DRIVERS OF HUMAN-CARNIVORE CONFLICT IN EPUPA AND OKANGUATI CONSERVANCIES, KUNENE REGION NAMIBIA.

Ailla-Tessa Nangula Iiyambula

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Natural Resources Management at the Namibia University of Science and Technology

Supervisor: Dr Meed Mbidzo

(Namibia University of Science and Technology, Depart of Agriculture and Natural Resources Sciences)

Co-Supervisor: Miguel Vallejo Orti

(Namibia University of Science and Technology, Department of Geo-spatial Sciences and Technology)

September 2021

Declaration

I, Ailla-Tessa Nangula liyambula, hereby declare that the work contained in the thesis entitled: Identifying the spatio-temporal distribution and drivers of human-carnivore conflict in Epupa and Okanguati Conservancies, Kunene Region Namibia is my own original work and that I have not previously in its entirety or in part submitted it at any university or higher education institution for the award of a degree.

	Moriginbyla	
Signature:	4111	Date:30 September 2021

Retention and Use of Thesis

I, Ailla-Tessa Nangula liyambula, being a candidate for the degree of Master of Natural Resources accept the requirements of the Namibia University of Science and Technology relating to the retention and use of theses deposited in the Library and Information Services.

In terms of these conditions, I agree that the original of my thesis deposited in the Library and Information Services will be accessible for purposes of study and research, in accordance with the normal conditions established by the Librarian for the care, loan or reproduction of theses.

	Mignoyla			
Signature:	ALTITUS.	 Date:	30 September 2021	
- 6				

Table of contents

List of figures	i
List of tables	iii
List of appendices	iv
Acronyms and abbreviations	vi
Acknowledgement	vii
Dedication	viii
Abstract	ix
Chapter 1: Introduction	1
1.1. Human-Wildlife Conflict and History	1
1.2. Human-Carnivore Conflict in general	2
1.3. Human-Carnivore Conflict in Namibia	3
1.4. Problem statement and significance of the study	5
1.4.1. Objectives and research question	6
1.4.2. Aims and objectives	6
Chapter 2: Literature Review	7
Chapter 3: Methodology	9
3.1. Study area	9
3.2. Data collection	10
3.2.1. Event Book Review of livestock predation data and para-ecologists training	10
3.2.2. Household interviews and kraal structure assessment	13
3.2.3. Environmental and anthropogenic variables	14
3.2.4. Vegetation structure	16
3.3. Data analysis	18
3.3.1. Vegetation structure	18
3.3.2. Kraal structure	19
3.3.3. Identifying and predicting conflict hotspot (modelling)	19
Chapter 4: Results	22
4.1. Temporal distribution of livestock predation	22
4.2. Spatial distribution maps of livestock predation	26
4.3. Environmental and anthropogenic variables.	29
4.3.1. Vegetation structure and visibility assessment	29
4.3.2. Environmental variables	31

4.3.3. Anthropogenic variables	37
4.3.4. Livestock predation predicted hotspots	45
4.4. Kraal structure and mitigation measures	48
Chapter 5: Discussion	52
5.1. Spatial and temporal distribution of livestock predation	52
5.2. Vegetation structure	55
5.3. Environmental and anthropogenic variables	56
5.4. Kraal structure and mitigation measures	59
Chapter 6: Conclusions and Recommendations	62
References	65
Appendices	71

List of figures

Figure 1. Study area extent	0
Figure 2. Field data collection image summary12	2
Figure 3. Illustration of kraal structure assessment14	4
Figure 4. Illustration of vegetation structure assessment and directions of visibility assessment18	8
Figure 5. Modelling conceptual framework2	1
Figure 6. Epupa Conservancy (a) Livestock predation trend 2014-2019 and (b) Livestock predation	
seasonal trend 2014-201922	2
Figure 7. (a) Number of losses per livestock type, (b) a trend of incidents involving each carnivore specie	S
for the period 2014-2020, Epupa Conservancy23	3
Figure 8. Okanguati Conservancy (a) Livestock predation trend 2012-2020, (b) Livestock predation	
seasonal trend 2012-202024	4
Figure 9. (a) Number of losses per livestock species, (b) a trend of incidents involving each carnivore	
species for the period 2012-2020, Okanguati Conservancy29	5
Figure 10. (a) Spatial distribution of livestock losses in Epupa Conservancy 2014-2020 Event book data,	
(b) spatial distribution of livestock losses in Epupa Conservancy 2019-2020 - GPS collected data20	6
Figure 11. Epupa Conservancy management zones (map by NACSO)2	7
Figure 12. The distribution of livestock predation in Okanguati Conservancy 2019-2020, GPS collected	
data28	8
Figure 13. Mean and standard deviation boxplots of tree density at different carnivore-livestock killing	
sites of 50m² plots	9
Figure 14. Mean and standard deviation boxplots of shrub density at different carnivore-livestock killing	
sites of 50m² plots30	0
Figure 15. Mean and standard deviation boxplots of visibility at different carnivore-livestock killing sites	í
of 50m² plots30	0
Figure 16. Epupa Conservancy environmental variables averaged models predicted probability of	
livestock-predation occurrence. Marked in grey is the 95% confidence interval33	3
livestock-predation occurrence. Marked in grey is the 95% confidence interval	3
Figure 17. Okanguati Conservancy environmental variables averaged models predicted probability of	

Figure 19. Okanguati Conservancy anthropogenic variables averaged models predicted probability of	
conflict occurrence. Marked in grey is the 95% confidence interval	40
Figure 20. Epupa Conservancy combined variables averaged models predicted probability of livestock-	
predation. Marked in grey is the 95% confidence interval	43
Figure 21. Okanguati Conservancy combined variables averaged models predicted probability of conflic	ct
occurrence. Marked in grey is the 95% confidence interval.	45
Figure 22. A comparison of predicted probability of livestock predation for Epupa Conservancy (a)	
Environmental variables, (b) anthropogenic variables and (c) predicted probability from combined	
variables	46
Figure 23. Predicted probabilities of livestock predation in Okanguati Conservancy, (a) Environmental	
variables (b) anthropogenic variables and (c) predicted probability from combined variables	47
Figure 24. Kraal structure summary standard deviation boxplots. Comparison between kraals with and	
without livestock attacks, Epupa and Okanguati Conservancies data combined	48
Figure 25. Comparison of household incidents between (a) Epupa Conservancy and (b) Okanguati	
Conservancy for the period 2019-2020.	49
Figure 26. (a) Epupa Conservancy and (b) Okanguati Conservancy households livestock predation	
preventative and mitigation measures for the period 2019-2020.	50
Figure 27. Mitigation measures of Epupa Conservancy and Okanguati Conservancy field incidents for the	ıe
period 2019-2020.	51

List of tables

Table 1. Summary table of data sources	16
Table 2. The different vegetation growth forms and height classes.	17
Table 3. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for	
predicting livestock-predation occurrence by environmental predictors for Epupa Conservancy	31
Table 4. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for	
predicting livestock-predation occurrence by environmental predictors for Okanguati Conservancy. \cdot	34
Table 5. A comparison of averaged actual predictor variables values and predicted results,	
environmental variables	36
Table 6. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for	
predicting livestock-predation occurrence by anthropogenic predictors for Epupa Conservancy	37
Table 7. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for	
predicting livestock-predation occurrence by anthropogenic predictors for Okanguati Conservancy	39
Table 8. A comparison of averaged actual predictor variables values and prediction result -	
anthropogenic variables	41
Table 9. Combined variables averaged top models AICc, model intercept, variable importance and ${\sf AIC}$	UC
for predicting livestock predation occurrence for Epupa Conservancy	41
Table 10. Combined variables averaged top models AICc, model intercept, variable importance and $ ho$	AUC
for predicting livestock predation occurrence for Okanguati Conservancy	44

List of appendices

Appendix 1. Kraal structure data collection completed sheet.	71
Appendix 2. Vegetation structure data collection completed sheet	72
Appendix 3. Para-ecologist data collection completed sheet.	73
Appendix 4. Epupa Conservancy variables Pearson's correlation matrix table	73
Appendix 5. Okanguati Conservancy variables Pearson's correlation matrix table	74
Appendix 6. Okanguati Conservancy summary of environmental variables models build prior to models	lel
averaging	74
Appendix 7. Okanguati Conservancy summary of anthropogenic variables models build prior to mod	lel
averaging	75
Appendix 8. Epupa Conservancy summary of environmental variables models build prior to model	
averaging	75
Appendix 9. Epupa Conservancy summary of anthropogenic variable models build prior to model	
averaging	76
Appendix 10. Epupa Conservancy combined variables Pearson's correlation matrix table	76
Appendix 11. Epupa Conservancy summary of combined variable models build prior to model avera	ging.
	77
Appendix 12. Okanguati Conservancy combined variables Pearson's correlation matrix table	78
Appendix 13. Okanguati Conservancy summary of combined variable models build prior to model	
averaging	78
Appendix 14. Epupa Conservancy event book conflict spatial data 2014-2020	80
Appendix 15. Epupa Conservancy GPS collected data used for modelling	89
Appendix 16. Okanguati Conservancy GPS collected data used for modelling	96
Appendix 17. Vegetation structure summary: shrub density, tree density and visibility. Standard	
deviation boxplots	104
Appendix 18. Epupa Conservancy houses distribution	105
Appendix 19. Epupa Conservancy waterpoints distribution.	105
Appendix 20. Epupa Conservancy crop fields distribution.	106
Appendix 21. Okanguati Conservancy houses distribution.	106
Appendix 22. Okanguati Conservancy waterpoints distribution	107
Annendix 23 Okanguati Conservancy cron fields distribution	107

Appendix 24.	. Vegetation structure at predator livestock killing site. Shrubs heights are represented k	oy
SH and tree h	heights by TH	. 108

Acronyms and abbreviations

CBNRM Community Based Natural Resources Management

EC Epupa Conservancy

DEM Digital Elevation Model

WP Water points

OC Okanguati Conservancy

MEFT Ministry of Environment Forest and Tourism

SCIONA-TCP Skeleton Coast Iona Trans-Frontier Conservation Park

HWCSRC Human-Wildlife Conflict Self Reliance Scheme

HWC Human-Wildlife Conflict

HCC Human-Carnivore Conflict

IRDNC Integrated Rural Development for Nature Conservation

NACSO Namibia Association of CBNRM Support Organisation

Acknowledgement

This thesis would not have been possible if not for the guidance of my supervisors (Dr Meed Mbidzo and Mr Miguel Orti) and financial support through the Iona - Skeleton Coast Transfontier Conservation Area (SCIONA) project.

All data collection needs materialised through Kakunandunda Hevita, as well as the game guards of Epupa and Okanguati conservancies and the SCIONA wildlife and community team's tireless field assistance.

I am forever grateful.

Dedication

This thesis is dedicated to me (Ailla-Tessa N. Iiyambula) for all the years and hard work I have put into my academics since the start of my Natural Resources Management career in 2014.

Abstract

Habitat fragmentation has increased the prospect of human and wildlife encounters consequently resulting in conflict. In an agriculture-focused landscape, conflict occurs when wildlife including carnivores destroy property and prey on livestock. Conservancies in Namibia have monitored natural resources inclusive of Human-Carnivore Conflict (HCC) and analysed the temporal trend of conflict over the years. However, the spatial distribution of livestock predation, including potential anthropogenic and environmental risk factors have not been assessed.

Using binary logistic regression modelling (GLM), selected environmental (EV) and anthropogenic (AV) variables associated with the occurrence of livestock predation in Epupa (EC) and Okanguati (OC) Conservancies by leopard, caracal, hyena (spotted and brown), cheetah and jackal were investigated. The following data were collected; i) livestock predation data for modelling spatial and temporal distribution, ii) household interviews on livestock predation experience, iii) vegetation structure at killing sites and iv) kraal structure assessment.

A total of 425 incidents were reported in EC between 2014-2020 and 523 in OC between 2012-2020 with the highest number of incidents in both conservancies recorded during the wet season. The majority of cases in OC are attributed to cheetah while caracal was responsible for the majority of incidents in EC. Vegetation structure and visibility differed by hunting preferences of the different carnivores. Cheetah hunted in areas with average visibility of $69.5m \pm 40.8m$, leopard (31.8m $\pm 29.1m$), caracal (49.1m $\pm 18.4m$), jackal ($68.6m \pm 38.5m$) and hyena ($50.8m \pm 17.42m$). Leopard killing sites had the lowest tree and shrub density per $50m^2$.

Distance to natural and artificial water points is identified as a determinant of livestock predation in both conservancies. The probability of conflict occurrence was higher in proximity to water points. In addition, elevation, distance from houses and fields were also important predictors. The risk of livestock attacks is predicted within the livestock zone, around villages and houses. The structure of kraals that experienced livestock attacks was poor in comparison to kraals that did not experience livestock attacks. The presence of a kraal at some households did not guarantee livestock enclosure at night hence attacks around the house. Furthermore, livestock herding did not prove effective.

Livestock predator conflict is a nationwide problem, therefore the application of modelling as a tool of identifying risk areas to align management and mitigation measures could be useful for natural resources managers. In light of the above results, the study recommends strategic location and distribution of water

points inclusive of wildlife areas, and conservancies to enforce overnight livestock kraaling in conflict hotspots. Wild prey and carnivore populations are a crucial component in managing and determining the causes of conflict hence conservancies must conduct regular game counts. In addition, the reintroduction of wildlife in the areas should be considered to foster wild prey population growth.

Keywords: Anthropogenic drivers, Epupa Conservancy, Environmental drivers, GLM, Human-Wildlife Conflict, Human-Carnivore Conflict, Livestock predation, Kraals, Mitigation, and Okanguati Conservancy.

Chapter 1: Introduction

1.1. Human-Wildlife Conflict and History

Human-Wildlife Conflict (HWC) is the hostility resulting in competition between wildlife and people for resources, where the needs and behaviour of either people or wildlife negatively impact the other (Draheim *et al.* 2015, Nyhus 2016). HWC is believed to have existed since the interaction of people and wildlife with evidence older than recorded in history (Hewitt 2004, Tripp *et al.* 2014, Raheer *et al.* 2015, Nyhus 2016, Mayengo *et al.* 2017).

Wildlife damage management strategies and retaliation measures in the ancient world started simply as farmers using nets to capture and kill birds destroying grain yards (Hewitt 2004). Over time, humans have adapted and developed predator avoidance tactics such as effective vigilance, and social adaptations, for example, the formation of small groups for protection (Treves and Palmqvist 2007). Hominins occupying savannas and woodland habitats have expressed behavioural adaptations enabling co-existence with wildlife. The use of stone tool technologies such as fire deterrents, modern weapons has allowed dominion over wildlife species (Treves and Palmqvist 2007).

First records of wildlife conflict management laws and policies were formulated in Scotland in 1424 for Avis damage control (Hewitt 2004, Begier and Kendrot 2015). Continued wildlife damages have given rise to scientific investigations on causes of conflict and exploration of advanced preventative and mitigation measures functioning in the conservation interests of wildlife and improved livelihoods. Nyhus (2016) documented an exponential increase in the world's HWC and co-existence-related scientific studies since 1995.

The HWC phenomenon has been an issue of concern to environmental managers and governments as it jeopardises the sources of livelihoods, biodiversity conservation, and most importantly for conservationists, the population of threatened carnivore species (Rust *et al.* 2016). Humans have innovated and adapted to become the dominant species in the ecological sphere on the planet, nonetheless that did not eradicated conflict. Eradication of HWC is impossible as long as humans and wildlife occur in the same area. Historical timelines and records indicate that the evolution of humans and its innovative techniques to better compete with wildlife for habitat and resources is to the detriment and diminishing of wildlife populations (Nyhus 2016). The constant damage to infrastructure, crops, and livestock losses has led to resentment and negative attitudes towards wildlife conservation (Artelle *et al.*

2016). In response, farmers retaliate with lethal techniques such as poison, shoot, and traps often resulting in the assassination of non-target species (Treves *et al.* 2004, Miller 2015).

The increasing human population, development, land conversions for agriculture are major contributing factors to habitat fragmentation and driving forces of HWC (Madden 2004, Abade *et al.* 2014). The continued fragmentation of wildlife habitats creates a predicament of limited resources compelling carnivores to seek livestock as alternative prey (Miller, Jhala, Jena, *et al.* 2015). The magnitude and severity of damage differ between species; primates raid gardens, large herbivores destroy crop fields, carnivores predate and kill livestock, fear of attack and human deaths, and rodents preying on seeds to as little as a mice chewing a hole in a cereal box (Hewitt 2004, Dickman 2010, Barlow *et al.* 2010, Nyhus 2016). Comparingly, elephants raiding an entire crop field and carnivores preying on one livestock, the damage induced by an elephant carries lasting impacts. Additionally, a strong component of human wildlife conflict and against wildlife arises as wildlife crimes and/or exploitation of wildlife resources such as ivory, scales or other animal products (Abotsi *et al.* 2015). These components of human-wildlife conflict have tremendous impacts on the conservation of wildlife populations pushing vulnerable and endangered towards extinction.

People perceive HWC differently and it is highly dependent on individual perspectives (Hewitt 2004). The phenomenon is however not one way, the interaction yields both negative and positive results. While living with wildlife, opportunities for improved livelihoods arise. In the context of rural conservation, communities utilize natural resources for recreation and tourism, ploughing economic and social benefits. In addition, wildlife diversity stabilizes ecosystems (Nyhus 2016).

1.2. Human-Carnivore Conflict in general

The interaction and conflict between carnivores and humans are manifested by human activities extending to carnivore areas or vice versa, carnivore predation on livestock, and humans retaliating. Large carnivore hostility is globally increasing as a result of the never ending carnivore-livestock conflict and its impacts on communal farmers particularly their source of livelihoods (Miller, Jhala, and Jena 2015, Nyhus 2016).

More than 75% of the world's felid species are in one way or another affected by human-wildlife conflict (Inskip and Zimmermann 2009). Carnivores are at risk of conflict because of large home ranges, habitat fragmentation and diet requirements increasing their chances of encounter with people. Important in an ecosystem, carnivores provide ecosystem stabilizing services such as controlling herbivore populations

(Adrian and Ullas 2003). Specific carnivores are specialized in large, medium and small ungulate hunting; this behaviour and abundance of easy prey permit opportunistic preying on livestock (Adrian and Ullas 2003). The latter has earned carnivores a negative reputation by livestock farmers.

Human Carnivore Conflict (HCC) is worldwide, no area with human and wildlife presence are exempted, it has gone as far as wildlife roaming cities. In China, over 2000 years an estimated 10000 people lost their lives and have been injured by Asian tigers (*Panthera tigris*) inducing retaliation, which led to the eradication of almost the entire tiger population in the region (Nyhus 2016). Further, in Alberta Canada, between 1982 and 1996, wolves (*Canis lupus*) were responsible for the loss of more than 2000 domestic animals. In many of Africa's species-rich regions such as Rwanda, DRC, Malawi and Tanzania, it is believed that conflict is driven by the paucity of resources and anthropogenic ecosystem disturbances whereas Zimbabwe's pastoralists sharing borders with protect areas in Gokwe communal land as any other community bordering national parks, suffer from livestock depredation Pearce 1994, Winter 1997 as cited by (Mayengo *et al.* 2017).

1.3. Human-Carnivore Conflict in Namibia

Namibia has six species of free-ranging large carnivores from the families Canidae, Felidae and Hyaenidae: lion (*Panthera leo*), cheetah (*Acinonyx jubatus*), leopard (*Panthera pardus*), brown hyena (*Hyaena brunnea*), spotted hyena (*Crocuta crocuta*) and wild dog (*Lycaon pictus*) in addition to small carnivores: black-backed jackal (*Canis mesomelas*) and caracal (*Caracal caracal*) (Stuart and Stuart 2015, Naankuse 2018). All have been culprits and victims of HCC on commercial and communal farms. The management of HWC in Namibia is guided by the Revised National Policy on Human-Wildlife Conflict Management 2018-2027 through the Ministry of Environment Forestry and Tourism (MEFT).

With an estimated 3500 commercial farms and about 86 communal conservancies supporting free ranging carnivores, HCC is inevitable (Naankuse 2018, MEFT 2021). Although commercial farms are financially capable of employing carnivore preventative measures such as fencing, conflict persists. According to Naankuse (2018) the inclusion, collaboration and consultation with relevant stakeholders contribute significantly to the management of HCC on commercial farms. In addition, successfully addressing conflict requires the recognition and understanding of its complexity rather than being facile (Rust *et al.* 2016).

Namibia's communal communities manage natural resources through the Community Based Natural Resources Management (CBNRM) programme (Naidoo *et al.* 2011). The CBNRM programme contributes significantly to biodiversity conservation and in turn, communities get benefits such as distribution of

meat, income for infrastructure development and employment creation among a few (NACSO 2016). The failure and inability to address HCC could negatively threaten carnivore conservation and jeopardises the potential economic growth of rural communities (Gusset *et al.* 2009). Communal conservancy members are at a disadvantage because wildlife is managed at a large-scale migrating between conservancies, and land-use overlap with wildlife areas defeat fencing as a wildlife management tool. Communal farmers bordering national parks and game farms are exposed to conflict as carnivores escape conservation areas (Thorn *et al.* 2012, Abade *et al.* 2014). HCC, therefore, remains a pertinent issue deserving of solutions because of its adverse effect on livelihoods, and conservation.

MEFT has recognised that HWC is inevitable in the presence of people and wildlife, thus the formulation of the Human-Wildlife Self Reliance Scheme (HWSRS), which offsets farmers for losses by wildlife. Furthermore, to mitigate conflict, farmers are urged to employ husbandry practices such as livestock kraaling, guarding dogs and herding (MET 2018). Other conflict management solutions by MEFT include translocating conflict-causing species, selling and culling individuals of a species identified as a problem-causing animal (Rust *et al.* 2016, MET 2018).

Although these techniques have successfully limited livestock depredation, farmers are still reporting frequent problems with carnivores (NACSO 2018). This is partly the outcome of increasing carnivore populations nationally or could be that the social and ecological root causes of HCC have not been adequately investigated and addressed (Rust *et al.* 2016, NACSO 2018). Addressing conflict requires a good understanding of the geographic location and extent of occurrence (Brown 2011). It is, therefore, a priority to identify HCC hotspots to assist in finding solutions within affected regions.

Predictive modelling of species geographic distribution based on environmental conditions is an important technique in analytical biology. Predation risk modelling reveals information on locations and habitats associated with livestock attacks providing a guide for mitigation interventions. More case studies are needed to illustrate how risk maps can be practically integrated into academic intervention efforts and whether the guidance provided by risk models significantly assist in the reduction of livestock depredation (Miller 2015).

Currently, game guards keep records of geo-referenced data on conflict however they lack the expertise and capacity to further analyse the spatial data and there are currently no known conflict distribution maps that exist using game guard collected data. Conservation support institutions have focused on

providing conservancies with annual wildlife audit reports and statistics (Okanguati Conservancy 2020, Epupa Conservancy 2020), neglecting the inclusion of wildlife and conflict distribution maps. Herein HCC refers and focuses on livestock predation.

