
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 607
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Based on Automatic Iterative Random
Forest Approach
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and Bernhard Höfle

Abstract—Gullies are landforms with specific patterns of shape,
topography, hydrology, vegetation, and soil characteristics. Remote
sensing products (TanDEM-X, Sentinel-1, and Sentinel-2) serve
as inputs into an iterative algorithm, initialized using a micro-
mapping simulation as training data, to map gullies in the north-
western of Namibia. A Random Forest Classifier examines pixels
with similar characteristics in a pool of unlabeled data, and gully
objects are detected where high densities of gully pixels are enclosed
by an alpha shape. Gully objects are used in subsequent iterations
following a mechanism where the algorithm uses the most reliable
pixels as gully training samples. The gully class continuously grows
until an optimal scenario in terms of accuracy is achieved. Results
are benchmarked with manually tagged gullies (initial gully labeled
area <0.3% of the total study area) in two different watersheds
(408 and 302 km2, respectively) yielding total accuracies of >98%,
with 60% in the gully class, Cohen Kappa >0.5, Matthews Cor-
relation Coefficient >0.5, and receiver operating characteristic
Area Under the Curve >0.89. Hence, our method outlines gullies
keeping low false-positive rates while the classification quality has
a good balance for the two classes (gully/no gully). Results show
the most significant gully descriptors as the high temporal radar
signal coherence (22.4%) and the low temporal variability in Nor-
malized Difference Vegetation Index (21.8%). This research builds
on previous studies to face the challenge of identifying and outlining
gully-affected areas with a shortage of training data using global
datasets, which are then transferable to other large (semi-) arid
regions.
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I. INTRODUCTION

SOIL health is a global concern affecting modern and tra-
ditional societies and is a fundamental aspect that sustains

life on Earth [1], [2]. Gully erosion represents a key driver of
landscape and soil degradation, and it is a dominant geomorphic
process present in many regions worldwide [3], [4]. Gullies are
responsible for the loss of large masses of sediment from river
catchments and agriculture plots [5]. Given that they threaten
important infrastructures such as settlements, roads, and cattle
dams, these effects are considered more pronounced as com-
pared to other soil erosion types [6].

With growing land pressure within Africa and changes in pat-
terns of rainfall intensity, an increase in gully erosion rates [7] is
projected to occur in the coming decades [8]. Arid and semi-arid
countries suffer land degradation in an extreme way [9]–[11],
and Namibia represents a significant example of this. Gully
erosion in Namibia is considered one of the largest overlooked
environmental problems, with critical consequences including
desertification, loss of habitats [12], [13], lack of food security,
social conflicts in rural areas, and urban migrations [14], [15]
affecting national economic development and ecological wealth
[16], [17]. In recent years, considerable scientific effort has been
directed in Namibia towards controlling [18] and understanding
general land degradation [19], [20], in particular, that associated
with gullies [21]–[23]. There are also attempts to carry out inven-
tories and distribution maps of gullies as well as land degradation
by individual researchers [24], farmers associations [25], and
the Ministry of Agriculture, Water and Rural development of
Namibia [26], [27]. Mapping initiatives are generally carried
out at the local (farm) level and form a valuable basis for a
better understanding of the gully phenomena. A more global
approach, however, is required to tackle the problem as a critical
hazard affecting the entire nation. In this sense, as highlighted
by Poesen [5] for a global scale, research activities in Namibia
should also cover the development of standardized and reliable
measuring techniques for gully identification and mapping at

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8464-772X
https://orcid.org/0000-0001-8229-1160
https://orcid.org/0000-0001-5033-9879
https://orcid.org/0000-0002-3031-0769
https://orcid.org/0000-0002-3199-1156
https://orcid.org/0000-0001-5849-1461
mailto:morti@nust.na
mailto:morti@uni-heidelberg.de
mailto:lukas.winiwarter@uni-heidelberg.de
mailto:jack.williams@uni-heidelberg.de
mailto:hoefle@uni-heidelberg.de
mailto:eva.corral@dcaf.uhu.es
mailto:olaf.bubenzer@uni-heidelberg.de


608 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

large spatial scales, which remain scarce. Nevertheless, most of
the techniques applied for micro- and catchment scales are not
applicable at regional, national, or continental scales [28], with
datasets suited to large gully-affected areas generally being less
explored [29]. This paucity of suitable data is particularly acute
in countries such as Namibia, where the very low population
density, limited technology, and difficulty in accessing affected
areas hinder campaigns for direct measurement in the field [30],
[31].

The development of techniques for gully mapping in large
areas has been investigated from several perspectives [3], [32].
Following a rough classification, traditional methods focus on
the estimation of gully risk, density, or susceptibility using
empirical model-based approximations [33], [34]. More recent
approaches draw on direct measurements, generally based on
combinations of remote sensing methods [29], [35]–[37], Geo-
graphic Information Systems [38], and Machine Learning (ML)
[39]–[41]. Empirical model-based estimations have provided
impressive results using gully density patterns derived in ex-
isting studies. One such model [42] has reasonably predicted
(correlation coefficient r = 0.71 and r = 0.78 for the presence
of gullies in 5 and 10 km resolution grids, respectively) gully
density at the regional or sub-continental scale in Australia
using multivariate modeling, but does not include accurate gully
mapping and object identification. One of the most recent and
successful approaches to gully mapping was conducted by [43],
who developed a continent-scale regression model for Africa
based on topography, rainfall, and vegetation cover, which sim-
ulated 57% of manually mapped gully heads.

The resolution and scale of datasets, both in the temporal and
spatial domains, are increasingly commensurate with the scale
and rates of gully change [3], [44], [45]. Visual interpretation
of panchromatic Pleiades B imagery [29] has enabled accurate
quantification of gully area (mean error 11.1%) and perimeter
(mean error 8.9%) in the Loess Plateau (China), yet uncertainty
remains regarding the level of required expertise and pixel toler-
ance during digitization. Approaches that are entirely manual
become increasingly laborious to implement as the scale of
mapping increases, with automatic gully detection using satellite
imagery providing an alternative that is under development. For
example, Vallejo et al., [46] developed three methods to detect
large gullies in central Namibia based on gully morphology.
When tested using a TanDEM-X (TX) Digital Elevation Model
(12 m spatial resolution), the approaches achieved total accuracy
(TA) of ∼80% and a ∼50% Kappa value. Efficient mapping of
large areas, combining vector (drainage network), and Google
Earth (GE) raster data using a random forest classifier (RFC), has
also yielded high accuracy levels (79%; [47]). A limitation arises
when gully areas exhibit large internal morphological variability
and imagery hosted in GE cannot provide a sufficiently clear
spectral signal to differentiate gullies. This drawback can be
mitigated by introducing additional descriptive gully parameters
based on topography, hydrology, local climate, vegetation, and
soil characteristics. There is consensus that gully formation is
principally controlled by slope, land use, rainfall, stream proxim-
ity and lithology [33], [48]–[50], and gullies produce changes in
terrain roughness [51] and vegetation patterns [52]. Data-driven

