading mode (with the same value of the intermediate 

principal stress ratio, b) yields an almost identical behaviour regardless of stress paths, whereas the stress-strain 

responses (even with the same b value) are dependent on the loading mode. 

(3) Independent of the stress paths, the mobilized friction angles are found to be approximately unique at 

the critical state. 

(4) The critical stress ratio (M) is found to be dependent on the intermediate principal stress ratio b, and is 

higher under the AC & LE stress paths with b equal to 0 than under the AE & LC stress paths with b equal to 1.  

(5) A unique coordination number (CN) is achieved at the critical state for a given initial mean effective 

stress ( )'

op , which is independent of the stress paths, and the increase in critical CN corresponds to a decrease 

in the critical void ratio (ec) as 𝑝𝑜
′  increases. 

(6) A unique linear functional relationship is found between the critical state values of CN and ec. Also, a 

unique polynomial functional relationship is found between the critical state values of CN and 𝑝′ . These 

functional relationships show no dependency on the stress paths or loading modes, thus characterizing unique 

features for a given type of granular material.  

It should be noted that, as mentioned in many previous investigations (e.g., Wood & Maeda 2008; Bandini 

& Coop 2011), there are significant gradation changes due to particle breakage or crushing that may occur in 

practical engineering, and therefore, the new soil may not be the same as the virgin one. Due to the limitation of 

the scope of the current investigation, especially concerning the levels of confining stresses, particle breakage is 

not considered. Moreover, although clumped particles can simulate particle shape effects to a certain degree, 

they cannot represent real sand without the mapping of the realistic particle shapes based on advanced image 

capture techniques such as 3D tomographic imagery. These may be worth future investigations. 
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Appendix A. Densification index (ID) 

In soil mechanics, the state of soil can be well represented by relative density 

( ) ( )r max max minD e e / e e= − − , where 
maxe  and mine  are the maximum and minimum void ratios, respectively. 

However, in DEM simulations, the evaluation of 
maxe  and mine  is challenging due to the continuous change in 

void ratio with different interparticle friction coefficient values during the sample preparation phase. Therefore, 

an alternative measure of rD , is the densification index ( )DI , which is used to capture the state of the 

numerical assembly. The expression for DI  is defined as (Zhang et al. 2018):  

up

D

up low

e e
I

e e

−
=

−
                                                                                                           (A1) 

where 
upe  and lowe  are the corresponding void ratios of the upper and lower consolidation lines, respectively. 

The upper boundary is the isotropic consolidation line (ICL) of the loosest sample and the lower boundary is the 

ICL of a sample exposed to the densest state or maximum densification. It should be mentioned that the state of 

the sample in the DEM is mainly contingent on the application of the interparticle friction coefficient during 

specimen generation, or during the isotropic compression phase. To achieve the densest state, the zero 

interparticle friction coefficient should be assigned to the particles during the specimen generation phase, and 

then the e obtained at the end of the isotropic compression phase will be considered as mine . Similarly, for the 

loosest state, the interparticle friction coefficient in the successive isotropic compression phase shall be gradually 

increased until the e becomes almost constant. The e obtained during this isotropic compression phase will be 

regarded as maxe . 

Appendix B. Stress tensor 

For a given representative elementary volume (REV), the macroscopic behaviour of granular material can 

be quantitatively obtained using averaged Cauchy’s stress tensor (e.g., Christoffersen et al. 1981; Mehrabadi et 

al. 1982): 

1 c c

ij i j

c V

  f b
V

 = 
ò

                                                                                 (B1) 
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where V is the total volume of the REV, 
cf  and 

cb  are the contact force and branch vectors at each contact 

point c, respectively. In addition, a contact force 
cf  can be decomposed into three sub-components, i.e., c

nf , 

c

tf  and c

sf  in the n, t and s directions (in 3D) such that c c c c

n t sf f n f t f s= + + . Here, n, t and s are three 

orthogonal unit vectors parallel and perpendicular to the contact plane. The mean and deviator stresses are 

3iip /=  and ( )3 2 ij ijq / s s=  with 
ij ij ijs p = − , respectively, where 

ij  is the Kronecker delta. 

However, in this investigation, the average stresses are obtained directly from the wall forces which is a 

straightforward technique usually employed in PFC (Kodicherla et al. 2019, 2020).  