1.4. Problem statement and significance of the study

Grazing is sparse in the Kunene and as a result, livestock travels long distances in search of pasture exposing them to predation (NACSO 2018), and there are no conflict risk maps to advise communities on grazing avoidance areas. Livestock kraaling has reduced the chances of livestock attacks in Kunene south (Gargallo 2021). However, the use of kraals that are not carnivore-proof provide little to no protection. Kraals in Epupa and Okanguati conservancies are traditionally built and the effectiveness of such structures has not been investigated. The influence of environmental and social risk factors and predation risk modelling of livestock predation is rarely assessed. In most cases, actions to deal with livestock predation have been reactive. According to Miller (2015), predation risk modelling could be widely used as a proactive measure to guide mitigation relating to livestock predation. Given the increase in carnivores in the Kunene region (NACSO 2018), such methods should be utilized to avoid grazing livestock in areas where they are vulnerable to carnivore attacks (Miller, Jhala, and Jena 2015).

The relation between livestock predation, environmental and anthropogenic variables is well researched and established in certain parts of the world. The use of analytical tools by ecologists such as species distribution modelling using Ecological Niche Factor (ENF), MaXent and logistic regression modelling is slowly emerging as a problem-solving tool (Karanth *et al.* 2012, Abade *et al.* 2014, Miller, Jhala, and Jena 2015, Miller, Jhala, Jena, *et al.* 2015, Broekhuis *et al.* 2017). However, studies in Namibia have dominantly focused on cost-benefits analysis, stakeholder relations, importance and involvement in carnivore-livestock conflict management (Jones and Barnes 2006, Rust *et al.* 2016, Rust 2017), community perception, temporal trends of conflict neglecting the spatial component (Brown 2011, Mosimane *et al.* 2014). The focus is shifting from trends as the pertinent issue to investigating possible factors of influence, their geographic location, the association of predictor variables with conflict occurrence and conflict hotspots. A study by Verschueren *et al.* (2020) on human conflict with carnivores in Namibia's northeast conservancies recommends spatial modelling of risk areas to prioritize mitigation efforts.

Namibia's northwest conservancies are amongst the rural communities battling livestock predation with limited scientific interventions hence an ideal predator risk mapping case study contributing to the academic efforts on finding solutions to livestock predator conflict in Namibia. By collaborating with Epupa

and Okanguati conservancies, these research findings will not only contribute to Namibia's scientific findings on livestock predator conflict but, provide the conservancies with information necessary to track the spatial changes and distribution, jointly identify risk areas as an early warning system to advise communities, conservation organizations and government on areas of focus to mitigate conflict and safeguard communities (Verschueren *et al.* 2020) and identify low risks areas that may be compatible with livestock grazing (Beattie *et al.* 2020). In addition, the collaboration with conservancies has involved game guards through training in various research areas and the use of technologies in resources monitoring, efforts that will improve the technical skills of locals in research and data collection.

1.4.1. Objectives and research question

Certain species become habituated to traditional conflict preventative measures giving rise to explore new strategies (MET 2018). Understanding the effect of environmental and anthropogenic variables is valuable in areas where livestock poses threat to local communities and carnivore populations (Abade *et al.* 2014). In this study we address the question: What are the anthropogenic and environmental drivers associated with livestock in Epupa and Okanguati Conservancies? The study focused on five common carnivores associated with livestock predation, namely: hyena, cheetah, leopard, jackal and caracal.

1.4.2. Aims and objectives

The study aims to investigate environmental and anthropogenic drivers of livestock-carnivore conflict to propose proactive strategies to assist with conflict management in Epupa and Okanguati conservancies. Specific objectives include:

- 1. To map the spatial and temporal distribution of livestock predation by hyena, cheetah, leopard, jackal and caracal in the two conservancies.
- 2. To determine the effect of anthropogenic variables and environmental variables on livestock predation by hyena, cheetah, leopard, jackal and caracal.
- 3. To predict and map livestock predation risk areas in the two conservancies.
- 4. To evaluate the effectiveness of kraals structure to protect livestock from carnivore predation.
- 5. To propose proactive strategies to reduce livestock predation.

Chapter 2: Literature Review

One of the major global challenges to carnivore conservation is the lack of ability to spatially identify human-carnivore risk sites using appropriate tools and existing data. Now emerging is predation risk modelling identifying conflict hotspots and or potential areas of conflict where mitigation measures could be applied (Miller 2015). Modelling is beneficial in ecology, it assists natural resources managers and locals to manage and minimize multi-predator HCC (Ramesh *et al.* 2020).

A collective study by Miller (2015), revealed that most of the generated conflict hotspots maps were used by livestock farmers and natural resources managers to identify areas of intervention priority of which directed efforts were >90% successful in conflict reduction. The tool is low-effort and cost-efficient using already existing data (Miller 2015). Furthermore, a variety of application and approaches of spatial modelling are commonly used namely; correlation modelling, generalized linear models, logistic regression, spatial association and spatial interpolation (Marucco and McIntire 2010, Behdarvand *et al.* 2014, Miller 2015).

Understanding EVs and AVs associated with livestock predation are crucial in HCC landscapes (Murphy and Macdonald, 2010 as cited by (Abade *et al.* 2014). EVs such as proximity to rivers, low elevation, high rainfall and reduced tree cover has been found key determinants of livestock predation by lion, leopard and spotted hyena in Tanzania's Ruaha National Park (Abade *et al.* 2014), whereas in Kenya depredation of livestock by spotted hyena was associated with increased vegetation cover (Kolowski and Holekamp 2006). Further, a study in Mexico found a positive association between variables such as vegetation cover, the abundance of free-roaming grazers and jaguar livestock predation risk (Zarco-González *et al.* 2013). Understanding conflict causal factors, where it is likely to occur and incorporating traditional knowledge is crucial for wildlife conservation and management of conflict (Karanth *et al.* 2012).

The effects of different landscape features, environmental variation differ between geographic locations and species involved. In Pandamatnga village, Botswana, delayed rainfall events are associated with increased severity of livestock attacks by lions (Robertson *et al.* 2020) and predation risks by Africa lion in Tanzania were higher close to surface water (Beattie *et al.* 2020), whereas in the Himalayan region, livestock killing by leopards was predicted to occur higher in areas of less water (increasing distance from water bodies (Naha *et al.* 2020).

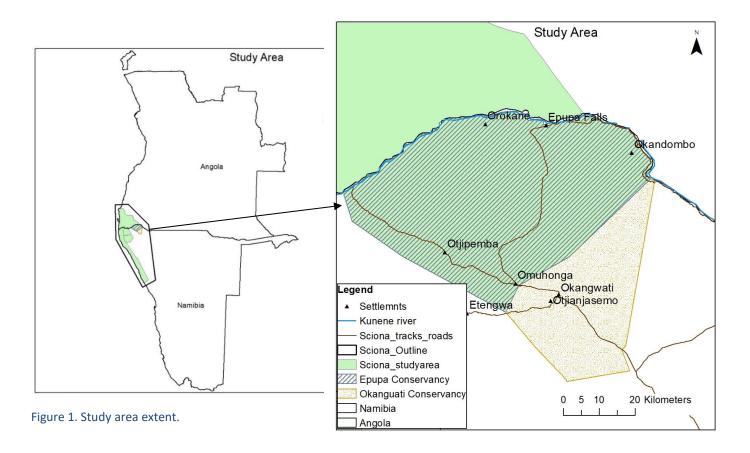
Furthermore, livestock, wild prey and carnivore densities are strong predictors of livestock predation (Miller 2015). Some researchers argue on the correlation between wildlife prey and livestock abundance stating that increased wildlife numbers lead to increased livestock attacks, however, this evidence is arguable in HWC because it is a complex topic that should take into account the distribution and movement of both wild prey and livestock (Miller 2015, Zarco-González *et al.* 2013). Addionaly, the risk of livestock depredation is influenced and/or associated with: distribution of carnivores, livestock, wild prey, environmental factors such as (rainfall, vegetation type and elevation), human infrastructure and the quality of livestock husbandry (Thorn *et al.* 2012, Abade *et al.* 2014, Dhungana *et al.* 2017).

HCC is a multifaced problem that should be addressed inclusive of all possible leading factors. In this study, environmental and anthropogenic drivers of HCC are assessed (Abade *et al.* 2014), using binary logistic regression modelling as prescribed by (Miller, Jhala, and Jena 2015). Logistic regression modelling predicts the probability of the occurrence of an event using identified factors. Additionally, logistic regression indicates which of the variables assessed has the influence and is a predictor of event occurrence (Tolles and Meurer 2016, Beattie *et al.* 2020).

Geographic Information System (GIS) technology has been used to map and explain the distribution of events but it remains a top-down approach that excludes and may be less attractive to unskilled local communities (Cinderby 1999, Ruda *et al.* 2018). According to Rust (2017), to effectively manage conflict, stakeholder participation is crucial as involving the affected creates the potential of finding amicable solutions hence the inclusion of game guards, Geographic Positioning System (GPS) training of paraecologists for data collection in this study.

Chapter 3: Methodology

3.1. Study area


The study was conducted in two conservancies of the Kunene region, Epupa and Okanguati conservancies, (Figure 1). where leopard (Panthera pardus), cheetah (Acinonyx jubatus), caracal (Caracal caracal), brown hyaena (Hyaena brunnea), spotted hyaena (Crocuta crocuta) and jackal (Canis mesomelas) frequently predate livestock.

Epupa Conservancy was gazetted in 2014 covering an extent of 2 912 km² whereas Okanguati Conservancy was gazetted in 2012 covering an area of 1159 km². Epupa Conservancy is home to 2 343 inhabitants while Okanguati Conservancy supports 4 879 inhabitants (NACSO Epupa Conservancy 2021, NACSO Okanguati Conservancy 2021). As a mandate by the MEFT, conservancies are required to monitor natural resources using the Event Books system. Natural resources monitoring includes wildlife observations (sighting and spoor), rare and endangered species and other wildlife species (sighting and spoor), rainfall, human-wildlife conflict, mortality, and poaching. Monitoring is carried out by game guards employed by the conservancy.

The area is home to the Ovahimba, Ovazemba and Ovatjimba people farming with small to large stock such as sheep, goats and cattle in addition to seasonal crop farming (Inman *et al.* 2020). Seasonally nomadic, their movement is highly influenced by water availability for human consumption and fodder availability for livestock. The social and economic welfare in the region is supported by subsistence farming complemented by variable income generated from tourism activities (Shilongo 2020). Rainfall in the area is highly variable and sporadic with records varying from 10 - 100mm annually characterizing the area as one of the driest regions in north-west Namibia coupled with recurrent droughts (Inman *et al.* 2020). EC and OC fall amongst areas that have been heavily hit by drought exacerbating the impacts of human-carnivore conflict on the livelihoods.

The area falls within the Acacia Tree and shrub savanna specified as the western highlands (Coleen and Barbara 2018). The flora is highly dominated by *Colophospermum mopane*, and sparsely *Catophractes alexandrii*. Wildlife such as kudu (*Tragelaphus strepsiceros*), black-faced impala (*Aepyceros melampus petersi*), vervet monkey (*Chlorocebus pygerythrus*), and chacma baboon (*Papio ursinus*) roam freely between conservancies. The landscape is characterized by mountains, valleys, ephemeral rivers and dry streams creating suitable habitats for carnivores. Kunene's tradition of livestock farming has been passed

from generation to generation and losing livestock to predators becomes increasingly difficult to find a realistic solution that will benefit both the environment and people (Inman *et al.* 2020).

3.2. Data collection

3.2.1. Event Book Review of livestock predation data and para-ecologists training

This study followed a quantitative research design and analysis method utilizing primary and secondary data from conservancies. Carnivores responsible for most of the conflict in the study area were identified through focused group discussions with communities following the Participatory Rural Appraisal (PRA) technique. Past geo-referenced data on livestock predation was gathered from Event books. Event book review strictly focused on the five identified land carnivores and not inclusive of crocodiles and other emerging conflict causing species such as honey badger, baboons and monkeys.

To establish a reliable, independent conflict reporting and data collection system, a total of four paraecologists (two per conservancy) were provided with basic GPS training. Para-ecologists were selected

from game guards and conservancy personal based on: experience in predator identification and investigating livestock predation in the conservancy, and the ability to read and write. The training entailed handling a GPS device; i.e. recording and georeferencing incidents. Additionally, training included a structured review of the data collection sheet. To avoid the language barrier, data sheets were translated into the local language (Otjiherero) and only information on livestock predation cases reported by victims and the veracity confirmed by a game guard as part of the investigation for offset was recorded (Woodroffe, Lindsey, *et al.* 2005, Abade *et al.* 2014). Livestock predation sites were geo-referenced using an eTrex 10 GARMIN GPS, these represented presence data. There were no known sites of no livestock predation hence points were randomly generated across the landscape of each conservancy in QGIS representing pseudo-absence points for modelling (see *Appendix 15 and Appendix 16* for presence and pseudo-absence livestock predation data).

Using a structured close-ended questionnaire or datasheet, interviews were conducted during an incident investigation. The questionnaire included information on the date and place of incident, livestock demography, livestock husbandry or predator deterrent measures present the day of the incident, the identified responsible carnivore species and the number of livestock killed (Woodroffe *et al.* 2005, Woodroffe *et al.* 2007). Data was collected for a period of nine months between September 2019 to May 2020 and inclusive of all areas accessible to para-ecologists where livestock was lost as a result of predation. For temporal data, we defined the wet season from November to April and the dry season from May to October of each year.

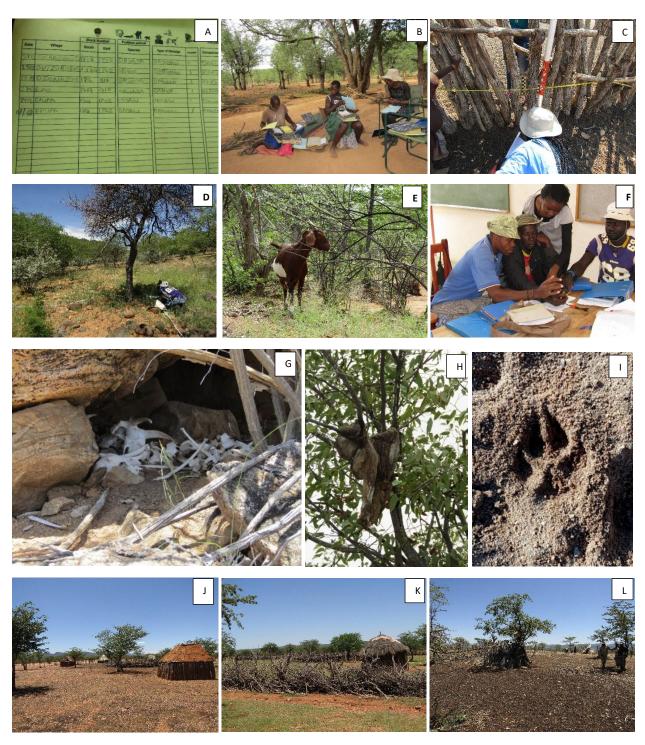


Figure 2. Field data collection image summary (a) Event book - problem animals, (b) event books review with game guards, (c) kraal structure assessment, (d) vegetation structure assessment, (e) livestock grazing (f) para-ecologist GPS training, (g) a predator feeding den, (h) goat carcass remains killed by a caracal as identified by game guards, (i) hyena spoor in Okanguati, (j) house with no fence but has a kraal, (k) house with a fence and a kraal, (l) house with no kraal and no fence, goats overnight around the house, the small structure is a kraal for kids and lambs.

3.2.2. Household interviews and kraal structure assessment

Data was collected from households that experienced and those that did not experience livestock predation for comparison of preventative measures and livestock husbandry practices between households. At the end of every rainy season approaching the dry season (September - November), farmers move to temporary areas and cattle posts in search of livestock grazing fodder and water. Data collection for Okanguati Conservancy (OC) was conducted during the wet season (February 2020) whereas for Epupa Conservancy (EC) it was collected during the dry season (November 2019) when the majority of permanent houses and villages were vacant.

Interviewed households were selected and sample size based on occupant's availability and only households logistically accessible were interviewed. Nonetheless, each conservancy is demarcated into monitoring and patrol zones: Epupa Conservancy has seven zones' namely; Epupa, Okandombo, Omuramba, Omuhonga, Okanjandi, Ondendu and Ongondjanambari, whereas Okanguati Conservancy has; Oomiore, Ombaka, Otjomuru, Otjeme, Otjihandjasemo, Omuangete and Ohamaremba. Each zone was surveyed to fully represent the conservancy.

All households were interviewed on the livestock husbandry measures in place, and their experience of livestock predation followed by kraal structure assessment. Respondents were only asked about the most recent events to rule out memory error. Recent incidents were defined as incidents involving livestock and carnivores that occurred 12 months to the day of the interview. The time frame of 12 months concurs with the recommended time recall period of 2 to 14 months (Sudman and Bradburn 1973, Karanth *et al.* 2012, Kjellsson *et al.* 2014). Extended recall periods influence results by the possibility of interviewee pretermitting events and confounding incidents between multiples years.

Kraal structures were assessed at every household interviewed except where interviews were done at water points. For case-control comparison, case and neighbouring control kraals were sampled. Case kraals are livestock enclosures with a record of in kraal livestock attacks. Kraal measurements included the following: the height of the kraal, type of material used, thickness of the kraal wall, visibility and direction of kraal material (Woodroffe *et al.* 2007).

Kraal height, thickness, and visibility/transparency were measured at an interval of 5m for big kraals and at an interval of 1m for small kraals using a calibrated (m) pole. The direction of kraal material was recorded observing the inward, outward, vertical and horizontal laying of the material. To measure thickness, a calibrated pole was pushed through the kraal wall. Transparency was measured using a

chequerboard marked with 100 2cm*2cm squares shaded alternately black and white. From inside the kraal, a checkerboard was held against the inside of the kraal at a height of 0.5m (for caracal and jackal) and at 0.80m from the ground for leopard, cheetah and hyena. An observer outside the kraal, eye-level at 0.5m or 0.8m from the ground facing the chequerboard through the kraal fence, counted and record the number of white squares which were more than 50% visible (hence maximum transparency received a score of 50) see *Figure 3*, (Woodroffe *et al.* 2007). The measurements heights are adopted from Stuart and Stuart (2015) carnivore shoulder height as a proxy for eye-level. Only farmers/herders with experience and understanding of livestock predator conflict were interviewed.

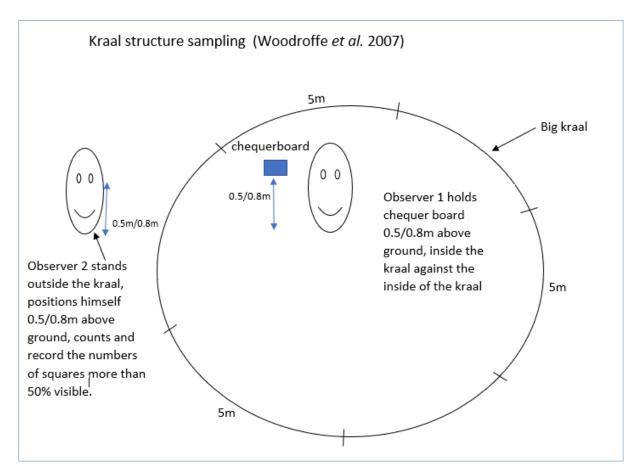


Figure 3. Illustration of kraal structure assessment.

3.2.3. Environmental and anthropogenic variables

Environmental Variables (EV) are environmental factors that are known to influence livestock predation by large carnivores whereas Anthropogenic Variables (AV) are human-induced factors that are known to influence carnivore presence and livestock predation (Miller, Jhala, and Jena 2015, Miller, Jhala, Jena, *et al.* 2015).

These predictor variables were selected based on their known influence on carnivore distribution, human and livestock interaction and from similar research on human carnivore conflict dynamics (Woodroffe *et al.* 2007, Kissling *et al.* 2009, Karanth *et al.* 2012, Abade *et al.* 2014, Miller, Jhala, Jena, *et al.* 2015, Kuiper *et al.* 2015, Mbiba *et al.* 2018). AVs considered in this study include distance from water points (these includes artificial water points and springs), distance from houses, distance from fields and distance from roads whereas EVs include: elevation, slope, distance from water points, Normalized Difference Vegetation Index (NDVI) and/or vegetation structure, and distance from rivers or streams. Rivers and streams refer to perennial and ephemeral river courses.

Coordinates of houses, villages, and waterpoints were recorded during household interviews. Additionally, areas that were inaccessible due terrain, resulted in digitization of features (water points/springs, roads, houses and fields) using Google Earth Pro v. 7.3. Digitizing was done on available image tiles for the years 2007, 2012, 2016 to 2018 at a spatial resolution of 394m to 1km.

Digital Elevation Model (DEM) images applied for elevation are products of United States Geological Survey (USGS) Earth Explorer whereas the features; slope, elevation, and rivers/streams were extracted from DEM images using the Spatial Analyst tool, Stream Order Network in ArcGIS 10.6.1. The 10m resolution NDVI images used as a proxy for vegetation cover are a source of the European Space Agency Copernicus (ESA), type Sentinel 2A–M2A below the atmosphere. Sentinel 2A provides images of Bottom of Atmosphere (BOA) reflectance derived from the associated level – 1C products. Each image of S2A is 100 by 100km² tiles in cartographic geometry (UTM/WGS84 projection) (ESA 2021). The images were downloaded, merged, cropped and fitted to the study areas in Quantam GIS (QGIS) v3.60. The images covered a time frame between January 2019 and May 2020, monthly images were downloaded at a difference of 15-20 days and each killing site's NDVI value extracted from the image of the month the incident occurred. NDVI was equated in QGIS using the Near-Infra Red band (NIR) and RED band (Red light):

$$NDVI = \frac{NIR}{NIR} - \frac{RED}{RED}$$

The units of measure were specific to variables, distances and elevation were measured in meters (m) and slope in degrees (D). Distance was measured from each killing site to the nearest feature. Concurrently, slope and elevation values were extracted for each killing site using ArcMap the 10. 6. 1 software.

Table 1. Summary table of data sources.

Data	Resolution	Sources and links	Units
Environmental variables			
NDVI	10m	ESA – Sentinel 2A https://scihub.copernicus.eu/dhus/#/home	-
SRTM (DEM)	-	Earth Explorer USGS https://earthexplorer.usgs.gov/	-
Rivers and Streams network	-	DEM	-
Elevation	-	DEM	meters
Slope	-	DEM	degree
Anthropogenic variables			
Distance from roads	394m to 1km	Field data and Google Earth Pro v. 7.3	meters
Distance from houses	394m to 1km	Field data and Google Earth Pro v. 7.3	meters
Distance from fields	394m to 1km	Field data and Google Earth Pro v. 7.3	meters
Distance from water points	394m to 1km	Field data and Google Earth Pro v. 7.3	meters

3.2.4. Vegetation structure

Vegetation structure was assessed at a spatial grain of a 50m² plot following the variable quadrat method, Figure 4, (Coetzee and Gertenbach 1977). The parameters measured at killing sites are vegetation density, height and visibility. These parameters were measured for all growth forms (trees, shrubs and grass) (Miller, Jhala, Jena, et al. 2015, Muvengwi 2017). A fraction 21 of the 75 sampled plots were reduced in size due to obstruction by landscape features such as steep mountains, and rocks impending accessibility and assessment of the entire plot covering 50m².

Visibility was measured in meters as the distance from the center of a livestock killing site into the four main compass directions (North, East, South, West) using a GPS (Muvengwi 2007) and captured at different carnivore species shoulder heights. Caracal and black-backed jackal visibility were observed at 0.50 m, whereas cheetah, leopard, and hyena were taken at 0.80 above the ground.