approaches, which draw on these parameters through ML, have
demonstrated that RF, Support Vector Machine (SVM), and Lo-
gistic Model Trees are efficient means of deriving gully density
and location in order to generate gully susceptibility maps [10],
[11], [39], [40]. They nevertheless share some of the following
limitations:

i) they normally require reliable, large, and evenly dis-
tributed training data;

ii) they usually do not consider the dynamic character of the
gully while building the explanatory variables; and

iii) they define gullies as a point or line locations, but more
geomorphologically relevant features such as outline and
volume are often not derived.

Attempting to address these limitations is one of the aims of this
research.

Two studies have faced the challenge of deriving gully out-
lines, still under the umbrella of ML methods, but including
object-based image analysis (OBIA) [41], [37]. Liu et al. [37]
performed a two-level gully feature mapping (gully-affected
areas and bank gullies) using a 1-m DEM and Worldview-3
imagery. Object-based and RF methods were combined using
four topographic parameters for a catchment in the Chinese
Loess Plateau. It resulted in a 93% overall accuracy in gully
affected areas and 78.5% for bank gully mapping. Shahabi et
al. [41] tested artificial neural networks, SVM, and RF inte-
grated with geographic object-based image analysis (GEOBIA)
in Australia using 12 m ALOS-2 DEM and Sentinel-2 products.
An 84% accuracy for gully detection and between 30% and
70% overlap with existent gully inventories was achieved in this
case. Although [41] and [37] represent a very valuable reference,
the constraint of limited and spatially clustered training data,
common to arid/semi-arid regions, must be addressed in order
to derive practical solutions for Namibia. Gullies are landforms
with large internal heterogeneity that adopt diverse typologies.
Insufficient training data would create a narrow initial definition
of a gully class. Accurate, class balanced, and reliable train-
ing is fundamental for a single pixel-based classification algo-
rithm (i.e., RF). Thus, considering that gullies are continuous
structures, the proposed procedure ought to conduct succes-
sive searches to strategically broaden the definition of gullies,
considering the pixel values and their spatial arrangement. As
this search proceeds, the classification criteria can be optimized
through object-based spatial analysis and the adaptation of con-
figuration settings in the classification algorithm. In this vein, we
propose an automatic iterative learning-based approach, which
is inspired by active learning [53], [54] and in line with other
iterative training techniques [55]. Training data are dynamic
and changes according to a continuous learning process that
begins with a small gully portion, surveyed in the field, or
digitized using high-resolution imagery in a micro-mapping
approach [56]. As gully conditioning factors, elements that are
statistically favorable to gully appearance (slope and distance
to stream) and those measurable descriptors of gully presence
impacts (vegetation patterns, soil characteristics, and terrain
roughness [57]) are considered together. Given that gullies
are dynamic features, behavioral indicators based on temporal
patterns [i.e., Normalized Difference Vegetation Index (NDVI),



VALLEJO ORTI et al.: USE OF TANDEM-X AND SENTINEL PRODUCTS TO DERIVE GULLY ACTIVITY MAPS IN KUNENE REGION 609

radar coherence [58], and backscatter intensity time series]
are included as gully descriptors. This is important in light of
the fact that trends of historical data differ between adjacent
areas [57], [59], [60].

The algorithm, based on RFC and GEOBIA, includes differ-
ent global remote sensing data sources [TanDEM-X DEM (TX),
Sentinel-1 SAR (S1), and Sentinel-2 imagery (S2)]. By applying
and validating our approach in two watersheds (WS1 and WS2)
in Kunene region (Namibia), we aim to address the problem of
classifying and outlining gully-affected areas for large regions
using little training data.

II. STUDY AREA AND DATA

A. Study Area

Our study site is located within the Kunene Region, northwest
Namibia, where the presence of gullies is widespread [18]–
[20]. The town of Opuwo represents the highest population
density spot in the area, nevertheless, many small villages and
settlements are scattered in the region. This area has special
ethnographic value since it hosts most of the Himba and Herero
traditional communities [61]. This territory’s governance falls
under communal land [62].

The dominant ecosystem type is Western Highlands [64],
[65] characterized by grasslands and scattered trees. Terrain
elevation ranges between 823 and 1883 m a.s.l., with an average
elevation of 1392 m. The slopes are irregular with an average
value of 19% (12 m pixel size) and exhibit a mixture of hilly and
rolling topography dissected by many tributaries. The dominant
vegetation biome in this area is tree and shrub Savanna. In the
north-eastern area, the vegetation structure is of woodland type,
made up of low trees, which transitions to sparse shrubland
toward the southwest, where climate and edaphic conditions are
more adverse [66]. Acacia reficiens is the dominant species,
accompanied by Commiphora spp. [63], [67].

The study site is categorized as arid, with <500 mm of annual
rainfall and a highly variable spatial distribution. Rain falls
mostly as summer storms between December and March (∼80%
of the annual precipitation). The average annual temperature
varies between 19 and 21 °C, with minima between 6 and
10 °C and maxima between 28 and 36 °C, registering high annual
potential evaporation rates (3000–3200 mm) [68].

The prevailing land use is communal crop (i.e., corn and pearl
millet), goat and cattle livestock farming [19]. The ecosystem
is very fragile with land degradation derived from overgrazing.
The cattle density is highest in the area´s northeast corner, with
∼25 animals km−2, and decreases with distance from Opuwo
[see Fig. 1(a)] [63].

Soils are weakly developed, with exposed bedrock in some
places. The dominant soils are Leptosols with Eutric and Lithic
characteristics, accompanied by Regosols (Eutri-Skeletic and
Leptic). In the northwest corner of the study area, the Lithic
Leptosols are surrounded by a fringe of Petric Calcisols, and,
in the east, occasionally Arenosols and Cambisols also appear
[19], [69].