Appendix C. Fabric tensors 

Fabric refers to the spatial arrangement of particles and associated pore voids (Oda 1982). While shearing, 

the spatial arrangements of particles and void spaces tend to exhibit an extent of anisotropy and evolve to a 

specifically preferred orientation (Yimsiri & Soga 2011). Among the various definitions available for the fabric 

tensor (e.g., Oda 1982; Satake 1982; Li & Li 2009), a commonly used approach is the contact-normal based 

proposition, which can be expressed as:  

11 12 13

21 22 23

1

31 32 33

1 cN

k k

ij i j

kc

n n
N

  

   

  
=

 
 

= =
 
  

                                                                            (C1) 

where 𝑛𝑘 = the contact unit normal vector of the contact k with 1 2 3i, j , ,=  and cN   is the number of contacts 

in the assembly. The components 11 22,   and 33  are the fabric in the principal directions ( )i j= , and 

12 13 21 23 31, , , ,       and 32  are the fabric components in the shear direction ( i )j . The scalar values 

of shear components in the opposite direction are equal, that is, 12 21 = , 13 31 =  and 23 32 = . The 

principal values 1 2,  , & 3  and principal directions of the fabric can be obtained by the eigenvalues and 

eigenvectors of the fabric tensor. According to Thornton (2000), the deviator fabric, ( )1 3d  = − , is the 

difference between major and minor principal fabric components i.e., the maximum and minimum eigenvalues 

of 
ij , which is widely used to quantify the structural anisotropy of granular assemblies.  

The whole contact network is distinguished into strong and weak subnetworks based on whether the normal 

contact force is higher or lower than the average normal contact force n

avgf , respectively (Thornton & Anthony 

1998). A similar decomposition approach was used in this investigation to distinguish the strong and weak force 

fabric networks. The average normal contact force is defined as: 
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1

1 cN

n n

avg i

c

f f
N

=                                                                                                    (C2) 

where n

if  is the 
thi  normal contact force. Based on the definition of fabric tensor mentioned in Eq. (C1), the 

associated fabric tensors with the subnetworks can be expressed as: 

 

s
cN

s k k

ij i js
kc

n n
N


=

= 
1

1
      ,         

w
cN

w k k

ij i jw
kc

n n
N


=

= 
1

1
                                                                               (C3) 

where s

cN  and w

cN  are numbers of contacts in the strong and weak subnetworks, respectively. The total number 

of contacts 
cN  in the granular assembly is s w

c c cN N N= + . 
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Figures: 

 

Fig. 1. Schematic representation of drained triaxial stress path tests (after Springman et al. 2013). 
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Fig. 2. Initial loose cubic packing of the DEM specimen (walls omitted). 

 

Fig. 3. Grain size distribution of the DEM assembly. 
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Fig. 4. Macroscopic behaviour of AC stress path test with different initial density values: (a) aq ~  ; (b) 

aq / p' ~  ; (c) ap' ~  ; (d) v a~  . 
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Fig. 5. Evolution of 𝑠𝑖𝑛𝜙. 
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Fig. 6. Comparison of macroscopic behaviours: (a) aq ~  ; (b) v a~  ; (c) aq / p' ~  .    
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Fig. 7. Relationship between void ratio and mean effective stress at the critical state. 

 

Fig. 8. Relationship between void ratio and mean stress at the critical state. 
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Fig. 9. Critical state lines in the 𝑞 − 𝑝′ space. 

 

 

Fig. 10. Evolution of CN. 
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Fig. 11. Relationships of CN at critical state: (a) cCN e− ; (b) CN p−  . 
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Fig. 12. Evolution of deviator fabrics: (a) d ,overall a  ;(b) 
d ,strong a  ; (c) d ,weak a  . 
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Fig. 13. Evolution of deviator fabrics at critical state: (a) d ,overall a  ; 

(b) 
d ,strong a  ; (c) d ,weak a  . 
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Table: 

Table 1: Summary of initial characteristics of numerical assemblies  

Density 

classification  Stress 

path  

eo 

(𝑝𝑜
′  = 100 

kPa) 

eo 

(𝑝𝑜
′  = 200 

kPa) 

eo 

(𝑝𝑜
′  = 400 

kPa) 

eo 

(𝑝𝑜
′  = 800 

kPa) 

eo 

(𝑝𝑜
′  = 1600 

kPa) 

Loose  

AC 

0.628 0.607 0.567 0.526 0.481 
AE 

LC 

LE 

Medium  

AC 

0.459 0.451 0.434 0.406 0.366 
AE 

LC 

LE 

Dense  

AC 

0.362 0.353 0.336 0.310 0.278 
AE 

LC 

LE 

 

 

 