The first observer stood at the midpoint of the plot; eye positioned on a demarcated pole at the eye-level of the carnivore under investigation facing the second observer. The second observer walked away in the direction of one of the major compass directions until he/she is out of sight of the first observer. The second observer then informs the second observer out of sight, upon which the latter returns at midpoint keeping track of distance using a GPS. This was repeated in all four directions, north, east, west and south resulting in four records of visibility at a kill site.

Table 2. The different vegetation growth forms and height classes.

Growth form	Class	Height (m)
	TH1	0.5-1
Trees	TH2	2-5
	TH3	>5
	SH1	>0.5
Shrubs	SH2	1-2
	SH3	2-5
	GH1	>0.5
Herbs/grasses	GH2	0.5-1

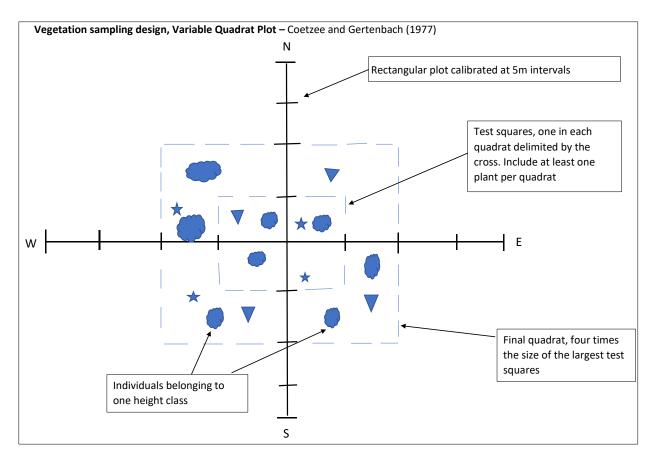


Figure 4. Illustration of vegetation structure assessment and directions of visibility assessment.

3.3. Data analysis

All descriptive, inferential statistics and modelling were conducted in RStudio v 1.2.5033. Conflict distribution and probability maps were produced in ArcMap 10.6.1 using the Kernel Density tool, Spatial Analyst Extension. Vegetation structure and kraal structure for both conservancies (OC and EC) were merged to permit inferential statistics consequence of a small sample size per conservancy.

3.3.1. Vegetation structure

The study compared vegetation structure between killing sites of the different carnivores. Data were tested for normality using a Shapiro Wilk test and considered normally distributed at a p.value greater than the significance levels of 0.05. Parameters not normally distributed were tested for the difference using the Kruskal Wallis test and additionally a post hoc Dunn test for comparison of group means. Visibility at each killing site was average to get a representative value. All statistics were evaluated at a

95% confidence interval hence all p. values greater than 0.05 were considered not significant and inversely.

3.3.2. Kraal structure

Kraal structure data was analyzed using Wilcoxon-Mann-Whitney test for comparison of kraals with and without livestock attacks. Each parameter (kraal height, kraal thickness and kraal visibility) was compared between kraals. The minimum height, width, and maximum transparency were used for analysis (Woodroffe *et al.* 2007).

3.3.3. Identifying and predicting conflict hotspot (modelling)

This study focused on binary logistic regression modelling (GLMs). The AVs and EVs values extracted for each conflict point were used to build models and predict the probability of livestock predation (Karanth *et al.* 2012, Midi *et al.* 2013). A split sample validation method was used, 70% of the data was handled for model training and 30% retained for model testing. Lastly, samples of a pixel size 0.10km*0.10km resolution were randomly selected for predicting probability of predation occurrence at unknown sites using the best-selected model(s). Variables were pairwise tested for collinearity using a Pearson's correlation test. Variables were eligible for elimination at collinearity exceeding 0.80 - equivalent to 80% (Midi *et al.* 2013). However, none of the input variables exceeded the collinearity threshold, see test results presented in Appendix 4 Appendix 5 Appendix 10 Appendix 12.

Model building and selection started with a global model (inclusive of all variables) followed by backward elimination based on the significant value of the variables and the model's Akaike Information Criterion value (AICc). Backward variable elimination method operated by retaining variables with a significant p.value and omitting non-significant variables from the models. The method was concurrently applied with the model's Akaike information Criterion (AICc) for model selection see *Appendix 6*, *Appendix 7*, *Appendix 8*, *Appendix 9*, *Appendix 11* and *Appendix 13*, (Karanth *et al.* 2012).

The estimated effect of independent variables on the probability of conflict occurrence was examined by multimodal inference modelling using the MuMIN R Package (a tool for performing model selection and model averaging) see *Table 3, Table 4, Table 6, Table 7, Table 9, and Table 10* (Schomaker and Heumann 2014). AIC is an estimator of prediction error that is used to compare multiple competing models (Symonds and Moussalli 2011). Variable parsimony and model fit selection preference was given to models with low AIC which represents low information loss. It is imperative to note that for this study adapted Akaike

Information Criterion corrected (AICc) for sample average less than 40 (the average number of samples divided by parameters is less than 40) (Burnham and Anderson 2002, Karanth *et al.* 2012, Miller, Jhala, Jena, *et al.* 2015, Broekhuis *et al.* 2017, Naha *et al.* 2020).

Raw AIC in isolation tends to make it difficult to unambiguously interpret the observed AIC differences in terms of a continuous measure such as probability thus AIC was transformed to Akaike weight (AICΔ) which can be directly interpreted as relative support for each model. Akaike weight provides a measure of the strength of evidence of the preferred model over the omitted models (Wagenmakers and Farrell 2004). Further, the contribution of each predictor variable in averaged models was assessed by the measure of variable importance varying between 0 and 1. One represents a variable's strong contribution to the averaged models with importance decreasing closer to 0, these are equivalent to a range of 0-100%. For example, 0.20 variable importance is equivalent to 20% variable importance.

Each model and variable consisting thereof is a hypothesis of the potential influence on conflict occurrence. Consequently, based on AIC, a single model is superior to the others in the set. If the predicted value differs significantly across the models, then it is risky to base the prediction on only the selected model (Burnham and Anderson 2002). Furthermore, this procedure of selection ignores variables not included in the chosen model (Wang *et al.* 2004). Hence model averaging eliminate model selection uncertainty (Schomaker and Heumann 2014). Basing prediction of the probability of conflict occurrence on a set of averaged models that assembles >0.95 of prediction uncertainty (Karanth *et al.* 2012). Lastly, the Area Under Receiver Operator Curve (AUC) was used as a measure of model performance by weighing specificity and sensitivity of each model at every classification threshold. The AUC close to a value of 1 (one) is considered a perfect model and AUC = 0.5 indicates that the model performed not better than random (Perger *et al.* 2021).

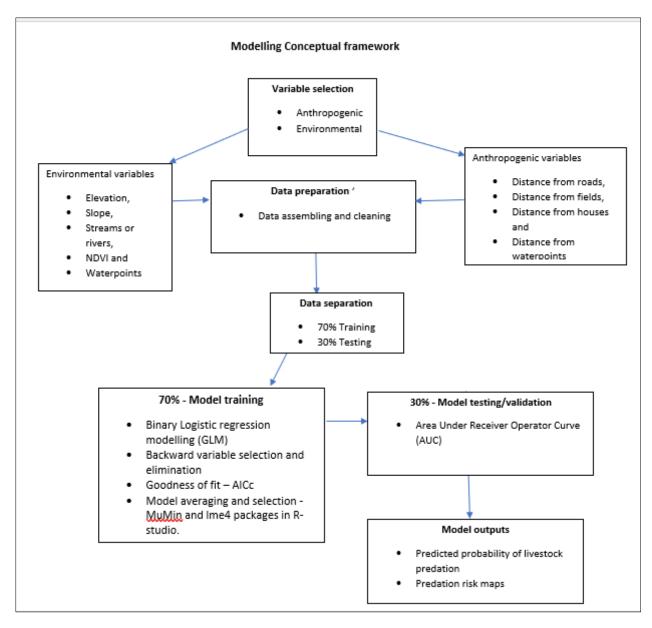


Figure 5. Modelling conceptual framework

Chapter 4: Results

4.1. Temporal distribution of livestock predation

Descriptive graphs include incidents with and without the spatial component and excludes records where the carnivore species or the livestock type involved in the incident was not identified. The data presented for 2020 is only a representation of two out of four Event books for Okanguati Conservancy and one out of eight Event books from Epupa Conservancy. Epupa Conservancy reported 425 carnivore-livestock related incidents between 2014 and 2020 (60 incidents/year). The density of livestock-predation for six years was 0.14 incidents/km². A fluctuating trend is observed with the highest records of over 100 incidents reported in 2014 and the lowest in 2017 (Figure 6).

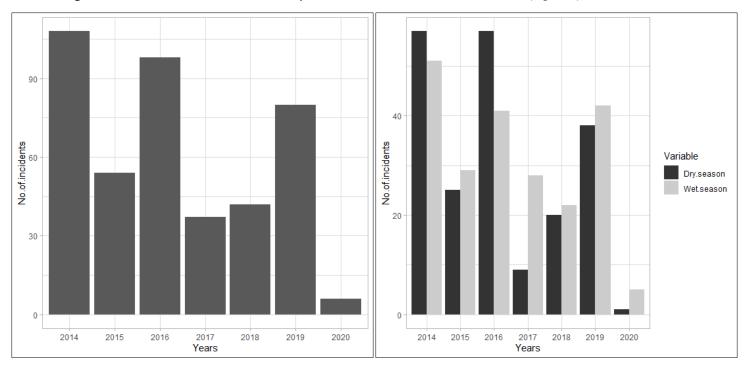


Figure 6. Epupa Conservancy (a) Livestock predation trend 2014-2019 and (b) Livestock predation seasonal trend 2014-2019.

A trend of increasing events is observed between 2017 and 2019, the number of incidents increased from 37 to 80 in two years (*Figure 6a*). A Kruskal-wallis test reveals a significant difference in the mean number of conflicts between the years (p. value <0.05). These differences are observed between 2014~2017 (0.0009). The years 2014, 2015, 2016 and 2019 were significantly different from 2020 however this difference cannot be concluded as 2020 was only a representation of one event book.

Results of the Wilcoxon test reveals no significant difference between seasons (p-value = 0.36). However, conflict varied across the months with October reporting the highest number of incidents for all the years (70), followed by November (59) and the least is July with 13 incidents. More than half (51%) of the incidents were reported during the wet season in comparison to 49% in the dry season (*Figure 6*b). Caracal was responsible for the majority of incidents accounting for 35% and jackal the least (6%) problem causing species. The percentage proportion of conflict by other carnivores is as follow; cheetah (24%), leopard (24%), hyena (11%) (see Figure 7b).

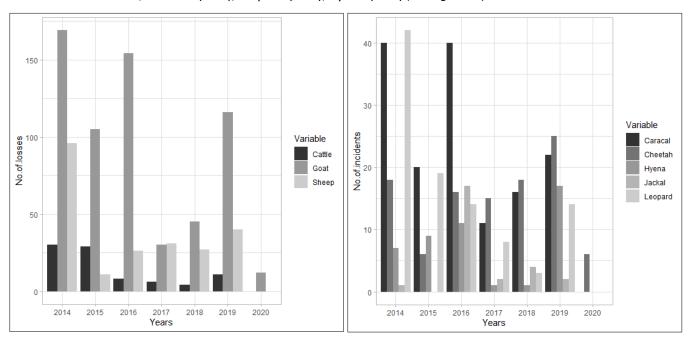


Figure 7. (a) Number of losses per livestock type, (b) a trend of incidents involving each carnivore species for the period 2014-2020, Epupa Conservancy.

Comparingly, Okanguati Conservancy experienced 523 carnivore-livestock related cases, higher than Epupa conservancy but over a longer period between 2012-2020 (58 incidents/year). The density of livestock predation over nine years in Okanguati Conservancy was 0.45 incidents/km². The highest number of incidents was reported in 2013 (110) decreasing sharply to 18 in 2018 (*Figure 8 a*). The number of incidents between the years was significantly different, the variation is between the years (Kruskal-wallis test): 2013~2017(p. value=0.009), 2014~2017(p. value=0.03), 2013~2018 (p. value = 0.0009), and 2014~2018 (p. value = 0.02). The conflict between the years 2013~2020 was different however cannot be included in conclusions as 2020 data is not illustrative of the entire year and all event books but four.

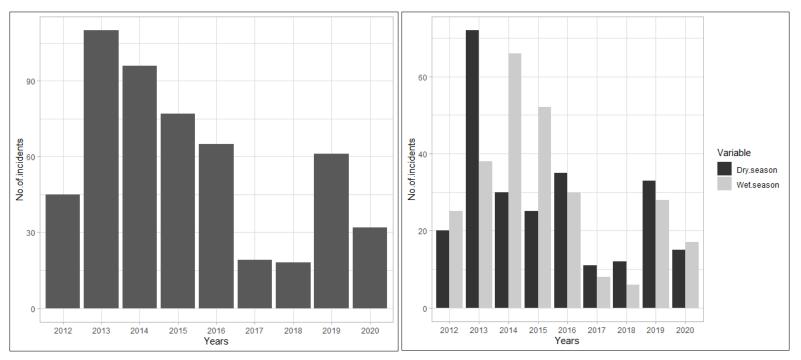


Figure 8. Okanguati Conservancy (a) Livestock predation trend 2012-2020, (b) Livestock predation seasonal trend 2012-2020.

A comparison of seasons indicates that the wet season (Nov-April) recorded the highest incidents (52%), 4% relatively higher than the dry season (May-Oct) (*Figure 8b*). However, according to a Wilcox test, the number of incidents between seasons was not statistically different (p-value = 0.45).

Soaring conflict cases were reported in November (65) and the least in April (15). Overall, cheetah was responsible for (32%) of incidents. The remaining livestock losses are attributed to caracal (24%), hyena (10%), jackal (19%), and leopard (16%) (Figure 9b).

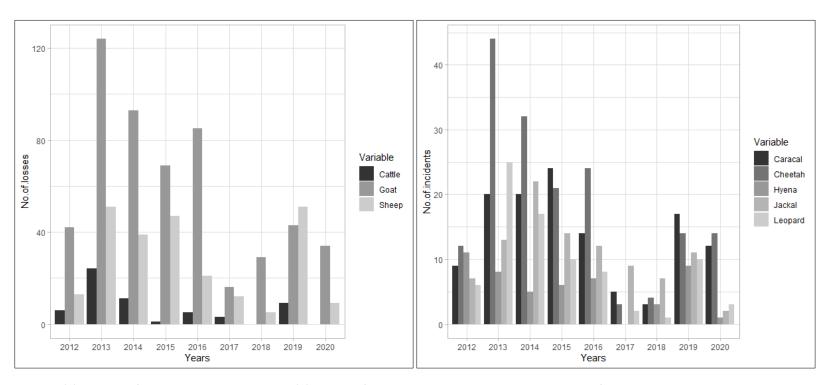


Figure 9. (a) Number of losses per livestock species, (b) a trend of incidents involving each carnivore species for the period 2012-2020, Okanguati Conservancy.

Comparatively between conservancies, Okanguati conservancy conflict monitoring started in 2012 hence the high number of livestock predation events. Livestock losses surpass the number of incidents reported; the rationale is more than one livestock was killed in a single event. A case in point was reported in 2019 when 18 sheep were predated by a leopard in a single attack in Okanguati Conservancy (Okanguati Conservancy 2019 event book). In Epupa Conservancy the highest number of livestock lost in a single attack was 25 herds of sheep in September 2014 by a leopard (Epupa Conservancy 2014 event book). These are however rare events. On average, two livestock are killed in an event. Goats were the most frequently predated livestock in both conservancies (*Figure 7a, Figure 9a*).

4.2. Spatial distribution maps of livestock predation

This section presents Kernel density conflict distribution maps of the 358 geo-referenced event book incidents for (2014-2020), 68 GPS collected incidents (2019-2020) of Epupa Conservancy and 105 GPS collected incidents of Okanguati Conservancy (2019-2020). Incidents are represented at a spatial grain of 0.10km*0.10km. Conflict distribution maps exclude incidents with no spatial reference. Okanguati Conservancy had no existing records of the spatial component of conflict (event book data did not possess coordinates).

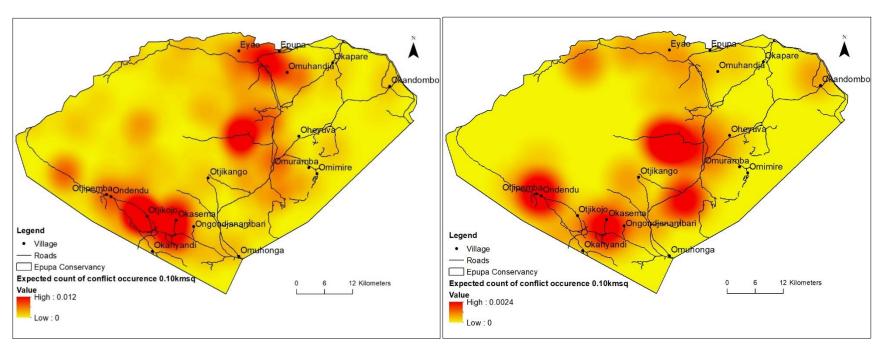


Figure 10. (a) Spatial distribution of livestock losses in Epupa Conservancy 2014-2020 Event book data, (b) spatial distribution of livestock losses in Epupa Conservancy 2019-2020 - GPS collected data.

Areas of permanent human settlements such as Otjikoyo, Okanyandi, Omuramba, Omuhandja and Eyao are identified as hotspots. The area between Otjipemba and Eyao, the west part of Epupa Conservancy is mountainous and mostly utilized as a grazing area with very little human

activities according to game guards. The distribution of livestock losses between the event book and GPS collected data for Epupa Conservancy is similar (Figure 10 a and b). However, this observation cannot be deduced for OC due to the non-existing event book spatial data hence only the GPS collected data is presented in *Figure 12*. The distribution of conflict for both conservancies follows the pattern of villages as areas of livestock activities.

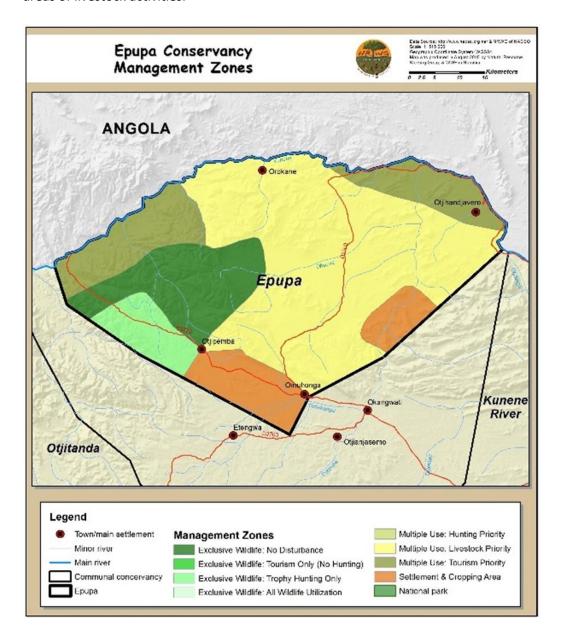


Figure 11. Epupa Conservancy management zones (map by NACSO).

Based on our conflict distribution maps of Epupa conservancy and comparing to NACSO's zonation maps *Figure 11*, conflict is predominantly within the Multiple-use; livestock priority core, Settlement and Cropping area to very few incidents in the Multiple-use; tourism priority, Exclusive wildlife; and Trophy

hunting only. Conservancies are demarcated into management zones to allow a fair resources allocation between wildlife and people whilst co-existing and assist in minimizing competition and reducing conflict probabilities.

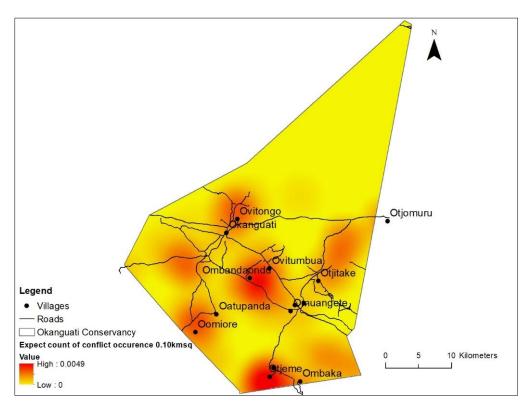


Figure 12. The distribution of livestock predation in Okanguati Conservancy 2019-2020, GPS collected data.

In Okanguati Conservancy, a high risk of conflict is associated again with settlements areas: these are Otjeme, Ombandondu, Oomiore and Ovitongo. These places are in proximity to areas with fewer human activities. The extending stretch of the conservancy is mountainous with rarely any human activities and no incidents have been reported.

4.3. Environmental and anthropogenic variables.

4.3.1. Vegetation structure and visibility assessment

Seventy-five livestock kill sites from both two conservancies were visited for vegetation structure assessment, 43% of the collected conflict data. These killing sites are attributed to the following carnivores; caracal (23), hyena (9), cheetah (30), leopard (8) and Jackal (5).

Visibility, shrubs and tree density data were not normally distributed, therefore the difference in means of parameters between the five different carnivores was tested using the Kruskal-wallis test and additionally a post hoc Dunn test. The overall tree density between carnivores killing sites was significantly different (p-value = 0.037). The post hoc test results reveals the difference between carnivores; caracal \sim leopard (p. value= 0.009), cheetah \sim leopard (0.029), hyena \sim leopard (0.023), and caracal \sim jackal (0.046). However, the observed difference is by unadjusted p. value and not revealed in adjusted p. value.

Hyaena and caracal livestock attacks occurred in areas of high tree density in comparison to other carnivores. The mean tree density and standard deviation of the different carnivores are as follows; caracal (32.6±24.9), cheetah (27.1±21.4), hyaena (37.7±32.6), jackal (13.6±13.8), leopard (11.2±11.9) as presented below (Figure 13).

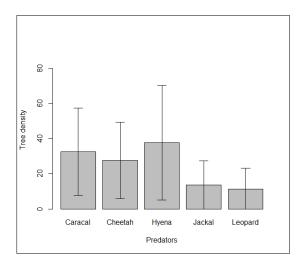


Figure 13. Mean and standard deviation boxplots of tree density at different carnivore-livestock killing sites of 50m² plots.

Shrub density at the different carnivore killing sites was not significantly different (p. value = 0.14). Comparably, cheetah and caracal livestock attacks occurred in areas of high shrub density. The mean and standard deviation of shrub density is as follows; caracal (248.4±197.7), cheetah (240.2±123.2), hyena

(164.3±131.8), jackal (145.2± 82.8), leopard (133.5± 97.5) (see Figure 14). On average, leopard-livestock attacks took place in areas with the lowest tree and shrub densities.

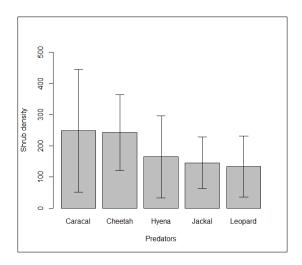


Figure 14. Mean and standard deviation boxplots of shrub density at different carnivore-livestock killing sites of 50m² plots.

Visibility was significantly different between carnivores, the p. value = 0.016<0.05. Post hoc Dunn test: the difference in visibility was only between cheetah $^{\sim}$ leopard (p. value = 0.01). Cheetah killing sites had the highest maximum visibility and leopard the lowest minimum visibility. The ratio of the highest and lowest recorded visibility values per carnivore is as follow; caracal (108m:15m), cheetah (190m:16m), jackal (123m:16m), hyena (70m:19m), leopard (77m:10m). Visibility means and standard deviation of the different carnivores: Cheetah (69.5m \pm 40.8), leopard (31.8m \pm 29.1), caracal (49.1m \pm 18.4), jackal (68.6 \pm 38.5) and hyena (50.8m \pm 17.42) (see Figure 15).