The two WSs extracted for analysis (see Fig. 1) have been se-
lected due to the erodible soil types, significant human presence,

TABLE I
MAIN TOPOGRAPHIC, ENVIRONMENTAL, AND LAND USE CHARACTERISTICS OF

THE TWO SELECTED WSS [33], [69]

proximity to populated areas and main roads, and high livestock
density relative to the surrounding area (see Table I).

B. Input Datasets

The gully descriptive parameters used as inputs in our model
have various sources. S1 (2017–2019) and S2 (2018–2019)
images captured at different times are used to compute time
series for NDVI, radar coherence, and sigma backscatter VV
intensity. TX imagery is used to generate slope, topographic
roughness, stream channel maps, as well as two gully shape
factors [Multi-Profile Curvature Analysis (MPCA) and Inverted
Morphological Reconstruction (IMR)] developed in [46]. To
generate validation and reference data to conduct accuracy
assessments, gully affected areas are manually digitized from
satellite images (Bing Aerial with ground sampling distance
below 0.5 m, corresponding to the period December 2013 to
November 2016) by two operators with experience in gully
identification. A 30-m grid map of gully distribution with two
categories, 1) gully and 2) no-gully, is generated [see Fig. 7(b)
and Fig. 10(b)].

The spatial resolution, acquisition interval, and corresponding
gully feature are listed in Table II for each product.

Preprocessing was required to generate the final products used
as descriptive gully parameters (see Fig. 2).

III. METHODS

A. General Framework

The main challenge faced in mapping land cover and produc-
ing gully-affected maps in low populated regions is the scarcity
of training data and the capacity to create it in order to achieve
high classification accuracies [55]. To overcome this limitation,
our approach generates a new set of gully training samples with
each iteration k and it continuously grows in size. The different
explanatory variables [see Fig. 3(2A-F)] are integrated into a
pixel-based RF classification algorithm. Small manually tagged
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Fig. 1 Gully-affected areas selected in this study. a) Map of the study area and two WSs (WS1 and WS2) selected for analysis including cattle activity as a
possible trigger of land degradation; (b) and (c) 3D views of the WSs with main settlements, rivers, and roads [63].

gully portions are used as initial training data [see Fig. 3(1)].
Using an alpha shape algorithm [70], a subsequent geometrical
identification of gully-candidate pixels is used to generate gully
objects raw [GORs; Fig. 3(5)]. This operation dismisses isolated
pixels outside GORs, thereby mitigating salt and pepper effects
and reducing RF false positives rates. Pixels inside GOR have
an associated probability of being a gully derived from the RF
(low, medium, and high). The pixels classified as “very high” are
categorized as gully seeds and stored in a seeds pool. A subset
of this pool (50% random selection) is added to the training
data in subsequent RF iterations [see Fig. 3 (4)]. To reduce the
effect of outliers, the gully objects clean (GOC) are calculated
as the overlapping area between the GORs of two consecutive
iterations k-1 and k [see Fig. 3(5)]. This region (GOC) represents
the gully label in the training data for the following iteration k+1.
The iterations are repeated until an optimal situation in terms
of accuracy is achieved. Three separated (alpha shape) gully
outlines are generated from the three-pixel groups based on their
RF derived gully probability (high, medium, low). Finally, gully
outlines are refined using DEM-based morphological operators.
The general workflow, including key operations, is presented in
Fig. 3.

B. Methods Description and Settings

The algorithm comprises eight main steps:
1) initialization;
2) gully feature extraction;
3) gully pixel generation (RF classifier);
4) seed pool generation;
5) object-based classification;
6) analysis/decision; and
7) final classification.
One additional step, 8) for refinement is included outside of

the main workflow as an experiment:
1) Initialization: Georeferenced gully data collection in re-

mote locations can be logistically difficult and costly, but a
minimum amount of gully labeled data is required as initial
training datasets. For initialization of the process, potential data
sources such as handheld-GNSS, UAV-borne photogrammetry
(e.g., structure from motion), and basemap digitization can be
utilized. Assessing the least size of an initial training dataset is
of value from a methodological standpoint. In order to do so,
we simulated a gully delineation where the area that could be
examined within 15–30 minutes using the three abovementioned
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TABLE II
DESCRIPTION OF THE INPUT DATA SOURCES USED IN THE STUDY AS

CONDITIONING FACTORS OF THE RF CLASSIFIER FOR THE GULLY DETECTION

Preprocessing was required to generate the final products used as descriptive gully
parameters (see Fig. 2).

Fig. 2. Primary data sources and pre-processing of explanatory variables
datasets. Ground Range Detected High Resolution (GRDH) and Single Look
Complex (SLC) radar products from S1 are used to derive Radar Backscatter
and Coherence. S2 Multi-Spectral Instrument (MSI) products are used for NDVI
calculation. TanDEM- X 12 m HRTI-3 Global DEM is the primary data to derive
topographic, hydrologic, and morphological factors.

methods was approximated by manual digitizing. Bing Aerial
basemap was used to manually delineate a gully (polygon), while
the remaining area of the WS was initially labeled as “no-gully”.

2) Gully Features Extraction: This initially digitized small
area is labeled as “gully.” The remaining area of the WS is
temporally labeled as “no-gully.” Both labels are extracted on
a 30-m regular grid sampling with a total amount of n binary
samples (ci), together with a set of explanatory variables values
(vi,j): radar backscatter intensity VV polarization mean (S1)
(vi,1), radar VV coherence mean (S1) (vi,2), NDVI Standard
Deviation - SD (S2) (vi,3), slope (TX) (vi,4), topographic rough-
ness (TX) (vi,5), and 3D distance to stream (TX) (vi,6). With this
information and the corresponding Cartesian data (xi, yi) for

each sample point of the grid, the input data Dn is

Dn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

...
Xi

...
Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

Xi = (xi yi ci vi,1 vi,2 vi,3 vi,4 vi,5 vi,6) . (1)

3) Pixel-Based Classification: This input dataset (Dn) is
separated into two subsets, gully (Dg) and no gully (Dng).
Training data (Dtr) is built after a random selection from each
subset in different proportions (80% for Dg and 20% for Dng).
As we aim at iterative training, we chose a moderate value of
20% for Dng in order to allow reclassifications in the no-gully
(unlabeled) area, while the 80% in Dg is needed to capture the
internal variability of the gullies, including areas in the shade
or occluded by rough topography. Dtr is used to train a RFC
(maximum tree depth, d = 100, and number of trees, M =
100). A reclassification of the whole datasetDn into gully pixels
or no-gully pixels is then conducted. RF assigns a probability
(mM,i) to each data point (Xi) calculated as

mM,i (Xi; θ1, . . . , θM,Dn) =
1

M

M∑
t = 1

mi (Xi; θt,Dn) (2)

where θt is one of the random variables and mi denotes
the “gully” (mi = 1) or “no gully”(mi = 0) vote of one
single tree t [71]. This probability mM,i is derived from
the fraction of positive votes and the number of trees
(100) to define gully ( mM,i ≥ 50