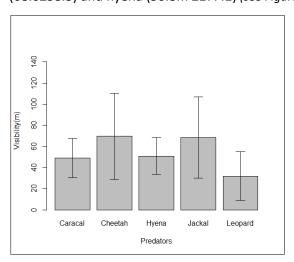


Figure 15. Mean and standard deviation boxplots of visibility at different carnivore-livestock killing sites of 50m² plots.

4.3.2. Environmental variables

None of the paired environmental and anthropogenic variables exceeded the 0.80% Pearson's collinearity threshold hence no variables were excluded from modelling (Appendix 4, Appendix 5, Appendix 10, and Appendix 12). Using binary logistic regression, we derived top-ranking models with cumulative model weights of (wi > 0.95). The formulated single and combined variable models for anthropogenic and environmental models had cumulative weights (wi = < 0.95) (see Appendix 6, Appendix 7, Appendix 8, Appendix 9, Appendix 11, and Appendix 13) hence model averaging of the top models see Table 3, Table 4, Table 6, Table 7, Table 9, and Table 10. The term fields herein refer crop fields.

Presented in *Table 3, Table 4, Table 6, Table 7, Table 9* and Table *10* are inferences of the top models and averaged models with important factors in the selection and evaluation of models. Factors to note are model weight (wi) - (the predictive weight of a model over other models), *the* composition of variables in each model and their intercept, model AICc and Δ AICc - the difference in AICs between each model and the top model, individual variable importance in averaged models and the AUC of the averaged models.

Our averaged models retained an Area Under Receiver Operator Curve (AUC) above 0.70 (see *Table 3, Table 4, Table 6, Table 7, Table 9* and *Table 10*) falling within the acceptable AUC value (higher than 0.70) (Perger *et al.* 2021). The optimum threshold value identified by a confusion matrix is 0.50. Predicted probabilities above the 50% threshold are regarded as conflict and no conflict below the threshold.

Table 3. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for predicting livestock-predation occurrence by environmental predictors for Epupa Conservancy.

Models and	Model E7	Model E2	Model E3	Model E4	Model-	Model-	AUC (%)
variables					averaged	averaged	
					variable	variable	
					intercept	importance	
						(%)	
	Wi= 0.684	Wi= 0.090	Wi= 0.076	Wi = 0.066			Training
Intercept	1.194	1.984	2.047	1.867	1.39123		= 79
Elevation	N/A	N/A	-0.00014	-0.000088	-0.000018	0.16	
(m)							Test: 66
D. WP (m)	-0.000276	-0.00025	-0.00026	-0.00024	-0.00027	1	
SL (d)	N/A	-0.01542	N/A	-0.01791	-0.0028	0.17	

D. streams	N/A	-0.00025	-0.00027	N/A	-0.000047	0.18	
(m)							
NDVI	N/A	-2.675	-2.576	-2.680	-0.0028	0.25	
Model AICc	109.0	113.0	113.4	113.7			
ΔΑΙСα	0.00	4	4.4	4.7			

*WP – distance from water points, * NDVI – normalized difference vegetation index, *D distance.

Distance from water points appeared in all four top selected models hence the 100% variable importance, ranking it as the most important variable. All other variables i.e., NDVI, slope, distance from streams, and elevation were relatively lower than 20% important (see *Table 3* for variable importance).

None of the environmental predictor variables are positively associated with conflict occurrence in Epupa Conservancy (see negative intercepts in *Table 3*). Nonetheless, this does not de-signify variable contribution and importance. The probability of conflict occurrence lowered with increased distance from water points and increased NDVI for Epupa Conservancy. The predicted responses are visualized in *Figure 16*.

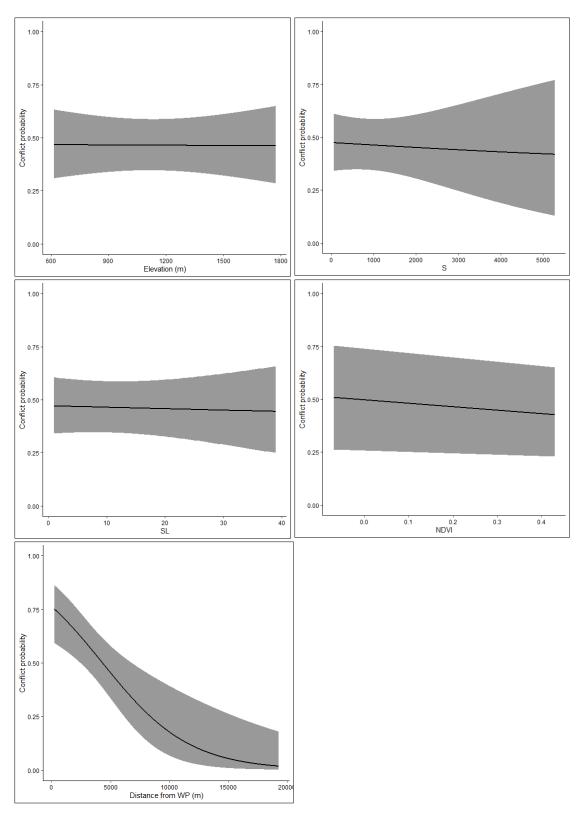


Figure 16. Epupa Conservancy environmental variables averaged models predicted probability of livestock-predation occurrence. Marked in grey is the 95% confidence interval.

Four top-ranking environmental models for Okanguati Conservancy have been selected for model averaging. Again, distance from water points was identified as the most important variable present in all the models, with an importance of 100% followed by elevation with a 56% importance. All other variable's importance (slope, NDVI and distance from streams) are lower than 50% as presented in *Table 4*.

Table 4. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for predicting livestock-predation occurrence by environmental predictors for Okanguati Conservancy.

Models and	Model O8	Model O3	Model O4	Model O5	Model -	Model -	AUC (%)
variables					averaged	averaged	
					variable	variable	
					intercept	importance (%)	
	Wi= 0.385	Wi= 0.209	Wi= 0.152	Wi= 0.138			Training
intercept	1.2790	-0.8124	-0.3863	0.8831	0.43685		= 78
Elevation	N/A	0.0024	0.0017	0.00035	0.00094	0.56	
D.WP	-0.00036	-0.00039	-0.00038	-0.00036	-0.00037	1	Test = 73
Slope	N/A	-0.055	-0.061	N/A	-0.023	0.41	
NDVI	N/A	-1.970	N/A	N/A	-0.46	0.24	
D. streams	N/A	N/A	0.00021	N/A	0.000037	0.17	
Model AICc	171.4	172.6	173.2	173.4			
Δ AICc	0	1.2	1.8	2			

^{*}WP – distance from water points, * NDVI – normalized difference vegetation index, *D - distance.

Elevation and distance from the streams are positively associated with the occurrence of conflict. The probability of conflict occurrence increases with increased elevation and at a further distance from streams for Okanguati Conservancy. The predicted responses are presented in *Figure 17*.

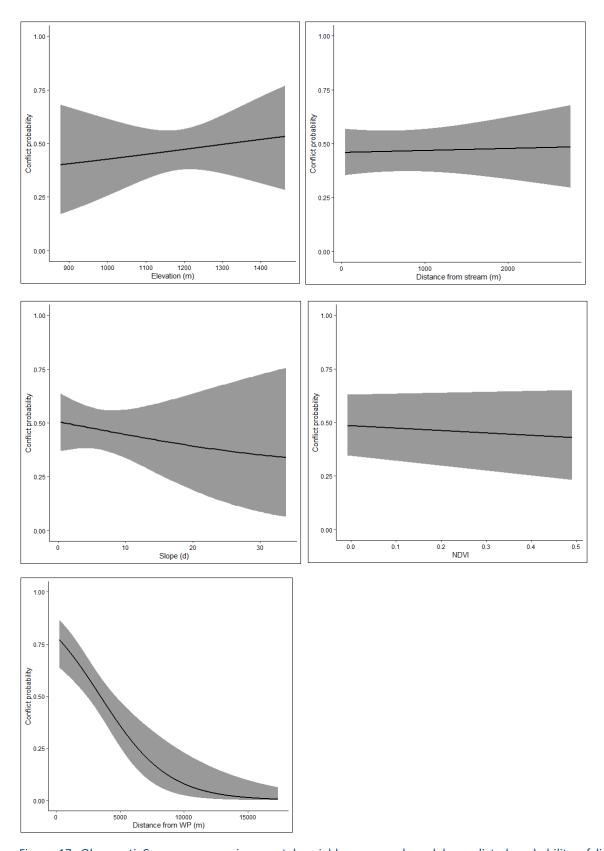


Figure 17. Okanguati Conservancy environmental variables averaged models predicted probability of livestock predation occurrence. Marked in grey is the 95% confidence interval.

Comparing the actual averaged variable values influential in livestock-predation occurrence to the predicted probability results, livestock predation in Epupa conservancy occurred at an average distance of 2727m from waterpoints and at a probability above 50% livestock predation is expected to occur at an average distance of 2539m. Epupa and Okanguati conservancies are high landscape areas hence the elevation above 1000m. On average livestock predation in Okanguati conservancy occurred at 1156m and the risks is predicted higher at an average of 1146m see summary in *Table 5*.

Table 5. A comparison of averaged actual predictor variables values and predicted results, environmental variables.

	Actual values - Epupa			Predicted - Epupa		es - Epupa	Predicted - Oka	inguati
	conservancy	/	Conservancy		conservancy		Conservancy	
Variables	Livestock	No	Conflict	Conflict	Livestock	No	Conflict	Conflict
	predation	livestock	probability	probability	predation	livestock	probability	Probability
		predation	<50	>50		predation	<50	>50
Elevation (m)	1079	1103	1171	976	1156	1163	1184	1146
D. WP (m)	2727	5984	9697	2539	2547	5109	7001	2090
NDVI	0.18	0.21	0.23	0.17	0.16	0.21	0.07	0.16
D. streams (m)	700	853	886	736	604	668	759	708
Slope (d)	7.2	9.9	14.3	7.8	5.7	8.5	10.6	6.0

^{*}WP – distance from water points, * NDVI – normalized difference vegetation index, *D - distance.

4.3.3. Anthropogenic variables

Out of the averaged anthropogenic models for Epupa Conservancy, distance from houses and distance from crop fields obtained the highest importance in determining the probability of livestock predation occurrence. Distance from house appeared in all the selected models. The probability of conflict occurrences is positively associated with increasing distance from crop fields. Distance from roads and water points had variable importance less than 30% (see *Table 6*). Further, *Figure 18* presents the graphic display of the predicted responses.

Table 6. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for predicting livestock-predation occurrence by anthropogenic predictors for Epupa Conservancy.

Models and	Models AE4	Model AE3	Model AE2	Model AE6	Model -	Model -	AUC (%)
variables					averaged	averaged	
					intercept	variable	
						importance	
						(%)	
	Wi= 0.287	Wi=0.241	Wi=0.195	Wi=0.143			Training
Intercept	0.68680	0.81710	0.74200	1.06800	0.79850		= 77
(m)							
D. fields (m)	0.00010	0.00013	0.00011	N/A	0.000099	0.83	Test = 81
D. houses	-0.00091	-0.00073	-0.00073	-0.00073	-0.000792	1	
(m)							
D. roads (m)	N/A	N/A	-0.00024	N/A	-0.000054	0.22	
D. WP (m)	N/A	-0.00014	N/A	N/A	-0.000039	0.28	
Model AICc	107.5	107.8	108.3	108.9			
ΔΑΙС	0.00	0.3	0.8	1.4			

^{*}WP – waterpoints, *D - distance.

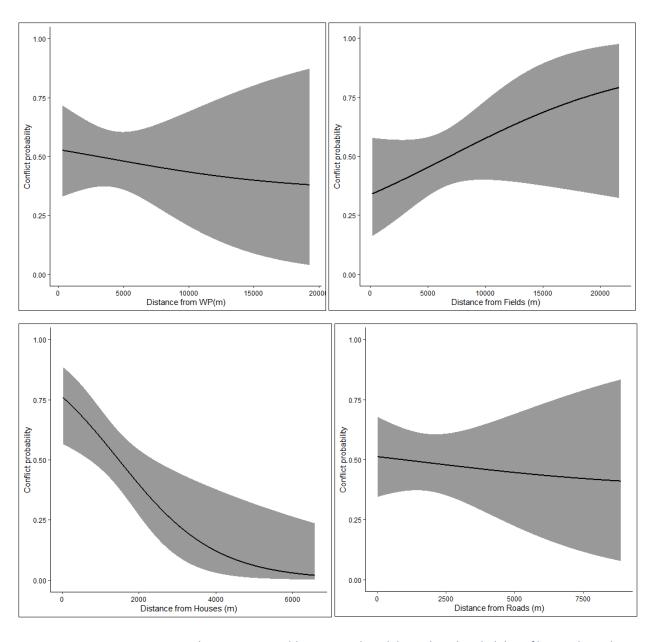


Figure 18. Epupa Conservancy anthropogenic variables averaged models predicted probability of livestock-predation occurrence. Marked in grey is the 95% confidence interval.

Comparing Okanguati Conservancy anthropogenic variables to Epupa Conservancy, distance from crop fields is similarly identified as an important predictor of conflict. Contrary to Epupa, distance from water points is highly important in determining the occurrence of conflict with an importance 100% as it occurred in all the top selected models. Distance from houses and roads occurred in one and three models respectively hence ranking the least important variables as presented in *Table 7*.

Table 7. Top-ranking averaged model's AICc, mode intercept, variable importance and AUC for predicting livestock-predation occurrence by anthropogenic predictors for Okanguati Conservancy.

Models and	Model OA6	Model OA4	Model OA2	Model -	Model -	AUC (%)
variables				averaged	averaged	
				variable	variable	
				intercept	Importance	
					(%)	
	Wi=0.294	Wi= 0.284	Wi= 0.277			Training =
Intercept	1.387	1.760	1.760	1.631771		77
D. houses (m)	N/A	N/A	2.026e-05	0.0000065	0.32	
D. roads (m)	N/A	-8.311e-05	-7.916e-05	-0.000053	0.33	Test = 73
D. WP (m)	-0.00037	-0.0003091	-0.0003047	-0.00033	1	
D. fields (m)	N/A	-0.0003799	N/A	0.0000096	0.66	
Model AICc	162.7	162.7	162.8			
ΔΑΙСα	0	0	0.1			

^{*}WP waterpoints, *D distance

The relationship between the predictor variables and the predicted probability of conflict occurrence vary. As predicted, the probability of conflict occurrence is associated with increased distance from houses (see positive intercept in *Table 7*). Distance from roads, and waterpoints are inversely related. The variables predicted responses are presented in *Figure 19*.

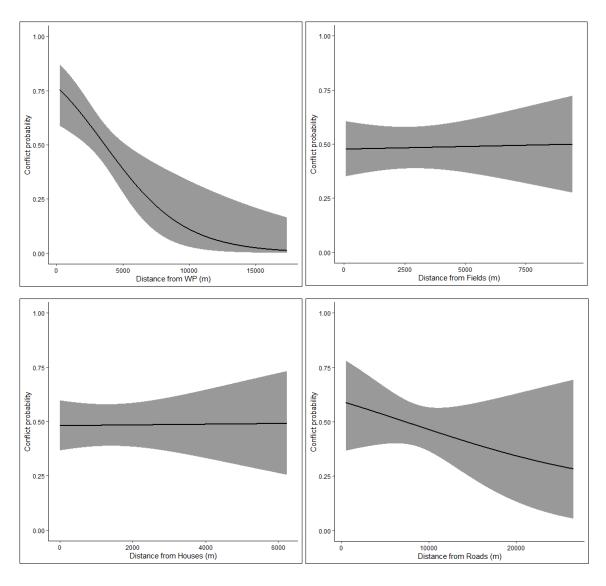


Figure 19. Okanguati Conservancy anthropogenic variables averaged models predicted probability of conflict occurrence. Marked in grey is the 95% confidence interval.

The probability of livestock predation is predicted at high risk (probability >50%) at an average of 8218m from field which is higher than the actual average distance of 6230m (EC). Livestock predation occurred in proximity to house, average distance 910 (EC). This is because some incidents occurred from within the house. Epupa conservancy experience more livestock incidences closes to houses in comparison to Okanguati conservancy were livestock was attacked at an average distance of more than 1080m see *Table* 8 bellow.

Table 8. A comparison of averaged actual predictor variables values and prediction result - anthropogenic variables.

Variables	Actual values Epupa		Predicted Epup	Predicted Epupa		Okanguati	Predicted Okai	nguati
	Conservanc	Conservancy		Conservancy		Conservancy		
	Livestock	No	Conflict	Conflict	Livestock	No	Conflict	Conflict
	predation	livestock	probability	probability	predation	livestock	probability	Probability
		predation	<50	>50		predation	<50	>50
D. roads (m)	1105	2390	3557	1524	7057	10084	6059	2023
D. WP (m)	2727	5984	7372	5104	2547	5109	8365	2678
D. houses (m)	910	2290	3212	842	1083	1465	15373	13843
D. fields (m)	6230	7263	8218	7771	2334	3346	4349	2544

^{*}WP – distance from water points, *D - distance.

Further for each conservancy, the combined effect of variables was measured by modelling all variables as a single set (environmental and anthropogenic variables merged). The outcome did not differ in terms of the selected important variables and the predicted response of conflict.

Table 9. Combined variables averaged top models AICc, model intercept, variable importance and AUC for predicting livestock predation occurrence for Epupa Conservancy.

Models and	Model	Model EAV9	Model - averaged	Model - averaged	AUC (%)
variables	EAV11		variable intercept	variable importance	
				(%)	
	Wi = 0.81	Wi = 0.106			Training = 80
Intercept	1.38	1.3480178	1.38388		
Elevation (m)	N/A	N/A	N/A	-	Test = 72
D. WP (m)	N/A	-0.00015	-0.000018	0.12	
Slope (d)	N/A	-0.00825	-0.000949	0.12	

NDVI	N/A	N/A	N/A	-	
D. streams	N/A	N/A	N/A	-	
(m)					
D. fields (m)	N/A	0.00012	0.0000138	0.12	
d. houses (m)	-0.0009	-0.00070	-0.00088	1	
D. roads (m)	N/A	-0.00021	-0.000024	0.12	
Model AICc	104.2	108.3			
Δ AICc	0	4.1			

^{*}WP – distance from water points, * NDVI – normalized difference vegetation index, *D – distance.

Out of the 12 trained models *Appendix 11*, three top models (cumulative weights >95) were selected for model averaging. Our models for EC indicate as predicted, livestock predation probability is increased at a close distance to roads, houses, waterpoints and increased distance from fields. Distance from house occurred as an important variable appearing in all the models. The remaining variables (Distance from roads, fields, waterpoints and slope appeared in only two models hence the low variable importance score (*Table 9* and *Figure 20*). These combined variables predicted response outputs are similar to the separate variables' predictions however, the models AUC was higher in combined variables with exclusion of certain variables (NDVI, elevation and distance from streams) see *Table 3*, *Table 6* and *Table 9* outputs.

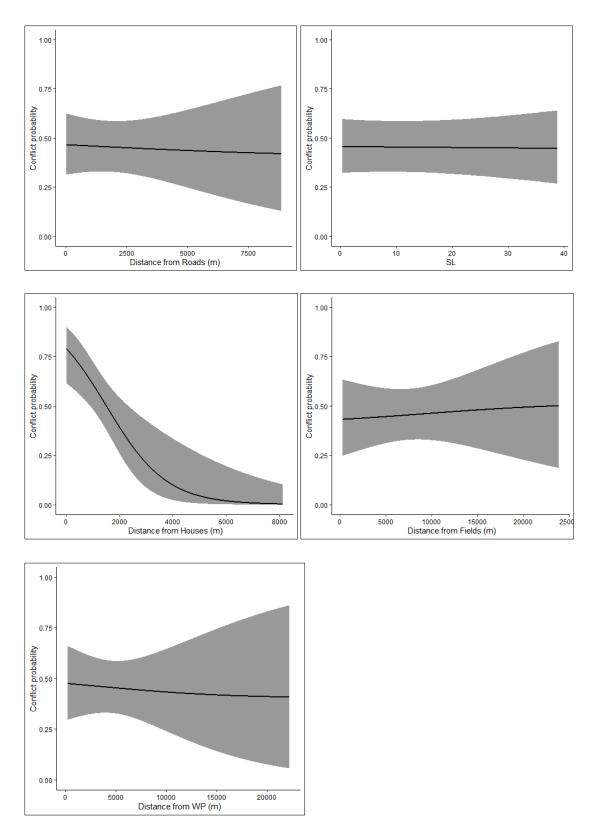


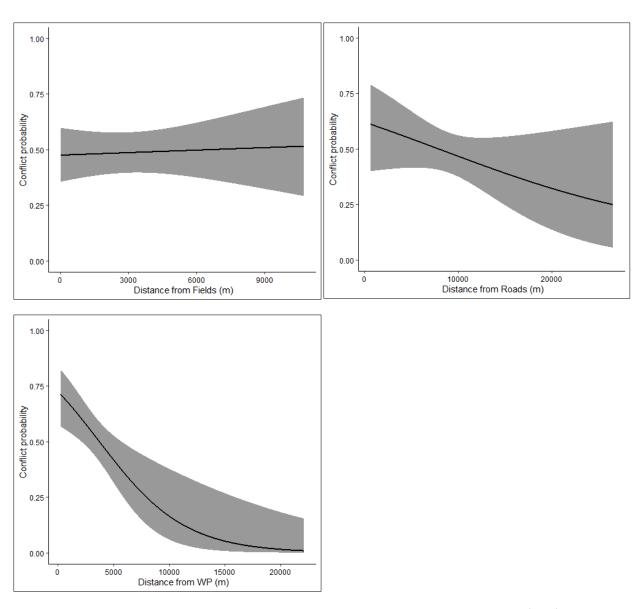
Figure 20. Epupa Conservancy combined variables averaged models predicted probability of livestock-predation. Marked in grey is the 95% confidence interval.

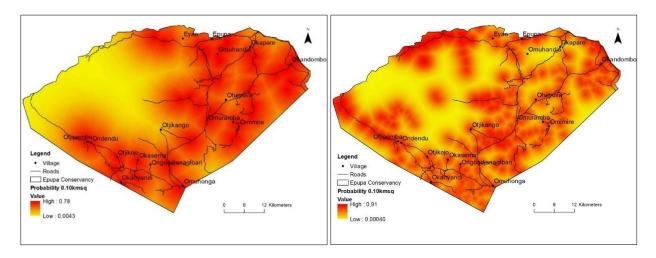
Table 10. Combined variables averaged top models AICc, model intercept, variable importance and AUC for predicting livestock predation occurrence for Okanguati Conservancy.

Models and	Model	Model	Model	Model -	Model -	AUC (%)
variables	OAV12	OAV11	OAV13	averaged	averaged	
				variable	variable	
				intercept	importance	
					(%)	
	Wi - 0.526	Wi = 0.221	Wi = 0.191	1.47		Training
intercept	1.567	1.564	1.1240	N/A		= 73
Elevation (m)	N/A	N/A	N/A	N/A		
D. WP (m)	-0.000240	-0.00026	-0.00030	-0.00026	1.00	Test = 79
Slope (d)	N/A	N/A	N/A	N/A	-	
NDVI	N/A	N/A	N/A	N/A	-	
D. streams (m)	N/A	N/A	N/A	N/A	-	
D. fields (m)	N/A	0.0000641	N/A	0.000015	0.24	
D. houses (m)	N/A	N/A	N/A	N/A	-	
D. roads (m)	-0.000076	-0.000085	NA/S	-0.000062	0.80	
Model AICc	179.4	181.2	181.5			
Δ AICc	0	1.8	2.1			

^{*}WP – distance from water points, * NDVI – normalized difference vegetation index

A total of the 14 models trained (Appendix 13), three top models (cumulative weight > 95) were selected for model averaging (*Table 10*). Among these models and selected variables, distance from waterpoints and distance from roads are associated with decreased livestock predation whereas livestock predation probability is expected to increase with increasing distance from fields (see negative and positive intercepts in *Table 10*). These results are similar to separate variable models except that elevation, slope, NDVI, stream, and distance from houses are not part of the composition of the best selected models (see *Table 1 Table 10* for comparison).




Figure 21. Okanguati Conservancy combined variables averaged models predicted probability of conflict occurrence. Marked in grey is the 95% confidence interval.

4.3.4. Livestock predation predicted hotspots

We mapped the probability of livestock predation around Epupa and Okanguati conservancies (*Figure 22* and *Figure 23*). A sum of 24 7322 points for Epupa Conservancy and 98 583 for Okanguati Conservancy was randomly selected at a resolution of 0.10km² to predict conflict hotspots using the selected top averaged models.

The risk of livestock predation in Epupa Conservancy as an influence of AVs is within the range of 0.004-0.91 with an average risk at 0.40. The distribution pattern of hotspots between the two variables is similar

however the risk of livestock predation as a factor of EVs has a lower range between 0.004-0.78 with a high average risk of 0.41. Meaning that throughout Epupa Conservancy, the likelihood of livestock predation is 40% and 41% respectively.

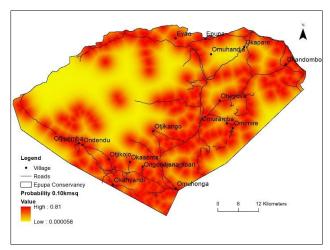
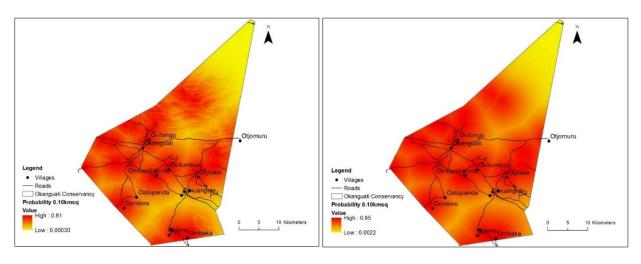



Figure 22. A comparison of predicted probability of livestock predation for Epupa Conservancy (a) Environmental variables, (b) anthropogenic variables and (c) predicted probability from combined variables.

Comparingly between the combined and non-combined variables for Epupa conservancy, the predicted conflict hotspots distribution does not differ. However noticeable is, the predicted probability range of conflict occurrence decreased and changed from 0.004 - 0.91 and 0.004 - 0.78 to between 0.000058 - 0.81. The average probability is 0.40 which translated that in Epupa conservancy the chances of livestock attack by a predator is 40%.

Under the environmental variable models, the average predicted probability of livestock predation in Okanguati Conservancy is 0.42 ranging between 0.003 - 0.81. Whereas for the anthropogenic variable

models, the average risk is 0.52 ranging between 0.002- 0.85 probability. This is translated as the risk of livestock predation in Okanguati Conservancy is 42% and 52% for environmental and anthropogenic variables, respectively.

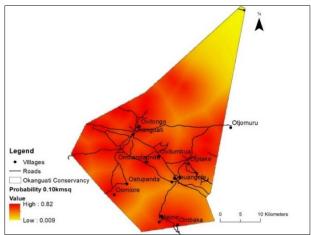


Figure 23. Predicted probabilities of livestock predation in Okanguati Conservancy, (a) Environmental variables (b) anthropogenic variables and (c) predicted probability from combined variables.

Similarly, the merged and single variable sets predicted probability distribution of livestock predation (*Figure 23*) do not contrast significantly. Nonetheless, the range of predicted probability slightly decreased from 0.003 - 0.81 and 0.002 - 0.85 to between 0.009 - 0.82. The average probability remains at 52%. This concludes that the risk of livestock attacks by predators is higher in Okanguati conservancy comparative to the neighboring Epupa conservancy.

Our modelling predict that livestock predation was higher in many parts of the conservancies, most of these are around villages. Exception of decreased livestock predation are predicted in areas of little to no

human activities (north western parts of Epupa conservancy and northern parts of Okanguati conservancy). Considered the minimal change in predation probability and distribution in both scenarios, the results are equally useful and can be used for intended purposes.

4.4. Kraal structure and mitigation measures

A sum of 55 households were interviewed in Epupa Conservancy and 63 households in Okanguati Conservancy. Out of these, six households of Epupa Conservancy and four of Okanguati conservancy experienced kraal livestock attacks.

In total, the structures of 20 kraals were assessed (ten case kraals and ten control kraals), these attacks are attributed to four carnivores excluding leopard. They are respectively: jackal (2), hyena (4), caracal (1) and cheetah (3). Of the 20 kraals examined five were constructed from thorn branches, ten from poles and five were a mixture of poles and branches.

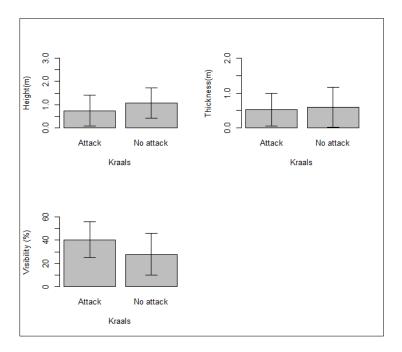


Figure 24. Kraal structure summary standard deviation boxplots. Comparison between kraals with and without livestock attacks, Epupa and Okanguati Conservancies data combined.

Kraals that experienced attacks did not significantly differ from those with no attacks in terms of kraal height (W = 36.5, p-value = 0.31), kraal thickness (W = 46, p-value = 0.78) and kraal visibility (W = 70.5, p-value = 0.12) Although not significantly different, kraals with attacks observably had a higher mean visibility, lower kraal thickness and height.

Out of the interviewed households, 39% of incidents occurred from around the house vicinity in Okanguati Conservancy when livestock was not kraaled at night, 7% from the kraal whereas 52% of the households did not experience livestock losses from the kraal or around the house. Incidents from the kraal and around the house in Epupa Conservancy were equally distributed (14% each) whereas 75% of households did not experience conflict from the kraal or around the house (Figure 25).

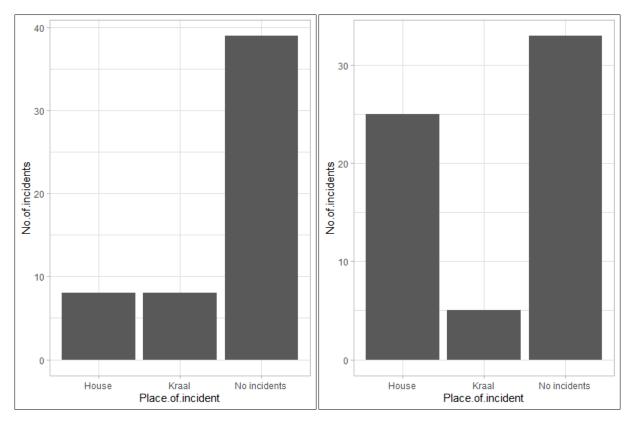


Figure 25. Comparison of household incidents between (a) Epupa Conservancy and (b) Okanguati Conservancy for the period 2019-2020.

Only 10% of the households that experienced kraal attacks did not implement conflict preventative measures. About 50% of the households practiced more than one conflict preventative measure such as fire and placed scarecrows around the house. 30% of the households only employed fire whereas 10% of the households regarded the presence of people alone as a predator deterrent. These measures are similar to kraals with no incidents. Domestic dogs were present at 10% of the households, 20% of the households practiced fire and scarecrows, 30% did not have measures in place whereas 40% used fire alone (see Figure 26).

Figure 26. (a) Epupa Conservancy and (b) Okanguati Conservancy households livestock predation preventative and mitigation measures for the period 2019-2020.

A total of 105 incidents of livestock attacks from the field whilst grazing was reported for Okanguati Conservancy and 68 for Epupa Conservancy. For this descriptive analysis, events similar in time and space were treated as one event considering the matching livestock husbandry measures hence the 52 field incidents for Okanguati Conservancy and 41 for Epupa Conservancy. Out of these, 73% of Epupa Conservancy and 55% of Okanguati Conservancy field incidents occurred in the presence of a herder (Figure 27).

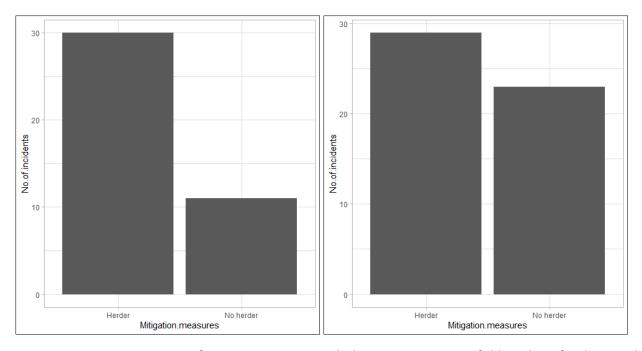


Figure 27. Mitigation measures of Epupa Conservancy and Okanguati Conservancy field incidents for the period 2019-2020.

Chapter 5: Discussion

5.1. Spatial and temporal distribution of livestock predation

This study investigated the temporal and spatial variation of livestock predation, the potential effect of vegetation structure on livestock predation by the different carnivores, the role of selected variables and their influence on livestock predation occurrence. While some studies reveal that livestock predation occurs predominantly either in dry or wet seasons Kuiper *et al.* (2015), and Sogbohossou *et al.* (2011), our results confirm that livestock predation in both conservancies is temporally changing but with no significant variation in the number of livestock attacks between seasons. Although not statistically significant, the highest numbers of incidents were recorded during the wet season.

During the wet seasons, the activities of farmers are partially shifted to crop farming hence the possibility of lack of livestock herding jeopardising livestock to predation. Further, the latter is arguable because during the wet seasons the grass is readily available close to homesteads as compared to the dry seasons when livestock is herded at a far distance from households increasing its susceptibility to predation. According to Epupa and Okanguati conservancies game guards (personal communication, 10 February 2020) the increasing trend of conflict in the early years of the conservancies might have been encouraged by farmers reporting incidents motivated by offsets and overtime as offsets are delayed, farmers lost interest in reporting incidents hence the decline in records. In addition, the migration of wild herbivores contributes to livestock predation. (Kissui *et al.* 2019) identified that livestock attacks from a boma by spotted hyena are linked to the seasonal migration of wildlife prey during the wet seasons shifting the movement of spotted hyena close to community areas increasing encounters with people and livestock.

Further and according to Aryal *et al.* (2014) seasons influence the movement, distribution of livestock and wildlife, carnivore-livestock interaction and conflict occurrence. Wild prey in dry seasons is weaker as a result of seasonal nutrient deficiency in grazing fodder resulting in prey susceptibility to carnivores. Whilst in wet seasons wild prey is widely dispersed and in better conditions hence the shift to and or increased livestock predation (Thorn *et al.* 2012, Mbiba *et al.* 2018). On the contrary, the indication of no major difference in the occurrence of conflict between seasons in Epupa and Okangauti conservancies could be as a result of almost uniform seasons throughout the year with exception of short and variable rainfall

seasons during January to March. According to Thorn *et al.* (2012) and Kuiper *et al.* (2015) increased cases of livestock predation in both seasons are expected in times of wild prey scarcity.

This study identified caracal as the highest problem causing species in Epupa Conservancy and cheetah in Okanguati Conservancy. These findings correspond with NACSO's conservancy audit reports for the years 2014-2019 (NACSO Epupa Conservancy 2021, NACSO Okanguati Conservancy 2021). Considering the landscape of Epupa Conservancy, the rocky and mountain terrains forms rock crevices a suitable habitat for caracal however the findings for Okanguati Conservancy are debatable although the few valleys could potentially support cheetah populations. And additionally, data deficit on carnivores' populations in the area and game counts does not permit inferences on the linkage between conflict occurrence, abundance and distribution of carnivores in the conservancies. According to Broekhuis *et al.* (2017), the displaced feeding of carnivores to livestock is an indication of low wild herbivore populations in the area.

The occurrence of conflict correlates with above and below-average rainfall events (Thorn *et al.* 2012). Relating to this study, in 2016 Epupa Conservancy received 300mm NACSO Epupa Conservancy (2021) following a decline in conflict incidents for two consecutive years (2017 and 2018). The above average rainfall event might have contributed to abundant wild prey availability reducing predation pressure on livestock. The trend is similar for Okanguati Conservancy, the area received 90mm in 2014 and 140mm in 2015 NACSO Okanguati Conservancy (2021) followed by a declining number of conflict the following years (2016, 2017 and 2019). However, the cases increased again during 2019 as Namibia experienced the thirdworst drought in history following the 2012/2013 drought (Shikangalah 2020). In that year, both conservancies experienced a spike increase in livestock-predator conflict. This could be attributed to the lack of food availability for carnivores as Stoldt *et al.* (2020) confirms that carnivores prefer wild prey in abundance.

Goats were the most frequently preyed livestock species in comparison to cattle and sheep. We suspect the wide distribution and high abundance of goats compared to other livestock species in both conservancies could be the underlying factor to the high predation susceptibility. A drought report by FAO (2016) references that cattle and sheep succumbed to the re-occurring droughts compared to goats. As cited by Stoldt *et al.* (2020) a decline in wild prey numbers can shift carnivore diet to livestock. The high number of livestock losses and very little evidence on presence and the number of wildlife prey in Epupa and Okanguati confirms the latter. Epupa and Okanguati communities dominantly farm with small stock

therefore it can be deduced that the number of livestock is higher than wild prey jeopardising livestock to carnivores as the available prey.

As stated by Stoldt *et al.* (2020) the movement of wildlife is not restricted to human-defined ranges, this corresponds with our findings. The western part of Epupa Conservancy reserved as a wildlife exclusive zone (see *Figure 11*) borders settlements of Otjipemba, Ondendu and Otjikoyo. According to the density maps, the occurrence of conflict in the latter mentioned areas is intense (see results in *Figure 10*). Villages mark the presence of livestock and its proximity to wildlife areas could potentially encourage the inmovement of carnivores for easy prey and water availability.

Additionally, the movement is not restricted to wildlife only but parts of the wildlife exclusive zone are occasionally utilized for grazing during dry seasons. Lack of grazing fodder for livestock or climate-related factors can influence land-use decisions and strategies to improve livelihoods (Stoldt *et al.* 2020). The presence of water points in Epupa Conservancy's wildlife priority area is unknown nonetheless the sparse distribution of houses (see Appendix 18 and Appendix 19) indicate minimal human activities in the area. Villages such as Omimire, Oheyuva and Okandombo that are at a distance from the wildlife area have a low intensity of conflict occurrence.

Comparably, the absence of Okanguati Conservancy management zones information could not permit accurate construction of inferences around the current conflict distribution and its relations to land-use zones in the conservancy. Nonetheless, the stretch of Okanguati Conservancy to the north is considered a wildlife area with very limited human activities and water points distribution hence the low conflict intensity (*Figure 12*). Similar to Epupa, conflict in Okanguati Conservancy is concentrated along villages (Ovitingo, Ombandaondu, Oomiore, Otjeme, and Otjitake) following the distribution of livestock. Refer to Appendix *21* and Appendix *22* for the distribution of houses and waters points in the conservancy.

The similarity in the distribution pattern of livestock predation between the event book data and GPS collected data for Epupa Conservancy addresses remarks on the accuracy and legibility of the event book coordinate system. This concludes the importance of using the event book system at the community level as a cost-effective and accurate tool for monitoring and decision making.

The occurrence of conflict in both conservancies along the Kunene River is not directly addressed in this study. The common type of conflict reported along the Kunene River is livestock predation by crocodiles which was not the focus of this study.

5.2. Vegetation structure

This study found no differences in the shrub vegetation structure between the different carnivores kill sites. Reflecting on these findings and the vegetation structure of the area, the similarity is potentially a result of; firstly, the vegetation structure is fairly homogenous in the study area, dominantly open trees and shrubs lands with patches of dense shrub lands and ephemeral rivers dense vegetation. Additionally, the landscape is similarly comprised of valleys, hills and mountains.

Despite these similarities in vegetation structure, the effect of visibility on the hunting preferences of different carnivores was contrasting. According to Michelle *et al.* (2013), heterogenous habitats of a mixture of settlements, grazing land and limited forests provide suitable hunting grounds for carnivores in particular leopards. As stated by Naha *et al.* (2020) carnivores repeatedly attack livestock in areas easily accessible and have similar features comprised of habitat type. These factors aid in prey detection, hunting success hence certain landscapes are hotspots. In our study, conflict hotspots are along villages, an indication of the presence of livestock and water availability which correlates with Naha *et al.* (2020) that prey density, human activities, the location of grazing area and water availability determine predation risks.

Visibility is crucial in the hunting success of different carnivores and/or carnivore-prey interaction (Gigliotti *et al.* 2020). In Epupa and Okanguati conservancies, hyena killed livestock in areas of high vegetation density (average tree density, 40trees/50m2 and average shrub density above 150/50m2 area) (*Figure 13*, *Figure 14* and *Figure 15*) hence the low visibility. Although contrary to the known hunting strategy of hyenas being cursorial predators Holekamp *et al.* (1997), the findings correspond with similar research work that hyena killed its prey in densely vegetated areas (Naha *et al.* 2020, Mbiba *et al.* 2018). Furthermore, a study in Kenya reveals hyena predation events occurred almost in every habitat type with a high correlation of increased vegetation cover (Abade *et al.* 2014).

Tree density was generally lower at majority of the kill sites in comparison to shrub density indicating the dominance of shrubs in the area, see *Figure 13* and *Figure 14*. Large carnivores' hunting is reported to elevate with dense vegetation, as such cover reduces the visibility of hunting carnivores by livestock consequently increasing the hunting success (Thorn *et al.* 2012). Furthermore, for ambush predators such as leopards, increased livestock predation risks are associated with decreased visibility and increased vegetation cover (Michelle *et al.* 2013, Miller, Jhala, Jena, *et al.* 2015). According to our results, the hunting preference of caracal and cheetah is dense areas that contrasted with the unexpected high visibility (Figure 15). Shrubs obstruct the line of sight, our results further detailed for caracal, density was higher in shrubs

of a height less than 0.5m which is below and or equal to the visibility level of a caracal whereas for cheetah, shrub density was higher between 1-2m heights which is higher than the visibility level of a cheetah hence the high visibility (see Table 2 and Appendix 17). Vegetation structure affects the hunting ability of cheetah as opposed to ambush carnivores; cheetah requires space to chase prey although hunting in densely vegetated areas is possible, a cheetah's probability of success is increased in open habitats (Gigliotti *et al.* 2020).

According to Naha *et al.* (2020), leopard hunting behaviour preferring moderate vegetation cover differs from that of other carnivores such as hyenas, lions and tigers that depend on protective vegetation cover for hunting. Our study concludes that leopards hunt at low shrub density with low average visibility this is as a result of 62% of leopard kill sites were obstructed by boulder rocks and steep hills harboring ideal hunting grounds for leopard as an ambush predator hence the low visibility and shrub density. However, Woodroffe, Thirgood, *et al.* (2005) argues that leopard attacks occurred when herds entered dense bush and as ambush carnivores, leopards rely on adequate vegetation for camouflage but not too dense to interfere with prey visibility and catchability (Abade *et al.* 2014).

The mesopredators; caracal and black-backed jackal are perceived as the dominant predators of livestock in southern Africa. Caracal and jackal are natural opportunistic feeders with a diverse prey range from small mammals, medium-sized ungulates to reptiles (Neils 2018, Minnie *et al.* 2018). In Epupa and Okanguati conservancies, the presence of livestock presents such an opportunity. Concerning this study, jackal hunting preference was in areas of lower vegetation density (trees and shrubs) and higher visibility whereas caracal preyed livestock in densely vegetated areas with lower visibility (as presented in *Figure 13, Figure 14,* and *Figure 15*). The habitat selection of jackals varies from open grassland to avoiding densely vegetated areas and dominantly depended on food, shelter and security. Conversely, like ambush carnivores, caracals prefer dense areas for cover(Minnie *et al.* 2018).

Vegetation structure results from this study must be treated with caution as it reflects a small sample size of the different carnivores, an unequal number of samples between carnivores and results from different vegetation zones might differ.

5.3. Environmental and anthropogenic variables

This study identified the four major environmental and anthropogenic factors associated with livestock predation and predicted risk areas in Epupa conservancy and Okanguati conservancy. The variables are the presence of water points, elevation, distance from fields, and distance from houses. The predicted

probability of conflict by EV and AV for both conservancies was higher around settlements or livestock priority areas.

Water is a significant resource affecting both the temporal and spatial distribution of wildlife. In arid African savanna, the availability of water has been identified as a contributing driver of human-carnivore conflict. Similar to our study, distance to water emerged as an important negative predictor of livestock predation by a leopard in non-forest areas and was associated with increased livestock losses (Karanth *et al.* 2012, Kuiper *et al.* 2015, Naha *et al.* 2020). Although our study was not species-specific the probability of conflict occurrence decreased with increased distance from water points. Livestock predation is higher within the 5000m radius from waterpoints (*Figure 16, Figure 17, Figure 18 and Figure 19*) and waterpoints are distributed along human settlements and livestock present areas.

Elevated and or mountainous areas and habitats thereof are regarded as suitable habitats for carnivores such as caracals (Minnie *et al.* 2018). Given the possible presence of carnivores in such areas, the probability of livestock predation whilst grazing is increased. Generally, both Epupa and Okanguati are mountainous landscapes and livestock grazing occurs throughout the different landscapes of the conservancies. Although not an important variable for predicting livestock predation in Epupa conservancy, livestock predation with a probability above 50% is predicted to occur at an average elevation of 976m whereas as an important predictor in Okanguati conservancy, high risk livestock predation is predicted at an average elevation above 1000m (*Table 5*). Livestock predation at slope level was coherent to elevation. Comparing our findings to North Bengal (leopard specific study), livestock predation occurred between 270m and 1200m in Pauri Garhwal as cited by (Naha et al. 2020). Livestock predation at slope level is coherent with elevation.

In the mountainous areas north of Okanguati and west of Epupa, livestock losses were rarely recorded and predicted probabilities in those areas were lower however OC livestock losses are directly correlated with elevation and scored as the second most important factor in determining livestock predation occurrence. The findings for Epupa Conservancy are contrary to conclusions from South Africas' by Michelle *et al.* (2013) that probabilities of livestock losses are higher on farms with high elevation. The two conservancies have contagious landscapes and similar land use therefore importance and conflict response to elevation is expected to be similar however it is not the case and the underlying factors are not known.