100 ) and no-gully classes
( mM,i < 50

100 ) as well as to identify the different class prob-
ability of gully pixels: low ( 50

100 ≤ mM,i < 67
100 ), medium

( 67
100 ≤ mM,i <

84
100 ), and high ( mM,i ≥ 84

100 ).
During training, the degree to which a feature decreases the

weighted impurity (Gini Impurity) is calculated to derive each
feature’s importance. Gini Impurity “represents the probability
(G) of incorrectly classifying a randomly chosen element X
in the dataset if it were randomly labeled according to the
class distribution in the dataset” [72]. The feature importance
I(Vj) indicates the sum of the decrease in Gini Impurity (G)
over all the nodes split on that feature j [73].

4) Seed Pool Generation: Pixels classified as gullies with
mM,i ≥ 95

100 are categorized as seeds and appended to the seeds
repository (gully pixel seeds) which is regenerated after each
iteration. A new random sample of this repository (50%) is added
in each subsequent iteration to the randomly selected training
data of the RF, to ensure that a minimum amount of pixels with
high gully class probability are included in the training, but
avoiding possible false positives used systematically as seeds
in the training data throughout the whole process.

5) Object-Based Classification: To outline gully objects, the
2D alpha-shape algorithm is applied to the initial pixel-based
classification. This technique creates an outline around grouped
gully points (pixels) based on the following topology rules:
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Fig. 3. General classification algorithm diagram with datasets identified with letters (A–H) and important procedure with numbers (1–8). The diagram explains
how the algorithm works from the initial manual label of gully sections (1) until the final classification results (7) and refinement (8).
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considering each of the two possible circumferences with radius
alpha that contain each point pair of the dataset, if at least one
circumference does not enclose any other point from the dataset,
it is assumed that the straight line connecting the point pair is
a boundary of the alpha shape. If another point is contained
within either circumference, the connection between the two
points is not a boundary of the alpha shape, but the point pair
is contained by the alpha shape. Moreover, if one point does
not share an alpha-radius circumference with any other point
from the dataset, this point is set to fall outside of the alpha
shape. Alpha determines the level of detail of the final shape.
The larger the alpha, the more points will be enclosed by the
shape. If alpha →�, the shape will be approximated to a convex
hull of all the points [70]. Here, the value alpha is initialized as
180 m based on the fact that our sampling grid width is 30 m
and maximum gully widths are also approximately 180 m in
our study area. Therefore, initially, shapes are created out of
points separated six times the original grid width. As our gully
points density increases, the value of alpha is decreased, and our
alpha shape becomes more detailed. This operation generates
the polygons above called GOR. For some distributions of gully
points, the alpha shape occasionally generates artifacts enclosing
empty areas; for example, in the space between individual gully
pixels clusters. To remove artifacts in the classification, a GOR
generated in the iteration k is intersected with the GOR generated
in the previous iteration k-1, generating a GOC, depicted as
follows:

GOCk = GORk ∩GORk−1 . (3)

6) Analysis/Decision: In those cases when sufficient testing
data is not available, a critical aspect to achieve optimal results
is the definition of criteria to halt subsequent iterations based on
indicators derived from the quality of classification. In order to
explore algorithm intrinsic quality indicators, the result of the
classification is analyzed (4) after each iteration to calculate the
percentage of high probability gully pixels inside the GOC, Q
(5): (

50

100
≤ mM,i <

67

100

)
→ i ∈ Clow

(
67

100
≤ mM,i <

84

100

)
→ i ∈ Cmed

mM,i ≥ 84

100
→ i ∈ Chigh (4)

Q =
n Chigh

n Chigh
+ n Cmed

+ n Clow

(5)

where n C represents the amount of gully pixel of each class
(high, medium, and low). This point is extended in Section III-C.

In order to assess in detail the accuracy of the results and
understand the model performance, in addition to Confusion
Matrix values, the receiver operating characteristic area un-
der the curve (ROC AUC) [74] and the Matthews Correla-
tion Coefficient (MCC) [75], [76] are derived for each itera-
tion. Extended information about these indexes is included in
Appendix III.

7) Final Classification: Once an optimal accuracy sce-
nario is detected, the gully points inside the GOCs
are separated into three classes based on the asso-
ciated probability, from less to more restrictive (low,
medium, and high):Chigh+med+low( mM,i ≥ 50

100 ),Chigh+med

( mM,i ≥ 67
100 ), and Chigh ( mM,i ≥ 84

100 ). Subsequently, an
alpha shape operation is applied to each point dataset individu-
ally, generating gully outlines with three levels of exposure for
the gully incidence: Gully High Class, Gully Medium Class, and
Gully Low Class.

8) Refinement: This is included as an experiment in the
method and is a refinement based on the results of the DEM-
based gully classification conducted in [46]. IMR results show
very high user accuracy (UA) for gully class and MPCA per-
forms well in outlining gully shapes as its producer accuracy
(PA) is generally >50% for the gully class. Using GOCs resul-
tant of the general methodology, an additional methodology is
included where we:

1) apply 60 m buffers around IMR pixels;
2) compute the intersection between the MPCA pixels with

IMR buffered area and calculate its alpha shape;
3) calculate the intersection between the MPCA pixels and

the resultant GOC and calculate its alpha shape;
4) compute the intersection between the GOC and the IMR

buffered area; and
5) apply a union between 1), 3), and 4) to generate a final

refined gully class (6).

Refined Gullies = alpha(Buffer60 (IMR) ∩MPCA)

∪ alpha (GOC ∩ MPCA)

∪ (GOC ∩ Buffer60 (IMR)) .
(6)

C. Iterative RF: Control and Stopping Criterion

The main hypothesis of active learning approaches is their
ability to select the data they want to learn from according to
a specific strategy and gradually add new training samples to
enhance the classification power [54]. In this automatic itera-
tive learning approach, the algorithm learns from the previous
iterations to configure the settings of the subsequent one. In this
line, the main parameter controlling the algorithm is the alpha
shape threshold (alpha). Two variables are used to modulate
alpha to allow growth in the GOC while avoiding GOR with
low densities of gully points: the average GOC area covered
by each gully pixel and the growth rate between the GOCs of
two consecutive iterations. A key point is to control the amount
and quality of newly generated gully pixels to avoid exponential
growth of gully labels and ensure that only the most reliable
data are selected. In order to create a dynamic operation and
automate the learning process, the rules listed below are used to
govern and control the algorithm.

1) The ratio (r = Gully Pixels k

Gully Pixels k−1
) between the number of

pixels classified as gullies by RF in the iteration k and
those of the previous iteration k−1 remains between 1.0
and 1.5. If r> 1.5, points with the lowest gully probability
are removed until the ratio lowers to 1.5.
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TABLE III
DESCRIPTION OF INPUT TRAINING DATASETS WITH DIFFERENT SIZES FOR THE TWO WSS AND THE EFFECT ON THE CLASSIFICATION ALGORITHM CONSIDERING

THEIR BEST ACHIEVED ACCURACIES [PA, UA FOR GULLY (G) AND NO GULLY (NG) CLASSES, PLUS TA, COHEN KAPPA (KA) AND MCC] AND THE ITERATION

WHEN THIS ACCURACY WAS ACHIEVED

2) The area increment (ΔGOC) between the GOCs of two
consecutive iterations must be kept between 40% and 10%.

3) A maximum average area density a/p =
Area(GOC)

Gully Pixels · 900
should be maintained to ensure a minimum density of
gully pixels inside the GOC. The threshold ratio is
3600 m2/point (four times 900 m2, the maximum average
area density in the ideal situation of 30 m regular grid).

4) The alpha shape begins with a radius alpha of 180 m and
progressively modifies its value to meet the requirements
set in b) and c). If alpha results in 0%< ΔGOC<40%
while the rate (a/p) is <4.0, the algorithm accepts the
result and proceeds to the next iteration. In any other
case, alpha shape operation is repeated with a new alpha
until the condition is met. The criterion to adjust alpha is
presented as

if:
GOCk

GOCk−1
> 0.4 alphak = alphak−1 − 5

if:
GOCk

GOCk−1
< 0.0 alphak = alphak−1 + 3

if: 0.0 <
GOCk

GOCk−1

〈
0.4 and

a

p

〉
4 alphak = alphak−1 − 5.

(7)

Reliable criteria for halting iterations underpin the accuracy of
gully identification. Due to the previous operational decisions,
while a seed repository is created and used as training data,
more points are likely to be classified under the category of high
probability gully pixels. New gully areas are often formed out
of lower probability pixels; however, when an area is stable and
no new gullies are classified, the high probability gully pixels
are added to the GOCs progressively. Once these points reach
a certain classification maturity, generally 35%–45%, iterations
can be halted (see Fig. 4).

IV. RESULTS

A. Initialization

In Table III, the summary of the classification result for the
simulation of the three cases of gully class initialization
(by manual digitizing of satellite imagery, UAV-based
photogrammetry, or by GNSS collection) is presented.

It is noticeable that above a certain threshold, smaller initial
training datasets do not affect the results obtained significantly.

Fig. 4. Simplified graphical explanation of the typical dynamics in the clas-
sification results from initial stages until an expected maturity in the iterative
classification process.

However, a lower bound occurs when the size of the gully class
is insufficient to represent the gully object. In this case, as the
algorithm is unable to continue from the second iteration, the
gully class decreases until it disappears in subsequent iterations.
The results presented below in this section are obtained using
the digitizing mode (see Table III) as initial training data.

B. General Classification Performance

We provide an assessment of the algorithm’s performance for
each WS, with a particular focus on the output metrics outlined
in Sections III-B and -C.

1) Watershed 1: Results from all iterations are presented in
Fig. 5 and Appendix I, with 22 iterations undertaken before the
condition of Q > 60% of high probability gully pixels (mM,i ≥
84
100 ) was met. Iteration 11 achieved the highest accuracy and
was high performing across all metrics, with >0.5 for the gully
class in PA (0.540) and UA (0.669), as well as the highest Kappa
value (0.590) and MCC (0.593).

The evolution of the three variables that describe the classifi-
cation progress (GOC growth, a/p, and gully points increment)
is presented in Fig. 5(a). The red line reflects the evolution of
the average area covered by each point in proportion to the
initial grid of 30 m (a/p). As it is assumed according to the
configuration, this indicator is subject to initial adjustments until
it achieves a stable value close to 1.2. The black line represents
the growth rate (r) of new points generated as gullies by the
RF classifier, which remains below 1.5. The blue bars show a
change to the GOCs, which remains between 1.0 and 1.4. The
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Fig. 5. Algorithm function and accuracy performance for WS1. a) Black line
represents the ratio of classified gully pixels by RF between iteration k and k−1.
Red line is an indicator of gully pixels density inside GOC in units of their
proportion to the original grid of 30 m. The bar chart represents the growth ratio
for each iteration of the GOC. b) Each line color represents the percentage of
pixels created by the RF based on the probability (mM,i) of being a gully: blue
(Clow), orange (Cmed), and green (Chigh). c) Accuracy assessment including
UA, PA, TA, and Cohen KA for each iteration.

Fig. 6. ROC AUC analysis results for WS1 with ROC curves for the iterations
0, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, and 20 including the AUC values in the legend
and corresponding cartographic outputs of gully class.

proportion of pixels within each quality class (low, medium,
and high probability of being gully candidates) is presented in
Fig. 5(b). High probability gully pixels (>83% probability) are
initially scarce but grow in number until their percentage reaches
35%, 40%, 45%, 50%, and 55% in iterations 6, 8, 11, 15, and
21, respectively. The highest accuracies occur between iterations
9 and 14 when the percentage of high probability gully pixels
ranges between 42.7% and 49.1%. Beyond the 14th iteration,
a high false-positive rate of gullies is observed, resulting in a
drop-down in Kappa value and UA for Gully class.

Analyzing the outcomes of the RF and the mean significance
of each feature from iteration 0 to 11, we can observe that
the most important variables when the algorithm achieves its
optimal (iteration 11) are radar VV coherence (22.0%), NDVI
SD (21.7%), and distance to stream (16.5%; see Appendix I).