According to Epupa and Okanguati Conservancy game guards (personal communication, 10 February 2020), the lack of grazing fodder near household land is the primary cause of livestock grazing in mountains, distant from villages and unattended predisposing livestock to predation. This observation by game guards correlates with Naha *et al.* (2020) discovery that poor livestock protection practices, the location of grazing area also contributes to the extent of livestock predation. Livestock predation probability is estimated higher on farms of mixed farming (Michelle *et al.* 2013). The livestock and wildlife management structure of Epupa and Okanguati conservancies is not entirely distinct from the mixed farming approach so as the likelihood of potential issues such as conflict arising thereof.

Streams are associated with dense vegetation increasing cover for carnivores (Thorn *et al.* 2012). Contrary and according to this study, the distance from streams in both conservancies was not a major determinant of conflict occurrence despite the herding practice of livestock feeding on *Faidherbia albida* (Anna boom) pods along streams and rivers. During the study, very few livestock losses were reported from dry streams. These findings correlate with a spotted hyena specific study in Nyamandi communal area Zimbabwe, livestock was killed at a further distance (less than 4148m) from the stream (Mbiba *et al.* 2018). Comparing to our mixed predator study, conflict occurred within an average distance range of 604m in Epupa conservancy and 700m in Okanguati conservancy. Specific to the Kunene river as a water source with densely vegetated banks, carnivore livestock predation was rarely reported except predation by crocodile, with evidence of risk spots along the river demarcated off by thorn branches. During the study, the livestock predation sites visited were at least three kilometers from the Kunene river.

Wild prey availability and abundance is a major determinant of carnivore-livestock predation (Naha *et al.* 2020). However, conservancy data on prey abundance was not available for an informed analysis confirming such a relationship. Nonetheless, we suspect, the immerging and rarely experienced types of livestock losses by rarely recorded species such as python, honey badgers, birds of prey, baboons and wild cat is an indication of limited food and/or wildlife prey availability.

According to Mbiba *et al.* (2018) distance from the homestead is an important variable in predicting livestock depredation in communal landscapes. In India, livestock tiger conflict occurred at 1100m from villages (Miller, Jhala, Jena, *et al.* 2015). Similarly, in Epupa and Okanguati conservancies livestock predation occurred at an average 910m and 1083m from houses respectively (*Table 5*). Further, distance from houses and fields (average 6230m) in Epupa Conservancy has been identified as influential in predicting conflict occurrence as well as the distance from fields (average 2334m) in Okanguati Conservancy. Houses and fields represent the presence of people, a carnivore deterrent as indicated by

some respondents in this study (*Figure 27*). We predict the outcomes are linked to the time of the day in relation to place (fields and houses). As predicted conflict increases with increasing distance from the fields (*Figure 18* and *Figure 19*) supposedly because and especially in ploughing and harvesting seasons farmers spent days at the crops field.

The proximity to houses and the predicted decrease of livestock predation with increasing distance from houses is a result of conflict incidents occurring from the house at night with limited human activities in addition to the presence of livestock as prey at homesteads. According to a lion specific study by Kuiper *et al.* (2015), cattle are killed within the home enclosure only at night and day incidents occurred more than 500m further from homesteads. In addition to the presence of people, hunting time preference play a role. Large carnivores are reported to nocturnally prey on livestock, although carnivores such as leopards preferred diurnal hunting for maximized visibility and prey catchability whereas cheetahs are known to avoid human activity areas in fear of prosecution (Minnie *et al.* 2018, Naha *et al.* 2020).

Roads are amongst the man-made landscape features affecting the distribution and activity patterns of carnivores (Kissui *et al.* 2019). In India, livestock attacks were prominent at 1200m from the road (Miller, Jhala, Jena, *et al.* 2015). In this study conflict for OC is prominent at an average 7057m from the road and at an average of 1105m for EC (*Table 5*). The occurrence of incidences in Okanguati conservancy in areas inaccessible by road could have influence the increased distance from roads.

The distribution of roads as a proxy for human presence and its effect on predation risks increases at a further distance from roads (Miller, Jhala, Jena, et al. 2015, Mbiba et al. 2018). The latter is contrary to our prediction probability, predation in both conservancies is predicted to decrease with increasing distance from roads. This could be as a result of roads dominantly along villages and/or livestock distribution areas despite the notion that roads present human presence avoided by predators (see the distribution of roads in relation to house, (Appendix 18 and Appendix 21). NDVI as a proxy for vegetation cover did not emerge as an important predictor of conflict in both conservancies.

5.4. Kraal structure and mitigation measures

The risk of livestock predation by night is lowered when livestock is kept in the kraal with thick walls and additionally with the presence of men and domestic dogs (Woodroffe *et al.* 2007). In Epupa and Okanguati Conservancy, assessing the impacts and importance of kraaling livestock as a protective measure is difficult with the situation on the ground in the two conservancies. Culturally, the Ovahimba community

do not kraal small stock (goats and sheep) but large stock (cattle) (Tjiposa, personal communication, 11 September 2019).

Certain households have kraals within the homestead and livestock is not enclosed at night. This reveals that livestock kraaling is not firmly practised hence it is poorly effective. In some houses, kraals are only constructed for kids and livestock overnight around the house thus predation within the house surroundings. Again, some households' livestock overnight both around the house and in the kraal whereas in some cases the house yard acts as a kraal hence the uncertainty to positively conclude whether livestock kraaling is effectively implemented in the area.

As it is with our study, according to Woodroffe *et al.* (2007) hyena killed more livestock enclosed in bomas. There is no definite conclusion about the kraaling of livestock. We can however empirically conclude that livestock kraaling is not strictly enforced. Nonetheless and leaning onto similar studies, densely build kraals provide effective overnight livestock protection against predation (Woodroffe *et al.* 2007). Similar studies found that kraals with weak structures are likely to experience livestock attacks (Broekhuis *et al.* 2017). According to the few confirmed positive kraals assessed in our study, there was no difference in kraal structure between kraals with and with no attacks, however, kraals with attacks had lower height, thickness and high visibility resulting in limited livestock protection. Many of the kraals from this study were repaired more than a year ago. In addition, there are five commonly practised non-lethal carnivore deterrent measures in both conservancies; scarecrows, fires, peoples, and dogs used to scare or discourage the movement and passage of carnivores close to homesteads and herding.

Livestock husbandry measures can influence the odds of livestock attack from the kraal (Broekhuis *et al.* 2017). Nearly all sampled positive attack kraals in Epupa and Okanguati Conservancy had mitigation measures in place except 10%. Despite these efforts, attacks from the kraal still occurred. It is however imperative to note that the employed measures were similar for control kraals. What then could cause livestock predation from the kraals especially given the no variance in structure between test and control kraals? To answer the question, Broekhuis *et al.* (2017) continue that the success of the carnivore deterrent is depended on the measure taken. Measures such as scarecrows give a false sense of security which carnivores consequently habituate to with time. Poorly maintained kraals with openings, poor quality and overhanging material provide little to no barrier for night hunting and climbing predators such as hyena and leopards.

Unexpectedly we found that even in the presence of a herder or guarded livestock, predation still occurred contrary to Woodroffe *et al.* (2007) who found that the risk of predation risk is lowered amongst small livestock grazing groups accompanied by a shepherd dog and a herder. However, regarding the experience and effectiveness of livestock husbandry, the probability of livestock attack was higher in herds accompanied by child herders (Woodroffe *et al.* 2007). The Ministry of Environment Forestry and Tourism has established and made provisions to offset farmers for livestock losses through the HWCSRS (MET 2018). This provision however has requirements such as, livestock should have been under guarding measures or reasonable precautions put in place during the time of the attack. The offset requirements might have encouraged farmers to falsely report the presence of herder when contrary livestock was not guarded. Lastly, the use of physical structures such as bomas has been identified as effective in lowering livestock losses by (Karanth *et al.* 2012) however in Epupa and Okanguati conservancies kraaling strictly enforced.

Chapter 6: Conclusions and Recommendations

The successful management of carnivores requires an understanding of the ecology and biology of the target carnivores (Minnie *et al.* 2018). This has not been fully addressed in our study. Further, the spatial and temporal movement of carnivores in the area remains unknown and apart from livestock carnivore conflict, livestock crocodile conflict and human primate conflict are some of the problem's experiences by these communities in need of research interventions. Livestock predation is driven by a variety of interconnected social, economic and environmental factors that differ spatially (Michelle *et al.* 2013). Most of these were not covered in our study. Hence the conclusions and recommendations arising herein are only applicable given the investigated parameters.

Livestock predation has important consequences for local populations in terms of foods security, safety and wellbeing, for the micro and macro economy, and also for wildlife conservation. There is an urgent need to re-orient the management of our wildlife reserves to pass on economic benefits to local communities and to conserve biodiversity. Information on spatial and temporal patterns on farmer's property losses in the highly affected areas contribute to designing and implementing effective mitigation measures (Lamichhane *et al.* 2018).

The lack of variety in the conflict between seasons is an indication of conflict throughout and conveys the lack of wild prey availability in the area. Livestock predation at households could not be effectively prevented as the structure of kraaling livestock is not properly enforced and carnivores are habituated to measures such as scarecrows and fires.

There are several livestock protecting methods recommended for cheetah, caracal, jackal, hyena and leopard (Williams and Wonder Nyoni 2008). Considering the primary predator management stage of Okanguati and Epupa conservancies, this study recommends, active game guards community awareness on livestock predator conflict and preventative management techniques, strengthened livestock kraaling at night, improved kraal maintenance and implementation of predator-secured kraals and/or visual barrier designed kraals implemented simultaneously with existing control methods could reduce the likelihoods of livestock predation from the kraals. Predator-secured kraals have improved livestock protection south of Kunene south (Gargallo 2021). Visual barriers around kraals prevent predators from seeing livestock and have reduce livestock predation in Kenya farming communities by 80% (Williams and Wonder Nyoni 2008).

Human carnivore conflict in Epupa and Okanguati conservancies t is influenced more by the presence of waterpoints, elevation (OC), distance from houses and fields (EC), and fields (EC). To guide the selection and successful implementation of suitable mitigation actions, it would be appropriate to align mitigation measures within and or prioritizing the identified risk areas. The placement of water points in wildlife areas at the moment is unknown and likely none given the little human activities in the area. The current placement of waterpoints has the potential to drive carnivore's concentration near water sources where it is probably easier to prey on livestock. Experimenting with the introduction of water points in wildlife areas could discourage the movement of carnivores into cropping, livestock and settlements zones to meet water needs. However, the effectuality of such recommendation is depended on factors such as the availability of wild prey in the area.

Retaliation against carnivores by farmers has not been documented in the two conservancies and the possibilities are not overlooked. Continued livestock predation in the absence of mitigation interventions and community support could tense local resistance towards living with carnivores. Aryal *et al.* (2014) suggest four mitigation measures to assist reduce and prevent the latter consequences; generate alternative local income sources, engagement and inclusion of communities in conservation education opportunities at the local level, the development of a livestock insurance policy, or the adoption and development of predator-proof livestock kraals. Epupa conservancies has an existing zonation plan (*Figure* 11, a source of NACSO) however none was available for Okanguati conservancy. It is therefore important to recognize wildlife areas, harmonise zonation plans between conservancies to prevent transconservancy conflict.

Wildlife activities play an important role in income generation which can potentially reduce the felt impacts of human-carnivore conflict on community livelihoods. In addition, income must be streamlined to the community either through employments creation and equitable benefit distribution can ease community tolerance towards living with carnivores. This is at least the case for Epupa Conservancy however no income-generating activities are known in Okanguati Conservancy except trophy hunting therefore very few benefits trickle down to the community level.

Despite conservancy reports on the community's willingness to have increased wildlife numbers, none of the conservancy reports indicates reintroduction to foster wild herbivore population in the area. The reintroduction of wildlife holds potential for regrowth of local wildlife population, and possibly redirect carnivore-prey focus and promote wildlife tourism. In addition, the introduction of wild prey in the area could aid in livestock-predation conflict resolution.

The similarity in the distribution of conflict between GPS collected data and event book data of Epupa Conservancy is an indication of the event book accuracy. This implies that event book data is liable and useful for decision making thus Okanguati Conservancy should consider recording spatial data as Epupa Conservancy. The outcomes of this study; risk maps, conflict trends, distribution of roads, houses and waterpoints and recommendation have been shared with Epupa and Okanguati conservancies and support organisations in a poster translated to the local language.

Considering previous local research work, their focus, and the outcome of this study, we recommend species-specific studies as the biology and ecology of different species differ and a monopoly of conflict preventative measures and risk factors may not apply to all species. Further a collar based spatial based study is required to determine home ranges and the seasonal movement and pattern of carnivores in the areas. Importance livestock husbandry factors such as livestock preventative and mitigation measures must be included in the anthropogenic variable modelling and additionally, the inclusion and segregation of age demography to test the influence and effectiveness of herding per age group. Furthermore, the primary understanding of the dynamics of carnivore livestock conflict requires awareness on prey and predator population sizes hence records of the population of carnivores and herbivores in the conservancies should be maintained.

References

Abade, L., Macdonald, D.W., and Dickman, A.J., 2014. Assessing the relative importance of landscape and husbandry factors in determining large carnivore depredation risk in Tanzania's Ruaha landscape. *Biological Conservation*, 180, 241–248.

Abotsi, K.E., Galizzi, P., and Herklotz, A., 2015. Wildlife Crime and Degradation in Africa: An Analysis of the Current Crisis and Prospects for a Secure Future. *Fordham Environmental Law Review*, 27 (3), 49.

Adrian, T. and Ullas, K, K., 2003. Human-Carnivore Conflict and Perspectives on Carnivore Management Worldwide. *Conservation Biology*, 17 (6), 1491–1499.

Artelle, K.A., Anderson, S.C., Reynolds, J.D., Cooper, A.B., Paquet, P.C., and Darimont, C.T., 2016. Ecology of conflict: marine food supply affects human-wildlife interactions on land. *Scientific Reports*, 6 (1), 25936.

Aryal, A., Brunton, D., Ji, W., Barraclough, R.K., and Raubenheimer, D., 2014. Human–carnivore conflict: ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. *Sustainability Science*, 9 (3), 321–329.

Barlow, A.C.D., Greenwood, C.J., Ahmad, I.U., and Smith, J.L.D., 2010. Use of an Action-Selection Framework for Human-Carnivore Conflict in the Bangladesh Sundarbans. *Conservation Biology*, 24 (5), 1338–1347.

Beattie, K., Olson, E.R., Kissui, B., Kirschbaum, A., and Kiffner, C., 2020. Predicting livestock depredation risk by African lions (Panthera leo) in a multi-use area of northern Tanzania. *European Journal of Wildlife Research*, 66 (1), 11.

Begier, M.J. and Kendrot, S.R., 2015. Resolving Human-Wildlife Conflicts | THE WILDLIFE SOCIETY.

Behdarvand, N., Kaboli, M., Ahmadi, M., Nourani, E., Salman Mahini, A., and Asadi Aghbolaghi, M., 2014. Spatial risk model and mitigation implications for wolf–human conflict in a highly modified agroecosystem in western Iran. *Biological Conservation*, 177, 156–164.

Broekhuis, F., Cushman, S., and Elliot, N., 2017. Identification of human–carnivore conflict hotspots to prioritize mitigation efforts. *Ecology and Evolution*, 7, 10630–10639.

Brown, C.J., 2011. *An analysis of Human Wildlife Conflict in the Doro !Nawas Conservancy for the period 2007 to 2010.* Windhoek, Namibia: Namibia Nature Foundation.

Burnham, K.P. and Anderson, D.R., 2002. *Model selection and multimodel inference: a practical information-theoretic approach*. 2. ed., [4. printing]. New York, NY: Springer.

Cinderby, S., 1999. Geographic Information Systems (GIS) for Participation: The Future of Environmental GIS? *International Journal of Environment and Pollution*, 11 (3).

Coetzee, B.J. and Gertenbach, W.P.D., 1977. Technique for describing woody vegetation and composition and structure in inventory type classification, ordination and animal habitat surveys. *Koedoe*, 20, 67–75.

Coleen, M. and Barbara, C., 2018. *Trees and Shrubs of Namibia*. 2nd ed. Windhoek, Namibia: Namibia Publishing House.

Dhungana, R., Savini, T., Karki, J., Dhakal, M., Lamichhane, B., and Bumrungsri, S., 2017. Living with tigers Panthera tigris: patterns, correlates, and contexts of human—tiger conflict in Chitwan National Park, Nepal. *Oryx*, 1–11.

Dickman, A.J., 2010. Complexities of conflict: the importance of considering social factors for effectively resolving human—wildlife conflict. *Animal Conservation*, 13 (5), 458–466.

Draheim, M., Francine, M., McCarthy Julie-Beth, and Chris, P., 2015. *Human-Wildlife Conflict: Complexity in the Marine Environment*. Human-Wildlife Conflict. Oxford University Press.

Epupa Conservancy [online], 2020. *Namibia Association of CBNRM Support Organisation*. Available from: http://www.nacso.org.na/conservancies/epupa [Accessed 9 Aug 2020].

ESA, 2021. Copernicus Open Access Hub [online]. *Copernicus Open Access Hub*. Available from: https://scihub.copernicus.eu/ [Accessed 15 Dec 2020].

FAO, 2016. Assessment of impacts and recovery needs of communities affected by El Niño-induced drought in Kunene, Erongo and Omusati regions of Namibia. Namibia: Food and Agriculture Organisation of the United Nations.

Gargallo, E., 2021. Human-Wildlife Conflict in a 'successful' Community Conservation Programme: Economic and territorial impacts on Namibia's conservancies. *Journal of Arid Environments*, 193, 104591.

Gigliotti, L.C., Slotow, R., Hunter, L.T.B., Fattebert, J., Sholto-Douglas, C., and Jachowski, D.S., 2020. Habitat complexity and lifetime predation risk influence mesopredator survival in a multi-predator system. *Scientific Reports*, 10 (1), 17841.

Gusset, M., Swarner, M., Mponwane, L., Keletile, K., and Mcnutt, J., 2009. Human—wildlife conflict in northern Botswana: livestock predation by Endangered African wild dog Lycaon pictus and other carnivores. *Oryx*, 43, 67–72.

Hewitt, D.G., 2004. Resolving Human–Wildlife Conflicts: The Science of Wildlife Damage Management. *Journal of Wildlife Management*, 68 (1), 218–221.

Holekamp, K.E., Smale, L., Berg, R., and Cooper, S.M., 1997. Hunting rates and hunting success in the spotted hyena (Crocuta crocuta). *Journal of Zoology*, 242 (1), 1–15.

Inman, E.N., Hobbs, R.J., Tsvuura, Z., and Valentine, L., 2020. Current vegetation structure and composition of woody species in community-derived categories of land degradation in a semiarid rangeland in Kunene region, Namibia. *Land Degradation & Development*, 31 (18), 2996–3013.

Inskip, C. and Zimmermann, A., 2009. Human-felid conflict: A review of patterns and priorities worldwide. *Oryx*, 43, 18–34.

Jones, B.T.B. and Barnes, J.I., 2006. *Human Wildlife Conflict Study Namibian Case Study*. Namibia: World Wildlife Fund.

Karanth, K.K., Gopalaswamy, A.M., DeFries, R., and Ballal, N., 2012. Assessing Patterns of Human-Wildlife Conflicts and Compensation around a Central Indian Protected Area. *PLOS ONE*, 7 (12), e50433.

Kissling, W.D., Fernandez, N., and Paruelo, J.M., 2009. Spatial risk assessment of livestock exposure to pumas in Patagonia, Argentina. *Ecography*, 32 (5), 807–817.

Kissui, B.M., Kiffner, C., König, H.J., and Montgomery, R.A., 2019. Patterns of livestock depredation and cost-effectiveness of fortified livestock enclosures in northern Tanzania. *Ecology and Evolution*, 9 (19), 11420–11433.

Kjellsson, G., Clarke, P., and Gerdtham, U.-G., 2014. Forgetting to remember or remembering to forget: A study of the recall period length in health care survey questions. *Journal of Health Economics*, 35, 34–46.

Kolowski, J.M. and Holekamp, K.E., 2006. Spatial, temporal, and physical characteristics of livestock depredations by large carnivores along a Kenyan reserve border. *Biological Conservation*, 128 (4), 529–541.

Kuiper, T.R., Loveridge, A.J., Parker, D.M., Johnson, P.J., Hunt, J.E., Stapelkamp, B., Sibanda, L., and Macdonald, D.W., 2015. Seasonal herding practices influence predation on domestic stock by African lions along a protected area boundary. *Biological Conservation*, 191, 546–554.

Lamichhane, B.R., Persoon, G.A., Leirs, H., Poudel, S., Subedi, N., Pokheral, C.P., Bhattarai, S., Thapaliya, B.P., and de longh, H.H., 2018. Spatio-temporal patterns of attacks on human and economic losses from wildlife in Chitwan National Park, Nepal. *PLOS ONE*, 13 (4).

Madden, F., 2004. Creating Coexistence between Humans and Wildlife: Global Perspectives on Local Efforts to Address Human–Wildlife Conflict. *Human Dimensions of Wildlife*, 9 (4), 247–257.

Marucco, F. and McIntire, E.J.B., 2010. Predicting spatio-temporal recolonization of large carnivore populations and livestock depredation risk: wolves in the Italian Alps: Wolf recolonization in the Alps. *Journal of Applied Ecology*, 47 (4), 789–798.

Mathilde Stuart and Chris Stuart, 2015. *Stuarts' Field Guide to Mammals of Southern Africa*. Fifth. South Africa: Struik Nature.

Mayengo, G., Bwagalilo, F., and Ephrahim, K., 2017. Human Wildlife Conflicts to communities surrounding Mikumi National Parks in Tanzania: A case of selected villages. *International Journal of Environment, Agriculture and Biotechnology*, 2, 1777–1784.

Mbiba, M., Muvengwi, J., and Ndaimani, H., 2018. Environmental correlates of livestock depredation by spotted hyaenas and livestock herding practices in a semi-arid communal landscape. *African Journal of Ecology*, 56 (4), 984–992.

MEFT, 2021. Conservancies [online]. *Ministry of Environment Forestry and Tourism*. Available from: http://www.met.gov.na/services/conservancies/193/ [Accessed 25 Oct 2020].

MET, 2018. Revised National Policy on Human Wildlife Conflict Management 2018-2027.

Michelle, T., Mathew, G., Dawn M., S., and Kelly, M., 2013. (PDF) Characteristics and determinants of human-carnivore conflict in South African farmland. *ResearchGate*, 22, 22:1715-1730.

Midi, H., Sarkar, S., and Rana, S., 2013. Collinearity diagnostics of binary logistic regression model. *Journal of Interdisciplinary Mathematics*, 13, 253–267.

Miller, J., Jhala, Y., and Jena, J., 2015. Livestock losses and hotspots of attack from tigers and leopards in Kanha Tiger Reserve, Central India. *Regional Environmental Change*, 16.

Miller, J.R.B., 2015. Mapping attack hotspots to mitigate human—carnivore conflict: approaches and applications of spatial predation risk modeling | SpringerLink. *Biodiversity and Conservation*, 24, 2887—2911.

Miller, J.R.B., Jhala, Y.V., Jena, J., and Schmitz, O.J., 2015. Landscape-scale accessibility of livestock to tigers: implications of spatial grain for modeling predation risk to mitigate human–carnivore conflict. *Ecology and Evolution*, 5 (6), 1354–1367.