Values of ROC AUC shows that the classification model for
WS1 starts with values close to 0.6 for the iteration 0, arising
to the maximum (AUC = 0.922) in the iteration 18, where
a decreasing tendency begins. These results confirm how the
model progressively improves its classification capacity from
iteration 0 to iteration 11 (highest classification result according
to confusion matrix measures), where it reaches AUC = 0.864,
meaning that the probability of classifying correctly any point
pair, one gully and one nongully, is 86.4%.

Comparing the results at the four predefined milestones for
the proportion of high probability gully pixels (35%, 40%, 45%,
50%, and 55%) it is observed that the best results are obtained
for iteration 11 when it first exceeds the 45% threshold. Results
are presented for the different gully classes as calculated from
this iteration in Fig. 7.

The low, medium, and high-quality gully classes cover 9.0,
6.7, and 5.0 km2, representing 2.2%, 1.6%, and 1.0% of the
WS surface, respectively. The main gullies are distributed in
the lower regions of the WS to the north. Accuracy results for
the three classes are provided in Appendix I, under iteration 11.
Values in excess of 0.988 are obtained for the no-gully class (UA
and PA), while the gully class reaches 0.598 in PA and 0.747 in
UA for the high and low class, respectively. This highlights that
generating outcomes into three classes increases the accuracy
as compared to a single class, which would otherwise have
attained PA = 0.540 and UA = 0.669 for the same iteration.
This is consistent with the visual interpretation of the polygons
in Fig. 7(c)–(e), where non-gully areas are accurately labeled,
thereby avoiding high false-positive rates that are common in
many approaches.

The classification is most accurate in areas where the gully is
morphologically homogeneous, particularly with respect to the
width and longitudinal continuity, but accuracy is reduced with
intricate shapes and heavily branched gully areas [see Fig. 7(c)
and (d)]. Another common error source is the presence of
structurally stable narrow valley bottoms with V-shapes, visible
in Fig. 7(e), which may cause the algorithm to classify them as
gullies.

2) Watershed 2: For WS2, the algorithm carried out 19 it-
erations until reaching 60% of high probability gully pixels.
The 35%, 40%, 45%, 50%, and 55% proportions were achieved
in iterations 7, 10, 13, 14, and 16, respectively. The highest
accuracies results are attained between iterations 7 and 10 when
the indicator Q ranges between 36.5% and 41.8%. As indicated
by the maximum values of Kappa (0.517) and MCC (0.519),
the highest accuracy is achieved in iteration 9 with the follow-
ing values: PA (Gully) = 0.568, PA (No-gully) = 0.994,
UA (Gully) = 0.483, UA (No-gully) = 0.996, TA = 0.990
[see Fig. 8(c)]. All operation statistics for WS2 are provided in
Appendix II.

As the alpha-shape threshold decreases, the value a/p de-
creases smoothly (point density increases) until it approaches
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Fig. 7. Classification results for three gully probability classes (high, medium, and low) for WS1. (a) Shows the classification results and (b) the real gully
locations used for validation (black dots), initial gully label (green polygons) used for training and streams network for the entire WS. (c)–(e) Detailed view of
gully mapping underlain with Microsoft BingTM Maps Aerial Imagery.

1, at which step the point density is equivalent to the original
30 m grid [see Fig. 8(a)].

In this case, again radar VV coherence (22.8%), NDVI SD
(22.0%) register the highest mean feature importance from
iterations 0 to 9, with topographic roughness (16.1%) in this
case in the third position in terms of significance to generate the
classification results. ROC AUC indicates that the classification
model achieves a maximum in terms of class separability be-
tween iterations 10 and 18, with AUC reaching 0.951 in iteration
14 (see Fig. 9). The evolution of the AUC values in WS2 confirms
that our algorithm gradually improves its learning capacity in
parallel with the increase in the size of gully training data until
an AUC maximum is reached where more training data does not
generate an improvement in the classification performance. This
is an indicator of the maturity of the classification model.

Once the algorithm detects the best accuracy condition for
the milestone of Q > 40% in the iteration 10, three classes

are defined as presented in Fig. 10. This allows increasing the
accuracy of the results for the gully class, obtaining 0.734 for
PA and 0.514 for UA in the high gully class and low gully class,
respectively. The low, medium, and high gully classes cover
7.7, 4.7, and 3.6 km2, accounting for 2.5%, 1.5%, and 1.2% of
the WS2 area, respectively. As observed in Fig. 10, gullies are
concentrated in the northwestern parts of the WS, dominated by
lower areas close to the WS outlet.

A variety of scenarios can be observed within different gully
zones. In Fig. 10(c), there are areas with high gully density
surrounded by zones of transition to no-gully, which prove
difficult for the algorithm to capture. Although those transition
zones exhibit similar spectral and backscatter properties in the
remote sensing data, they do not belong to the gully from a
morphological and geometrical point of view. This is a common
error of the algorithm. It is also observed that although small
gully spots are usually difficult to be outlined correctly, the
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Fig. 8. Algorithm functionality and performance for WS2. (a) Black line
represents the ratio of classified gully pixels by RF between iteration k and
k−1. Red line is an indicator of gully pixels density inside GOC in units of their
proportion to the original grid of 30 m. The bar chart represents the growth ratio
for each iteration of the GOC. (b) Each line color represents the percentage of
pixels created by the RF based on the probability (mM,i) of being a gully: blue
(Clow), orange (Cmed), and green (Chigh). c) Accuracy assessment including
UA, PA, TA, and Cohen KA for each iteration.

Fig. 9. ROC AUC analysis results for WS2 with ROC curves for the iterations
0, 2, 4, 6, 7, 8, 9, 10, 12, 14, 16, and 18 including the AUC values in the legend
and corresponding cartographic outputs of gully class.

algorithm is still able to detect the presence of gully activity gen-
erating an overlapping gully object [see Fig. 10(d)]. Conversely,
well-defined gullies are outlined accurately when they present
linear patterns and clear spectral and morphological differences
from their surroundings [see Fig. 10(e)].

C. Role of TanDEM-X IMR, MPCA Factors, and the
Iterative Learning

Six factors have been used as conditioning variables within
Sections IV-B.1 and IV-B.2 (NDVI SD, slope, topographic
roughness, distance to stream, radar backscatter intensity VV,
and radar coherence); however, a specific gully form factor was
not included. To test the effect of the incorporation of gully
morphological factors derived from TanDEM-X DEM resulting
from [46], two new datasets were derived from the MPCA and

IMR indexes. First, MPCA was included as a seventh explana-
tory variable in the general methodology and, second, MPCA
was combined with IMR as a final geometric correction for the
standard iterative solution. The results of both experiments were
compared to the outcomes of the iterative learning with six ex-
planatory variables as well as with an optimized (best algorithm
settings were selected after several configuration trials) single
RF and alpha shape application (not iterative). The experiment
is conducted over a specific area where the density of gullies is
high for each WS. The results are shown separately again for
WS1 and WS2 in Fig. 11.

For both WSs, a different effect is observed by applying a
morphological correction to the method. As for the WS1, the PA
for gully class is increased and the UA decreased as compared to
the Iterative RF solution, the opposite effect is observed in WS2.
So, although it seems that this method allows reaching a greater
level of detail in areas with branched gullies, the solution is not
stable for large areas as the decrease in overall metrics is evident
[see Fig. 11(b)–(f)]. On the other hand, the inclusion of MPCA as
an explanatory variable has a positive influence in the complex
gully network classification of the WS2 by improving the PA(G),
Kappa, and MCC values [see Fig. 11(g)]. This result is confirmed
with the 14.3% in the MPCA factor importance for WS2 (the
third one among all the seven factors), and in contrast to the
8.8% resulted for the WS1, where MPCA is the least influential
variable. Additionally, this comparative analysis confirms an
evident improvement of the iterative approach toward the single
RF approach in both WSs [see Fig. 11(d), (e), (h), and (i)].

V. DISCUSSION

We applied an iterative learning approach framework to gen-
erate gully distribution maps in Kunene Region, Namibia, using
Optical (S2), SAR (S1), and DEM (TX) imagery. The method
combines an RF classifier and alpha shape into an iterative
self-adjusting algorithm to first identify gully candidates at
pixel level and to subsequently find geometric objects of these
landforms. The method proves its ability to detect gullies in large
extents with small and geographically aggregated training data,
pointing to the potential benefit of integrating micro-mapping
and/or crowd-sourcing approaches [56].

As this study represents a continuation of [46], it succeeds to
address the research challenges that were articulated in it:

1) achieving an accuracy of at least 50% for gully class
(keeping a TA>98%);

2) deriving geomorphometric features from the pixel-based
classification, such as gully outline; and

3) integrating TanDEM-X with other products (i.e., S1 and
S2) to achieve the mentioned objectives in 1) and 2).

Both studies could be combined in future research though,
testing the feasibility of the gully locations generated by [46]
as initial training data to supplement those datasets manually
collected in the present approach.

In addition, our approach adds value to former studies that
used ML and RF to derive gully susceptibility maps [39]. In
this sense, one of the achievements of this article is to precisely
derive gully outlines assessing in detail the errors types I (false
positives) and II (false negatives) for the gully area.
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Fig. 10. Classification results for three gully probability classes (high, medium, and low) for WS2. (a) Classification results and (b) the real gully locations used
for validation (black dots), initial gully label (green polygons) used for training. (c)–(e) Detailed view of gully mapping underlain with Microsoft Bing Maps Aerial
imagery.

In this regard, our outcomes should be also compared with
other methods that combine ML and OBIA techniques to derive
gully outlines [41], [37]. An additional procedure in this study
is the inclusion of time series (i.e., NDVI SD, radar sigma
backscatter VV, radar coherence VV) as gully dynamics de-
scriptors reducing seasonal features uncertainties as reported by
[37]. A significant achievement is the capability of our method
to generate comparable or better accuracy results than [41] and
[37], but adjusting the methods to the reality of Namibia of very
limited and aggregated initial training datasets. Shahabi et al.
[41] used ∼70% of the final gully class as training data while
[37] applied its methodology into a small study area (1.9 km2)
with approximately 25% of its extension used for training. In our
case, gullies were outlined in large testing areas (>300 km2) but
with reduced (<0.3% of the testing area and ∼10% of the final
gully class) initial training data.

Since comparisons are complicated for different study areas
and input datasets, in this article, a simple RF and segmentation
approach was also compared to the iterative solution, noticing
that the second approach gives accuracies between 6% and 25%
better than the non-iterative baseline.

Keeping in mind that the results of this article represent a
solution by its own for large-scale gully classification, several
points must be considered for further research. The role of the
alpha shape threshold is fundamental to generating a reliable,
growing training class after each iteration. To generate more de-
tailed gully outlines, the sample grid width (and in consequence
the alpha shape threshold) could be reduced in gully zones by
aligning it to the input data maximum spatial resolution to reach
higher levels of detail. In this vein, additional experiments to
derive more reliable results could involve the modulation of the
RF settings (i.e., the proportion of training/testing data) during
the iterative process. Moreover, as part of the result to generate an
intrinsic stopping criterion, the highest accuracies are achieved
when the percentage of high purity gully points (Chigh) falls
between 35% and 45% in relative proportion to the low (Clow)
and medium (Cmed) classes. This fact is confirmed by the highest
MCC values as a measure of balanced accuracy for different
class sizes. However, under the assumption that some gully areas
might need more iterations than others to be outlined completely,
the possibility of working with individual gully sections and
uniform sampling blocks should be considered to define a local
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Fig. 11. Comparison of different solutions including single RF application and
experimental methods using gully morphological factors. (a) Accuracy results
for the WS1 comparing the (b) solution implementing morphological refinement
method with IMR and MPCA, (c) the general workflow with MPCA as an
explanatory variable, (d) the general workflow analysis without MPCA, and (e)
optimal solution applying single RF and alpha shape. (j) Numerical accuracy
results for the WS2 comparing the (f) solution implementing morphological
refinement method with IMR and MPCA, (g) the general workflow with MPCA
as an explanatory variable, (h) the general workflow analysis without MPCA,
and (i) optimal solution applying single RF and alpha shape.

ending criterion for the iterations, instead of a global criterion for
the whole sampling area. In this line, the addition of other criteria
to define gully purity or maturity should be also considered, for
example applying multivariate statistical test on gully internal
variability [77]. On another note, continuous and unlimited
data acquisition can be adopted for the definition of temporal
patterns (i.e., NDVI, radar intensity, coherence) as the method
can automatically be recomputed, as a new dataset is added
(both explanatory and training data). Regarding the algorithm
initialization, in addition to the conducted tests concerned to
initial training data size, the distribution and spatial autocorrela-
tion of these datasets should be also considered (i.e., aggregated
versus disperse) [78] in further studies. Furthermore, to derive
gully volume and 3D temporal change, more research is needed
using SAR datasets, radar interferometry, coherence estimation
techniques, both in the short term (rain event) and over long
periods (year scale) [58]. This ideally would allow us to generate
gully activity maps for large areas. Finally, extensive fieldwork is
required to generate reliable 3D validation data, as well as to test
the implications of different data sources as training samples.