Minnie, L., Avenant, N., Drouilly, M., and Samuels, M., 2018. Biology and ecology of black-backed jackal and caracal. *In: Livestock Predation and its Management in South Africa: A Scientific Assessment*. South Africa, 178–204.

Mosimane, A.W., McCool, S., Brown, P., and Ingrebretson, J., 2014. Using mental models in the analysis of human–wildlife conflict from the perspective of a social–ecological system in Namibia. *Oryx*, 48 (1), 64–70.

Muvengwi, J., 2007. A comparative study of vegetation structure and visibility at wild dog (Lycaon pictus) kill sites in and outside Hwange National Park. Master. University of Zimbabwe, Zimbambwe.

Naankuse, 2018. Human Carnivore Conflict Research [online]. *Naankuse*. Available from: https://naankuse.com/conservation-research/human-carnivore-conflict-research/ [Accessed 23 Oct 2020].

NACSO, 2016. *The state of community conservation in Namibia*. Windhoek, Namibia: Namibia Association of CBNRM Support Organisation.

NACSO, 2018. *The state of community conservation in Namibia*. Windhoek, Namibia: Namibia Association of CBNRM Support Organisation.

NACSO, 2021a. Epupa Conservancy [online]. *Namibia Association of CBNRM Support Organisation*. Available from: http://www.nacso.org.na/conservancies/epupa [Accessed 11 May 2021].

NACSO, 2021b. Okanguati Conservancy [online]. *Namibia Association of CBNRM Support Organisation*. Available from: http://www.nacso.org.na/conservancies/okanguati [Accessed 11 May 2021].

Naha, D., Dash, S.K., Chettri, A., Chaudhary, P., Sonker, G., Heurich, M., Rawat, G.S., and Sathyakumar, S., 2020. Landscape predictors of human–leopard conflicts within multi-use areas of the Himalayan region. *Scientific Reports*, 10 (1), 11129.

Naidoo, R., Weaver, L.C., De Longcamp, M., and Du Plessis, P., 2011. Namibia's community-based natural resource management programme: an unrecognized payment for ecosystem services scheme. *Environmental Conservation*, 38 (4), 445–453.

Neils, A.M., 2018. Caracals in a heterogenous lanscape: resolutions for Human-Carnivore Conflict. Doctor of Philosophy. University of Arizona, Arizona.

Nyhus, P.J., 2016. Human–Wildlife Conflict and Coexistence. *Annual Review of Environment and Resources*, 41 (1), 143–171.

Okanguati Conservancy [online], 2020. *Namibia Association of CBNRM Support Organisation*. Available from: http://www.nacso.org.na/conservancies/okanguati.

Perger, R., do Amaral, K.B., and Bianchi, F.M., 2021. Distribution modelling of the rare stink bug *Ceratozygum horridum* (Germar, 1839): isolated in small spots across the Neotropics or a continuous population? *Journal of Natural History*, 55 (11–12), 649–663.

Raheer, A., Saralch, H., and Kumar, A., 2015. Human-wildlife conflict: Issues versus mitigation. *Indian Forester*, 141 (12), 1305–1314.

Ramesh, T., Kalle, R., Milda, D., Gayathri, V., Thanikodi, M., Ashish, K., and Giordano, A.J., 2020. Patterns of livestock predation risk by large carnivores in India's Eastern and Western Ghats. *Global Ecology and Conservation*, 24, e01366.

Robertson, J.A.D., Roodbol, M., Bowles, M.D., Dures, S.G., and Rowcliffe, J.M., 2020. Environmental predictors of livestock predation: a lion's tale. *Oryx*, 54 (5), 648–657.

Ruda, A., Kolejka, J., and Silwal, T., 2018. GIS-Assisted Prediction and Risk Zonation of Wildlife Attacks in the Chitwan National Park in Nepal. *ISPRS International Journal of Geo-Information*, 7 (9), 369.

Rust, N.A., 2017. Can stakeholders agree on how to reduce human–carnivore conflict on Namibian livestock farms? A novel Q-methodology and Delphi exercise. *Oryx*, 51 (2), 339–346.

Rust, N.A., Tzanopoulos, J., Humle, T., and MacMillan, D.C., 2016. Why Has Human–Carnivore Conflict Not Been Resolved in Namibia? *Society & Natural Resources*, 29 (9), 1079–1094.

Schomaker, M. and Heumann, C., 2014. Model selection and model averaging after multiple imputation. *Computational Statistics & Data Analysis*, 71, 758–770.

Shikangalah, R.N., 2020. The 2019 drought in Namibia: An overview. *Journal of Namibia studies*, 27, 37–58.

Shilongo, A., 2020. Tourism and Commoditization of Traditional Cultures among the Himba People of Namibia. *Editon Consortium Journal of Arts, Humanities and Social Studies*, 2 (1), 187–196.

Sogbohossou, E.A., de longh, H.H., Sinsin, B., de Snoo, G.R., and Funston, P.J., 2011. Human–carnivore conflict around Pendjari Biosphere Reserve, northern Benin. *Oryx*, 45 (4), 569–578.

Stoldt, M., Göttert, T., Mann, C., and Zeller, U., 2020. Transfrontier Conservation Areas and Human-Wildlife Conflict: The Case of the Namibian Component of the Kavango-Zambezi (KAZA) TFCA. *Scientific Reports*, 10 (1), 7964.

Stuart, C. and Stuart, M., 2015. Stuart's Field Guide to mammals of Southern Africa. 5th ed. Cape Town: Pippa Parker.

Sudman, S. and Bradburn, N., N., 1973. Effects of Time and Memory Factors on Response in Surveys. *Journal of the American Statistical Association*, 68 (344), 805–815.

Symonds, M.R.E. and Moussalli, A., 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. *Behavioral Ecology and Sociobiology*, 65 (1), 13–21.

Thorn, M., Green, M., Dalerum, F., Bateman, P.W., and Scott, D.M., 2012. What drives human–carnivore conflict in the North West Province of South Africa? *Biological Conservation*, 150 (1), 23–32.

Tolles, J. and Meurer, W.J., 2016. Logistic Regression: Relating Patient Characteristics to Outcomes. *JAMA*, 316 (5), 533.

Treves, A., Naughton-Treves, L., Harper, E., Mladenoff, D., Rose, R., Sickley, T., and Wydeven, A., 2004. Predicting Human-Carnivore Conflict: A Spatial Model Derived from 25 Years of Data on Wolf Predation on Livestock. *Conservation Biology*, 18.

Treves, A. and Palmqvist, P., 2007. Reconstructing Hominin Interactions with Mammalian Carnivores (6.0–1.8 Ma). 355–381.

Tripp, A.J., Cook, A., and Petzinger, G., 2014. Art, Paleolithic. 529–539.

Verschueren, S., Briers-Louw, W.D., Torres-Uribe, C., Siyaya, A., and Marker, L., 2020. Assessing human conflicts with carnivores in Namibia's eastern communal conservancies. *Human Dimensions of Wildlife*, 25 (5), 452–467.

Wagenmakers, E.-J. and Farrell, S., 2004. AIC model selection using Akaike weights. *Psychonomic Bulletin & Review*, 11 (1), 192–196.

Wang, D., Zhang, W., and Bakhai, A., 2004. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression. *Statistics in Medicine*, 23 (22), 3451–3467.

Williams, S. and Wonder Nyoni, 2008. *Living with Predators: A Farmer's Guide*. Zimbambwe: Marwell Zimbabwe Trust.

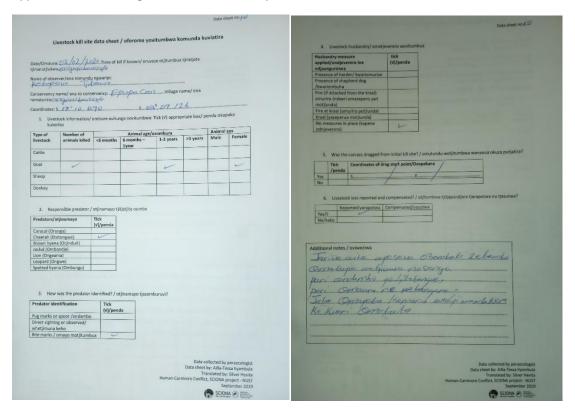
Woodroffe, R., Frank, L.G., Lindsey, P.A., ole Ranah, S.M.K., and Romañach, S., 2007. Livestock husbandry as a tool for carnivore conservation in Africa's community rangelands: a case—control study. *Biodiversity and Conservation*, 16 (4), 1245–1260.

Woodroffe, R., Lindsey, P., Romañach, S., Stein, A., and ole Ranah, S.M.K., 2005. Livestock predation by endangered African wild dogs (Lycaon pictus) in northern Kenya. *Biological Conservation*, 124 (2), 225–234.

Woodroffe, R., Thirgood, S., and Rabinowitz, A., 2005. *People and Wildlife, Conflict or Co-existence?* Cambridge University Press.

Zarco-González, M.M., Monroy-Vilchis, O., and Alaníz, J., 2013. Spatial model of livestock predation by jaguar and puma in Mexico: Conservation planning. *Biological Conservation*, 159, 80–87.

Appendices


Appendix 1. Kraal structure data collection completed sheet.

										No
			Investi	gating liv	estock	kills at the K	raal			
			K	raal stru	cture re	cord sheet				
. 71	Alan	emle -	0210	7			ſ	h110	TO	155
	- Non		2010	1		Observe	r	1110	160	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Conservancy	name:	pp)				Village n			1100	Shea
Coordinates	of kraal:S.	706.0	+76	E.013	011,8	OD Livestoc	k killed:	40		/ Jugar
Number of li	vestock kille	d:				Livestoc	k age:	N	01	- de h
Livestock sex	(:f	emate				Respons	ible pre	dator	UK	0000
When was tl	he livestock	attacked?								
Jan Feb	Mar	Apr	May	Jun	Jul	Aug !	Sep	Oct	Nov	Dec
		2015	7 (· W/k	Me					
How was th	e predator i	, -		10,00) " "					
Pugmarks/	spoor		Direct	sighting			Bite m	ark		
	~									
Did you hav	e any carmi		ent at the	Ki dai:						
Scare dogs		Fire	_		Peop	ole		Scarecro	w	
Scare dogs		Fire			Peop	ole		Scarecro	W	
Vraal struct	ure measur	ement - Inv	estigating	; kraal str	ucture	where livesto	ck was l	killed pro		formation on
Kraal struct whether the	ure measure materials u	ement - Invused is effect	estigating tive in pr	eventing	ucture	where livesto ors from attac	Wher	killed pro estock.	vides int	st repaired
Kraal structi whether the Material used poles/fen ce/branc	ure measure materials u	ement - Invused is effect of fencing (branches ward or	tive in pr	eventing of Th	predato ickness kraal	where livesto	king live	killed proestock. was the	vides interest land	
Kraal struct whether the Material used poles/fen ce/branc hes	ure measur materials u Direction material (facing inv	ement - Invused is effect of fencing (branches vard or	Height kraal (of Thim) of (m	ucture v predato ickness kraal)	where livesto ors from attac Visibility/ transpare ncy (%)	When <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired
Kraal struct whether the Material used poles/fen ce/branc hes	ure measur materials u material (facing inv outward)	ement - Invused is effect of fencing (branches vard or	Height kraal (of Thim) of (m	predato ickness kraal	where livesto ors from attac Visibility/ transpare ncy (%)	When <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired
Kraal struct whether the Material used poles/fen ce/branc hes	ure measur materials u material (facing inv outward)	ement - Invused is effect of fencing (branches vard or	Height kraal (of Thim) of (m	ucture v predato ickness kraal)	where livesto rs from attac Visibility/ transpare ncy (%) B 7, w 16 8 80 w 50 B 47, w 45 8 50, W 50	When <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired
Kraal struct whether the Material used poles/fen ce/branc hes	ure measur materials u material (facing inv outward)	ement - Invused is effect of fencing (branches vard or	Height kraal (of Thim) of (m	ucture v predato ickness kraal) 20 50 50 50	where livesto rs from attac Visibility/ transpare ncy (%) B 7, W 16 8 80, W 50 B 47, W 45 8 50, W 50 B 47, W 45	When <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired
Kraal structi whether the Material used poles/fen ce/branc	ure measur materials u material (facing inv outward)	ement - Invused is effect of fencing (branches vard or	U,400 Height Kraal (U,400 I,600 U,800 U,800	eventing of Thim) of (m	ucture v predato ickness kraal)	where livesto ors from attack visibility/ transpare ncy (%) B 7 1 1 1 6 8 90 w 50 8 47 w 46 8 50 w 50 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	Wher <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired
Kraal struct whether the Material used poles/fen ce/branc hes	ure measur materials u material (facing inv outward)	ement - Invused is effect of fencing (branches vard or	Height kraal (0,900 1.60 0.80 0.80 1.50 1.50 1.50 1.50	eventing of Thi m) of (m	ucture v predato ickness kraal)	where livesto ors from attac Visibility/ transpare ncy (%) B 7 W 16 B 80 W 50 B 47 W 4 B 50 W 50	Wher <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired
Kraal struct whether the Material used poles/fen ce/branc hes	ure measur materials u material (facing inv outward)	ement - Invused is effect of fencing (branches vard or	U,400 Height Kraal (U,400 I,600 U,800 U,800	eventing of Thi m) of (m)	ucture v predato ickness kraal) 50 50 50 50 60 60	where livesto ors from attack visibility/ transpare ncy (%) B 7 1 1 1 6 8 90 w 50 8 47 w 46 8 50 w 50 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	Wher <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired
Kraal struct whether the Material used poles/fen ce/branc hes	ure measure materials understand facing involution outward)	ement - Invused is effect of fencing (branches ward or	Height kraal (0.90 1.60 1.30 2.20 1.30	eventing of Thim of (m)	ucture v predato ickness kraal) GO 50 50 50 50 50 50 50 50 50 50 50 50 50	where livesto ors from attac Visibility/ transpare ncy (%) B 7 W 6 B 9 W 50 B 47 W 6 B 50 W 50 B 47 W 6 B 47 W	Wher <6 mont ago,	killed proestock. was the 6-1 hs mo	vides interest land	st repaired

Appendix 2. Vegetation structure data collection completed sheet.

Cè	De la company																								NEtra
86										,	Veget	ation s					sites								NO.
												Kill s	tes fi	eld re	cord sl	neet									
ate:		00	esso	Sex	dem	ber		20	119																
	rver:	10	2550	1							•••••					Г						Photo			
ons	ervancy	name:	Ok	ang	ugh		Ok	07	200	orol	ka												e on site		
or	rdinates:	s	3.92	. 89	5.\	Е	01	3'	34	65	7						9	noe	2		of ar		Slex	- overnig	ght
nin	mal(s) kille	ed:	Shee	ρ													of.	8ry	<u>)</u>		unde	210	uhe	re chee	edah
um	nber of ar	nimal (s) killed:		14												Ju	lleo	8	her	<u>~</u>				
			year male	5 C	NO																				-
	nal sex:		(2010	h	LK	200)ei	~	-1	••••••													
	oonsible p		nd shephe	erd dog	:	Lo	\$	5	eep.	Ø	Sle	pt o	30 ·	~a.	untai	'n									
	pensatio		Lopo						,																
3	1. How	was th	e predato	r ident	ified?																				
oug	g marks o	r spoor		Direct	sighting			Bit	e mar	ks															
		V																							
		e and ve	egetation	14-1		Voge	atatio	n typ	ne .		Sele	ct V	_	1											
Slo	pe		Se	elect V																					
Flat							s land																		
Hill				-	/				4																
Мо	untain			~				odlan		-				1											
Мо	ountain er course					Dens		egeta		,		V		7				0							No
Мо	ountain er course	getatio	n structur Height classes of trees		od adrat di	Dens	NX	egeta		,		Y		7				8			Final	Coun		Dominant tree	No
Мо	3. Ve	getatio	Height classes	Qu	adrat di	Dens	ons	egeta	ated												Final plot	Coun	Plants per ha	Dominant tre	
Мо	3. Ve	getatio	Height classes of trees (m)	Qu	adrat di	Dens	ons 1	Omx1	.0m	4	15n	1×15m	3 4		0mx20	100		25mx.				552400000			
Mo	3. Ve	getatio	Height classes of trees (m) 0.5 -1 2-5	Qu 5m	adrat di	Dens	ons 1	Omx1	.0m	4		District to	3 4			100		25mx:		4		t		comments turba (and t	es /
Mo	3. Ve	getatio	Height classes of trees (m)	Qu 5m	adrat di	Dens imensi	ons 1	Omx1	.0m	4		District to	3 4			100				4		t		comments	es/
Mo	3. Ve	getatio	Height classes of trees (m) 0.5 -1 2-5 >5	Qu 5m 1	x5m	Dens imensi	ions 1	Omx1	.0m	4		District to	3 4			100				4		t		Eirkia Constitution Completions	es/ cantal) species (anaho species and)
Mo	3. Ve Growt form	getatio	Height classes of trees (m) 0.5 -1 2-5 >5	9 Qu 5 m 1	x5m 2	Dens ()	ions 1	Omx1	.0m	4		District to	3 4			100				4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		comments Little County Comphises Champhines Croken -p perfunic	es/ contai) contai consider on on one consider on
Mo	3. Ve Growt form	egetatio	Height classes of trees (m) 0.5 -1 2-5 >5 1-2 2-5 <0.5	Qu 5m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x5m 2	Dens (ions 1	Omx1	.0m	4		District to	3 4			100				4		50		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ cuntar) cuntar) cuntar) cuntar) cuntar) cuntar) cuntari cuntari
Mo	3. Ve Growt form Trees	egetatio	Height classes of trees (m) 0.5 -1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1	5m 1 111 4h 計1	x5m 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dens (sely v	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little County Comphises Champhines Croken -p perfunic	es/ cuntar) cuntar) cuntar) cuntar) cuntar) cuntar) cuntari cuntari
Mo	3. Ve Growt form Trees	egetatio	Height classes of trees (m) 0.5 -1 2-5 >5 1-2 2-5 <0.5	Qu 5m 1 1 11 11 11 11 11 11 11 11 11 11 11 1	x5m 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dens (sely v	Omx1	.0m	4		District to	3 4			100				4		50		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ comba) apeus (ambi apeus (ambi apeus (ambi apeus (ambi
Mol River Mill site plot	3. Ve Growt form Trees Shrubs	egetatio h	Height classes of trees (m) 0.5 -1 2-5 >5 -0.5 1-2 2-5 <0.5 0.5-1	Qu	x5m 2 11 11 11 11 11 11 11 11	Densimensi	sely v	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ comba) apeus (ambi apeus (ambi apeus (ambi apeus (ambi
Mo Rive blot	3. Ve Growt form Trees Shrubs	mation E	Height classes of trees (m) 0.5 -1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1	Qu	adrat di www.atkill si	Densimensi	sely v	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ comba) apeus (ambi apeus (ambi apeus (ambi apeus (ambi
Mo Rive	3. Ve Growt form Trees Shrubs	egetatio	Height classes of trees (m) 0.5 -1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1	Qu	adrat di	Densimensi	sely v	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ comba) apeus (ambi apeus (ambi apeus (ambi apeus (ambi
Mo River blot	3. Ve Growt form Trees Shrubs	mation E	Height classes of trees (m) 0.5 -1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1	Qu	adrat di www.atkill si	Densimensi	sely v	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ cuntar) cuntar) cuntar) cuntar) cuntar) cuntar) cuntari cuntari
Mo Rive	3. Ve Growt form Trees Shrubs Grass/h	mation E	Height classes of trees (m) 0.5-1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1 Jello S	Qu	adrat di www.atkill si	Densimensi	sely v	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ curitar) curitar) curitary c
Mo Rive blot	3. Ve Growt form Trees Shrubs Grass/h	mation ation	Height classes of trees (m) 0.5-1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1 Jello S	Quu Smith	xSm 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Densimensi	ions 1	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ curta) curta) curta) curta) curta) curta) curta) curta) curta)
Niver and the state of the stat	3. Ve Growt form Trees Shrubs Grass/h 4. Estil	mation ation	Height classes of trees (m) 0.5-1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1 Jello S	Quu Smith	xSm 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Densimensi	ions 1	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ what preced and preced and preceded and and and and and and and and and an
Mo River Mill site plot	3. Ve Growt form Trees Shrubs Grass/h	mation ation	Height classes of trees (m) 0.5-1 2-5 >5 >0.5 1-2 2-5 <0.5 0.5-1 Jello S	Quu Smith	xSm 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Densimensi	ions 1	Omx1	.0m	4		District to	3 4			100				4		50 13 10 87 -		comments Little Control Comphise Champhise Crohen - perfunic - y - streed - mynopyll	es/ what preced and preced and preceded and and and and and and and and and an

Appendix 3. Para-ecologist data collection completed sheet.

Appendix 4. Epupa Conservancy variables Pearson's correlation matrix table.

Environi	mental var	iables				Anthro	pogenic v	variables		
	DEM	SL	WP	S	NDVI		F	WP	R	Н
DEM	1									
SL	0.32	1				F	1			
WP	0.075	0.37	1			WP	0.68	1		
S	0.25	0.19	0.08	1		R	0.54	0.64	1	
NDVI	0.47	0.13	0.26	0.01	1	Н	0.56	0.78	0.72	1

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, *D – distance, * F – fields, *R – roads, *H – houses, * NDVI – normalized vegetation index

Appendix 5. Okanguati Conservancy variables Pearson's correlation matrix table.

Environr	Environmental variables							pogenic v	/ariables		
	DEM	SL	WP	S	NDVI			F	WP	R	Н
DEM	1										
SL	0.30	1					F	1			
WP	0.12	0.24	1				WP	0.57	1		
S	0.29	0.32	0.23	1			R	0.43	0.33	1	
NDVI	0.02	0.22	0.39	0.16	1		Н	0.59	0.41	0.18	1

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, *D – distance, * F – fields, *R – roads, *H – houses, * NDVI – normalized vegetation index.

Appendix 6. Okanguati Conservancy summary of environmental variables models build prior to model averaging.

Variabl	Global	Model O2	Model O3	Model 04	Model 05	Model	Model	Model
es	model					06	07	08
Interce	-0.49	0.83	-0.81	-0.38	0.88	0.63	2.07	1.279
pt								
DEM	0.00 21	0.00072	0.0024	0.0017	0.00035	N/A	-0.0017	N/A
SL	-0.060	N/A	-0.055	-0.061	N/A	-0.058	N/A	N/A
S	0.000224	0.000054	N/A	0.00021	N/A	0.00007	N/A	N/A
						5		
NDVI	-1.97	-2.10	-1.97	N/A	N/A	-1.727	N/A	N/A
WP	-0.0004	-0.00038	-0.00039	-0.00038	-0.00036	N/A	N/A	-0.00036
Model	174.41	176.43	172.59	173.22	173.42	194.38	196.72	171.37
AICc								
AICc	0.08	0.03	0.21	0.15	0.14	0.00	0.00	0.39
weights								
P.values	Wp	Wp =	WP =	WP =	WP=	SL =		WP=
	=0.00003	0.00003	0.00003	0.00003	0.000028	0.0358		0.000013
			SL= 0.059	SL= 0.04				
	SL=0.050*							

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, *D – distance, * NDVI – normalized vegetation index

Appendix 7. Okanguati Conservancy summary of anthropogenic variables models build prior to model averaging.