VI. CONCLUSION

The ability to quantify and monitor gully erosion is essen-
tial for providing a deeper understanding of gully dynamics

and planning remediation strategies in (semi-) arid regions.
Cost-effective and reliable techniques to derive large-scale gully
distribution maps are a critical management tool for preventing
and neutralizing erosion and land degradation. In Namibia,
the Kunene Region is severely affected by unmapped gully
erosion sites, and our analysis contributes to fill this gap using
open multisource remote sensing datasets combined with a
12-m global TanDEM-X DEM to delineate gully landforms.
The approach demonstrates that with very limited training data
and little expert intervention, high accuracies can be achieved
automatically. The method is able to outline gullies of very large
areas (302–408 km2) using an initial gully class definition of
<1 km2 to achieve total accuracies >98%, with >50% for the
gully class (both UA and PA), Cohen KA, and MCC values
>0.5. Total gully extents are 9.0 and 7.7 km2 for two WSs,
where tested our methodology, respectively. For these two WSs,
the highest concentration of gullies is located in the flat area
close to the WS outlets. This result points to a classical stream
accumulation effect in combination with back wearing linear
erosion (retrogressive erosion).

Among the six explanatory variables considered, their im-
portance in decreasing order in the RF classification are radar
coherence (22.4%), NDVI standard deviation (21.8%), distance
to stream (15.5%), radar backscatter intensity (14.6%), topo-
graphic roughness (13.7%), and slope (12.1%). This outcome
evidences the importance of factors that involve a temporal
component to determine the presence of gullies and the adjusted
balance in the importance of the six factors. Additions to the
workflow show that a morphological correction using MPCA
and IMR acts to increase very locally the level of detail in
complex gully shapes, but is generally detrimental to the final
accuracy. The inclusion of MPCA as an additional explanatory
variable, however, generates moderate improvements in the
results as compared to the use of the algorithm without this
factor.

The main error source stems from the difficulty in outlining
gullies when they present complex and branched forms. This is
common in cases of high false-positive rate areas, evident in a
higher UA for the gully class. Moreover, the iterative algorithm
is very consistent with regard to the amount of initial training
data. However, it presents a minimum training area required to
be initiated. Therefore it is assumed that the addition of training
data based on systematic crowdsourcing methods will benefit
the overall accuracy and its applicability to larger areas [78].

This study presents a solution to delineating gullies based
on earth surface measurements using global remote sensing
products while improving and adapting existent techniques to
the real scenario lacking reliable training data. Our methodology
is transferable to other (semi-) arid regions, requiring minimal
human input, highlighting a key point for its feasibility, and
applicability in low populated regions. Finally, although our
methodology was initially explored to generate 2D gully results,
these outcomes can also be used as the footprint to generate 3D
gully activity maps, for example making use of TerraSAR-X
datasets [79] and final products such as DEMs of difference
[80]. Thus, this research sets a foundation to develop a holistic
approach in combination to a crowdsourcing data collection
system and SAR techniques to generate gully dynamic maps.
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APPENDIX I
A DETAILED REPORT OF ALGORITHM OPERATION FOR THE WS 1 INCLUDING THE FOUR PARAMETERS THAT CONTROL THE ALGORITHM (COLUMNS 2–6: ALPHA,
NEW POINTS RATIO, GULLY CLEAN GROWTH, POINT DENSITY, AND QUALITY), THE IMPORTANCE OF THE FEATURES FOR EACH RF CLASSIFICATION (COLUMNS

7–12), AND THE CORRESPONDING ACCURACY VALUES (COLUMNS 13–20: PA, UA FOR GULLY-G AND NO GULLY-NG CLASSES, PLUS TA, COHEN KA, ROC AUC,
AND MCC). WHEN THE QUALITY OF THE PARAMETERS ACHIEVES THE VALUES OF 35%, 40%, 45%, 50%, AND 55%, THE RESULT IS SPLIT INTO THREE SEVERITY

CLASSES AND THEIR RESPECTIVE ACCURACY IS DISPLAYED

APPENDIX II
A DETAILED REPORT OF ALGORITHM OPERATION FOR THE WS 2 INCLUDING THE FOUR PARAMETERS THAT CONTROL THE ALGORITHM (COLUMNS 2–6: ALPHA,
NEW POINTS RATIO, GULLY CLEAN GROWTH, POINT DENSITY, AND QUALITY), THE IMPORTANCE OF THE FEATURES FOR EACH RF CLASSIFICATION (COLUMNS

7–12), AND THE CORRESPONDING ACCURACY VALUES (COLUMNS 13–20: PA, UA FOR GULLY-G AND NO GULLY-NG CLASSES, PLUS TA, COHEN KA, ROC AUC,
AND MCC). WHEN THE QUALITY OF THE PARAMETERS ACHIEVES THE VALUES OF 35%, 40%, 45%, 50%, AND 55%, THE RESULT IS SPLIT INTO THREE SEVERITY

CLASSES AND THEIR RESPECTIVE ACCURACY IS DISPLAYED
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APPENDIX III

The ROC curve represents the classification performance at
all classification thresholds and provides information on how
capable the model is of distinguishing between classes. The
ROC curve is plotted with true positive rate [TPR (8); a function
of true positive, TP, and false negative, FN, cases] against the
false positive rate [FPR (9); a function of false positive, FP, and
true negative, TN, cases]. Reducing the classification threshold
classifies more items as positive, thereby increasing both false
positives and true positives [74]

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
. (9)

The area under the ROC curve or AUC is applied as one of
the most widely used classification quality indicators. This takes
values between 0.0 (perfectly inaccurate result) to 1.0 (perfectly
accurate result), with 0.5 as an indication of random guessing.
ROC AUC values can be interpreted as the probability that the
model classifies a pair of points correctly, one gully and one
non-gully [74].

The MCC is used as a balanced indicator of quality for binary
classifications for different class sizes. MCC ranges between−1
and+1, where+1 is a perfect prediction and−1 represents total
disagreement between the estimation and the ground truth [75],
[76]. The expression for MCC as a function of TP, TN, FP, and
FN is given as

MCC=
TP · TN− FP · FN√

(TP + FN) · (TP + FP) · (TN + FP) · (TN + FN)
.

(10)
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