Variables	Global	Model OA2	Model OA3	Model OA4	Model OA5	Model OA6
	model					
Intercept	1.76	1.76	1.42	1.76	1.42	1.38
WP	-0.00030	-0.00030	-0.00038	-0.00030	N/A	-0.00037
F	0.000030	N/A	-0.000072	0.000028	-0.000090	N/A
R	-0.000083	-0.000079	N/A	-0.000083	-0.00011	N/A
Н	-0.000005	0.000020	0.00013	N/A	-0.00016	N/A
Model	164.90	162.79	166.34	162.74	173.29	162.67
AICc						
AICc	0.10	0.28	0.05	0.28	0.00	0.29
weights						
P.value	WP= 0.005	Wp=	WP=	WP=	Roads=	WP=
		0.00504	0.00035	0.0028	0.004141	0.000024
		R= 0.052				

^{*}WP – waterpoints, *D – distance, * F – fields, *R – roads, *H – houses.

Appendix 8. Epupa Conservancy summary of environmental variables models build prior to model averaging.

Variables	Global model	Model E2	Model E3	Model E4	Model E5	Model E6	Model E7
Intercept	1.88	1.98	2.04	1.86	1.98	1.062	1.19
DEM	0.00011	N/A	-0.00014	-0.000088	-0.00045	0.0005	N/A
SL	-0.016	-0.015		-0.017	-0.012	-0.051	N/A
S	-0.00025	-0.00025	-0.00027	N/A	-0.00024	-0.00020	N/A
WP	-0.00025	-0.00025	-0.00026	-0.00024	-0.00027	N/A	-0.00027
NDVI	-2.79	-2.67	-2.57	-2.68	N/A	-5.12	N/A
Model	115.34	113.05	113.38	113.68	114.07	125.33	109.00
AICc							
AICc	0.03	0.09	0.08	0.07	0.05	0.00	0.68
weights							

p.values	WP=	WP=	WP=	WP=	WP=	SL=	WP=
	0.0034	0.0032	0.00134	0.0035	0.0013	0.0466	0.00054

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, * NDVI – normalized vegetation index

Appendix 9. Epupa Conservancy summary of anthropogenic variable models build prior to model averaging.

Variables	Global	Model	Model	Model	Model AE5	Model AE6	Model
	model	AE2	AE3	AE4			AE7
Intercept	0.8.4	0.74	0.817	0.68	1.02	1.06	0.08
WP	-0.00012	N/A	-0.00014	N/A	-0.00010	N/A	N/A
R	-0.00020	-0.00024	N/A	N/A	-0.00033	N/A	N/A
Н	-0.00060	-0.00073	-0.00073	-0.00091	N/A	-0.00073	N/A
F	0.00014	0.00011	0.00013	0.00010	N/A	N/A	-
							0.000009
Model	109.17	108.25	107.83	107.48	114.16	108.87	124.69
AICc							
AICc	0.12	0.19	0.24	0.29	0.01	0.14	0.00
weights							
p.value	F= 0.024	F= 0.04	F= 0.029	H=	-	H= 0.0011	-
			H= 0.008	0.0009			
	H=0.052	H=					
*****		0.013					

^{*}WP – waterpoints, *D – distance, * F – fields, *R – roads, *H – houses,

Appendix 10. Epupa Conservancy combined variables Pearson's correlation matrix table.

	DEM	SL	WP	S	NDVI	F	Н	R
DEM	1							
SL	0.32	1						
WP	0.075	0.37	1					
S	0.25	0.19	0.083	1				
NDVI	0.47	0.13	0.26	0.01	1			
F	0.06	0.34	0.68	0.03	0.15	1		
Н	0.008	0.34	0.78	0.27	0.15	0.56	1	
R	0.11	0.43	0.64	0.26	0.15	0.54	0.72	1

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, *D – distance, * F – fields, *R – roads, *H – houses, * NDVI – normalized vegetation index

Appendix 11. Epupa Conservancy summary of combined variable models build prior to model averaging.

Variables	EAV1	EAV2	EAV3	EAV4	EAV5	EAV6	EAV7	EAV 8	EAV9	EAV10	EAV11	EAV12
Intercept	0.847	0.804	0.300	0.568	0.360	1.127	0.3493	1.039	1.348	1.334	1.388	0.6284
WP	-0.0001	-0.0001	N/A	N/A	N/A	-0.00025	N/A	N/A	-0.0001	-0.0001	N/A	
F	0.00013	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00012		N/A	-0.00007
R	-0.00025	-0.0002	N/A	N/A	N/A	N/A	N/A	-0.0005	-0.0002	-0.0003	N/A	
Н	-0.0007	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-0.0007	N/A	-0.0009	
DEM	0.0005	0.0005	-0.0002	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
S	0.0001	-0.0001	N/A	N/A	-0.0003	N/A	N/A	N/A	N/A	N/A	N/A	
SL	-0.015	-0.0102	N/A	-0.057	N/A	N/A	N/A	N/A	-0.0082	-0.0050	N/A	
NDVI	-1.185	0.6776	N/A	N/A	N/A	N/A	-1.5025	N/A	N/A	N/A	N/A	
Model AICc	114.88	118.32	128.77	123.2	127.23	110.27	128.39	111.90	108.27	111.90	104.18	124.26
AICc weights	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.02	0.11	0.02	0.82	0.00
P.values	H = 0.03	-	-	SL = 0.02	-	WP =		R =	H = 0.03		H =	F = 0.04
						0.001		0.0005			0.0003	
	F = 0.05											

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, *D – distance, *F – fields, *R – roads, *H – houses, * NDVI – normalized vegetation index.

Appendix 12. Okanguati Conservancy combined variables Pearson's correlation matrix table.

	DEM	SL	WP	S	NDVI	F	Н	R
DEM	1							
SL	0.30	1						
WP	0.12	0.24	1					
S	0.29	0.32	0.23	1				
NDVI	0.027	0.27	0.39	0.16	1			
F	0.28	0.34	0.57	0.24	0.20	1		
Н	0.46	0.29	0.41	0.30	0.05	0.59	1	
R	0.13	0.23	0.32	0.033	-0.02	0.43	0.18	1

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, *D – distance, *F – fields, *R – roads, *H – houses, * NDVI – normalized vegetation index

Appendix 13. Okanguati Conservancy summary of combined variable models build prior to model averaging.

Models	Model	Model	Model	Model	Model	Model	Model	Model	Model	Model	Model	Model	Model	Model
and	OAV1	OAV2	OAV3	OAV4	OAV5	OAV6	OAV7	OAV8	OAV9	OAV10	OAV11	OAV12	OAV13	OAV14
Variables														
Intercept	-1.26	-1.05	-1.94	-1.609	-0.252	0.345	0.649	0.046	1.92	1.01	1.564	1.567	1.12	1.02
WP	-0.0002	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-0.0002	N/A	-0.00026	-0.00024	-0.0003	N/A
F	0.00008	-	0.0001	-0.0002	N/A	N/A	-	N/A	0.00009	-	0.000064	N/A	N/A	N/A
		0.00001					0.0002			0.0001				
R	-	-0.0001	N/A	-0.0001	N/A	N/A	N/A	N/A	-	N/A	-0.00008	-	N/A	-
	0.00008								0.00009			0.000076		0.00011

Н	-0.000	-0.0002	-	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	1		0.0001			0.0002								
DEM	0.0287	0.0025	0.0023	0.0019	0.0002	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S	0.00025	0.0001	0.0002	0.00015	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A
								0.00005						
SL	-0.032	-0.023	-0.033	N/A	N/A	N/A	N/A	N/A	-0.019	-0.020	N/A	N/A	N/A	N/A
NDVI	-0.191	-0.284	N/A	N/A	N/A	N/A	N/A	N/A	-1.533	-1.7	N/A	N/A	N/A	N/A
Model	188.18	195.53	200.81	200.23	205.07	200.90	195.59	205.06	183.99	197.02	181.17	179.43	181.47	192.45
AICc														
AICc	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.22	0.53	0.19	0.00
weights														
P.values	WP =	R =		F =		H =	F =		WP =	F =	WP =	WP =	WP =	R =
	0.008	0.008		0.0237		0.048	0.003		0.005	0.03	0.002	0.001	0.00006	0.00089
		NDVI =							R		R = 0.04	R = 0.047		
		0.05							=0.034					

^{*}SL – slope, *WP – waterpoints, * DEM – elevation, *S – streams, *D – distance, *F – fields, *R – roads, *H – houses, * NDVI – normalized vegetation index

Appendix 14. Epupa Conservancy event book conflict spatial data 2014-2020.

Date	Village	lat	long	Carnivore	Livestock	No
01/06/2014	Omuhonga	-17.3833	13.15	Cheetah	Sheep	1
03/06/2014	Okuu	-17.3167	12.96667	Leopard	Cattle	1
06/06/2014	Okuu	-17.3167	12.96667	Spotted hyena	Sheep	1
10/06/2014	Omukazakejao	-17.3167	12.96667	Leopard	Cattle	1
12/06/2014	Otjindigue	-17.3167	13.03333	Leopard	Cattle	2
13/07/2014	not known	-17.3167	12.96667	Caracal	Sheep	1
13/06/2014	Okuu	-17.3167	12.96667	Leopard	Goat	8
14/06/2014	Ongamberondu	-17.25	13.1	Spotted hyena	Sheep	9
02/08/2014	Ondimba	-17.1333	12.73333	Leopard	Cattle	3
03/08/2014	Ombaro	-17.1333	12.81667	Leopard	Sheep	19
22/08/2014	Otjisika	-17.3167	12.96667	Caracal	Goat	1
28/08/2014	Otjipemba	-17.3167	12.96667	Leopard	Cattle	1
18/09/2014	Omutatati	-17.3167	12.96667	Leopard	Sheep	25
07/10/2014	Otjitara	-17.1333	12.73333	Leopard	Sheep	8
11/10/2014	Otjindungue	-17.3167	13.03333	Spotted hyena	Goat	12
12/10/2014	Otjindingue	-17.3167	13.03333	Caracal	Goat	3
13/10/2014	Otjikango	-17.25	13.1	Cheetah	Goat	1
02/11/2014	Otjipemba	-17.3167	12.96667	Leopard	Goat	3
13/11/2014	Okomirenda	-17.3167	13.03333	Cheetah	Goat	3
13/11/2014	Otjipemba	-17.3167	12.96667	Caracal	Goat	4
26/11/2014	Okuu	-17.3167	12.91667	Leopard	Sheep	14
03/12/2014	Etutu	-17.3167	13.03333	Leopard	Goat	3
26/03/2014	Ondonga	-17.15	12.96667	Cheetah	Goat	3
26/03/2014	Ondogna	-17.15	12.96667	Cheetah	Goat	7
11/06/2014	Ovizorombuku	-17.0333	13.23333	Cheetah	Goat	2
25/06/2014	Orukoko	-17.0333	13.23333	Leopard	Goat	4
05/10/2014	Ovibibi	-17.0333	13.23333	Caracal	Goat	6
06/10/2014	Okapare	-17.0333	13.23333	Caracal	Goat	2
18/10/2014	Ovibibi	-17.0333	13.23333	Caracal	Goat	7
17/10/2014	Otjitongozeva	-17	13.2	Caracal	Goat	2
27/10/2014	Orukoko	-17	13.21667	Caracal	Goat	2
02/11/2014	Otjitinge	-17.3167	13.03333	Caracal	Goat	1
12/11/2014	not known	-17.0667	13.13333	Caracal	Goat	1
21/12/2014	Okaromuzu	-17.0333	13.23333	Caracal	Goat	1
25/12/2014	Ovizorobuku	-17.0333	13.23333	Leopard	Goat	1
26/12/2014	Otjomazeva	-17.1	13.23333	Caracal	Goat	1
27/12/2014	Ejao	-17.05	13.16667	Caracal	Sheep	1
28/05/2014	Eturo	-17.15	12.96667	Leopard	Cattle	2

28/05/2014	Ourundu	-17.15	12.96667	Leopard	Cattle	3
29/05/2014	Orokambuende	-17.3167	12.96667	Leopard	Cattle	1
07/06/2014	Okahituo	-17.3167	12.96667	Leopard	Cattle	1
11/06/2019	Omutati	-17.3167	12.96667	Leopard	Cattle	1
22/08/2014	Okazenga	-17.3167	12.96667	Spotted hyena	Goat	3
28/08/2014	Okazenga	-17.3167	12.96667	Caracal	Goat	1
29/08/2014	Okazenga	-17.3167	12.96667	Caracal	Goat	1
05/10/2014	Okuu	-17.2833	12.95	Leopard	Sheep	2
25/10/2014	Omaheke	-17.3167	12.96667	Spotted hyena	Sheep	2
27/10/2014	Omutati	-17.3167	12.96667	Caracal	Goat	5
30/10/2014	Omutati	-17.3167	12.96667	Spotted hyena	Cattle	1
31/10/2014	Omutati	-17.3167	12.96667	Caracal	Goat	2
31/10/2014	Omapa	-17.3167	12.96667	Leopard	Sheep	4
13/10/2014	Otjikango	-17.25	13.1	Cheetah	Cattle	1
21/10/2014	Onayuua	-17.0333	13.36667	Leopard	Goat	4
21/10/2014	Onayuua	-17.0333	13.36667	Caracal	Goat	2
07/06/2014	Omuna	-17.3333	13.2	Leopard	Cattle	1
07/01/2015	Okwava	-17.3333	13.2	Leopard	Cattle	1
19/02/2015	Otjikango	-17.1	13.06667	Caracal	Goat	1
16/06/2015	Ondova	-17.2333	13.2	Cheetah	Goat	1
09/11/2015	Omuramba	-17.1833	13.25	Caracal	Goat	1
25/01/2015	Orukoko	-17.0167	13.23333	Caracal	Goat	3
05/05/2015	Ovibibi	-17.3	13.05	Leopard	Goat	8
25/05/2015	Ovizorobuku	-17.0167	13.16667	Caracal	Goat	1
21/12/2015	Ohakaji	-17.1167	13.25	Caracal	Goat	1
04/02/2015	Orute	-17.35	13	Cheetah	Goat	1
13/05/2015	orute	-17.35	13	Cheetah	Goat	2
07/06/2015	Omuhonga	-17.3833	13.15	Brown hyena	Goat	1
11/10/2015	Otjiheke	-17.3667	13	Cheetah	Goat	4
07/11/2015	Ominjandi	-17.2833	13.06667	Leopard	Goat	4
03/01/2015	Otjipemba	-17.3167	12.96667	Leopard	Cattle	2
15/01/2015	Otjingoro	-17.15	12.96667	Leopard	Cattle	1
13/01/2015	Okuu	-17.35	12.96667	Spotted hyena	Goat	5
20/01/2015	Orotjiruiro	-17.1333	12.76667	Leopard	Goat	8
05/02/2015	Orotjiruiro	-17.3167	13.06667	Leopard	Cattle	1
07/02/2015	Ombaue	-17.3167	12.96667	Caracal	Goat	5
10/03/2015	Ombaue	-17.3167	12.96667	Caracal	Goat	3
11/03/2015	Ondendu	-17.3167	12.9	Spotted hyena	Goat	4
09/04/2015	Okombambi	-17.2333	12.81667	Leopard	Goat	6
12/04/2015	Orotjiue	-17.2167	12.81667	Leopard	Goat	2
13/05/2015	Etundu	-17.2333	12.81667	Leopard	Cattle	1

19/05/2015	Otjimbayo Etunda	-17.2667	12.81667	Leopard	Cattle	1
	Lturiua	-17.2333	12.81667	Leopard	Cattle	1
27/00/2013	Okazenga	-17.2333	12.81667	Leopard	Goat	4
29/06/2015	Omutati	-17.2333	12.96667	Caracal	Goat	3
				Brown hyena		2
	Okanyandi	-17.35	13	<u> </u>	Sheep	
, ,	Omazikua	-17.35	13	Spotted hyena	Goat	15
	Okenyina	-17.3167	12.96667	Leopard	Cattle	3
, ,	Omaheke	-17.2667	13.03333	Leopard	Cattle	2
	Otjindingue	-17.3667	13.05	Caracal	Goat	1
	Otjindingue	-17.3667	13.05	Brown hyena	Goat	2
	Ombuhazu	-17.3333	13.05	Leopard	Cattle	2
12/03/2015	Okaninga	-17.05	13.08333	Leopard	Cattle	1
26/03/2015	Otjouzauo	-17.0667	13.13333	Leopard	Goat	1
20/12/2015	Otjouva	-17.1167	13.23333	Caracal	Goat	1
23/02/2015	Ondova	-17.2667	13.18333	Caracal	Goat	1
27/02/2015	Ondova	-17.2667	13.18333	Caracal	Goat	2
11/04/2015	Ongomberondu	-17.1333	13.13333	Caracal	Goat	1
15/05/2015	Oheuva	-17.1667	13.13333	Caracal	Goat	1
19/05/2015	Okorumbo	-17.2	13.16667	Caracal	Sheep	1
01/06/2015	Okatjauri	-17.2167	13.16667	Spotted hyena	Sheep	3
06/07/2015	Ongongorondu	-17.0833	13.18333	Caracal	Sheep	1
11/10/2015	Otjouva	-17.1333	13.23333	Caracal	Sheep	1
15/10/2015	Otjouva	-17.1833	13.15	Caracal	Sheep	2
15/11/2015	Omimire	-17.2	13.35	Caracal	Goat	7
15/11/2015	Omimire	-17.2	13.35	Caracal	Goat	2
20/12/2015	Otjouva	-17.15	13.23333	Cheetah	Sheep	1
13/02/2016	Orute	-17.3833	13.03333	Caracal	Goat	2
27/10/2016	Okapekona	-17.3667	13	Caracal	Goat	1
03/10/2016	Orute	-17.3833	13.06667	Jackal	Goat	1
05/11/2016	Onakai	-17.0667	13.21667	Caracal	Goat	1
26/02/2016	Otjouva-outiti	-17.2833	13.23333	Caracal	Cattle	1
10/04/2016	Otjouva	-17.2833	13.23333	Caracal	Goat	1
01/06/2016	Okapare	-17.0333	13.23333	Leopard	Sheep	1
01/06/2016	Okapare	-17.0333	13.23333	Leopard	Goat	1
25/08/2016	Ohakai	-17.1333	13.23333	Caracal	Goat	2
29/10/2016	Oheuva	-17.1167	13.18333	Jackal	Goat	3
11/05/2016	Ondova	-17.2833	13.23333	Leopard	Goat	1
30/05/2016	Oheuva	-17.3	12.93333	Brown hyena	Goat	3
16/06/2016	Oheuva	-17.15	13.15	Cheetah	Goat	1
21/06/2016	Oheuva	-17.1667	13.16667	Spotted hyena	sheep	1
19/08/2016	Epupa	-17.1667	13.16667	Caracal	Goat	1

02/09/2016	Oheuva	-17.1667	13.16667	Jackal	Goat	1
26/09/2016	Oheuva	-17.1667	13.16667	Caracal	sheep	1
26/09/2016	Oheuva	-17.1667	13.16667	Cheetah	Goat	1
08/10/2016	Oheuva	-17.1667	13.16667	Jackal	Goat	1
08/10/2016	Otjouva	-17.1	13.18333	Caracal	Goat	1
20/10/2016	Otjindingue	-17.35	12.95	Caracal	Goat	1
05/11/2016	Oheuva	-17.1667	13.16667	Jackal	sheep	1
28/11/2016	Omuhonga	-17.4	13.1	Cheetah	Goat	2
07/12/2016	Ongomberondu	-17.1833	13.16667	Cheetah	Cattle	1
07/02/2016	Otjindingue	-17.35	13.03333	Leopard	Cattle	1
11/03/2016	Otjindingue	-17.35	13.03333	Leopard	Cattle	1
14/05/2016	Otjindingue	-17.35	13.03333	Cheetah	Goat	1
22/07/2016	Okongongotue	-17.3333	13	Cheetah	Goat	3
10/10/2016	omutati	-17.2667	12.96667	Leopard	Cattle	1
16/10/2016	Orondumbu	-17.1	12.88333	Spotted hyena	Goat	7
17/10/2016	Okazenga	-17.2	12.96667	Caracal	sheep	9
18/10/2016	Ohunguyovivera	-17.15	12.85	Spotted hyena	Goat	1
29/10/2016	Otjikoyo	-17.3167	13	Caracal	Goat	5
09/11/2016	Otjindingue	-17.35	13.03333	Jackal	Goat	3
11/11/2016	Orombungu	-17.2333	12.81667	Caracal	Goat	1
12/12/2016	Ongondjanambari	-17.3167	13.03333	Jackal	Goat	1
07/01/2016	Orongunga	-17.05	13.23333	Caracal	Goat	3
08/01/2016	Orongunga	-17.05	13.23333	Caracal	Goat	2
15/01/2016	Okapare	-17.05	13.28333	Caracal	Goat	2
27/01/2016	Orokatati	-17.05	13.28333	Leopard	Goat	11
24/03/2016	Orongunga	-17.05	13.28333	Caracal	Goat	1
10/06/2016	Orokatati	-17.05	13.28333	Caracal	Goat	1
26/08/2016	Orokawe	-17	12.93333	Caracal	Goat	1
05/10/2016	Ouakatiku	-17.0833	13.28333	Spotted hyena	Goat	1
08/10/2016	Eyao	-17	13.13333	Jackal	Goat	1
04/11/2016	Otjindingue	-17.35	13.03333	cheetah	Goat	1
15/11/2016	Oheuva	-17.1167	13.1	Jackal	Goat	1
20/11/2016	Oheuva	-17.1167	13.1	Jackal	Goat	1
07/01/2016	Orongunga	-17.05	13.23333	Caracal	Goat	3
08/01/2016	Orongunga	-17.05	13.23333	Caracal	Goat	2
15/01/2016	Okapare	-17.05	13.28333	Caracal	Goat	2
27/01/2016	Orokatati	-17.05	13.28333	Leopard	Goat	11
26/02/2016	Otjovoutiti	-17.2833	13.23333	Caracal	Goat	1
27/02/2016	Otjindingue	-17.35	13.03333	Leopard	Goat	1
13/02/2016	Orute	-17.3833	13.03333	Caracal	Goat	2
11/03/2016	Otjindingue	-17.35	13.03333	Leopard	Cattle	1

24/03/2016	Orongunga	-17.05	13.28333	Caracal	Goat	1
20/04/2016	Otjouva	-17.2833	13.23333	Caracal	Goat	1
11/05/2016	Ondova	-17.2833	13.23333	Leopard	Goat	1
30/05/2016	Okuu	-17.3	12.93333	Spotted hyena	Goat	3
14/05/2016	Otjindingue	-17.35	13.03333	Cheetah	Goat	1
10/06/2016	Orokatati	-17.05	13.28333	Caracal	Goat	1
16/06/2016	Oheuva	-17.15	13.15	Cheetah	Goat	1
21/06/2016	Oheuva	-17.1667	13.16667	Spotted hyena	sheep	1
01/06/2016	Okapare	-17.0333	13.23333	Leopard	sheep	1
01/06/2016	Okapare	-17.0333	13.23333	Leopard	Goat	1
22/06/2016	Okongotue	-17.3333	13	Cheetah	Goat	3
26/08/2016	Orokawe	-17	12.93333	Caracal	Goat	1
19/08/2016	Oheuva	-17.1667	13.16667	Caracal	Goat	1
25/08/2016	Ohakai	-17.1333	13.23333	Caracal	Goat	2
02/09/2016	Oheuva	-17.1667	13.16667	Jackal	Goat	1
26/09/2016	Oheuva	-17.1667	13.16667	Caracal	sheep	1
26/09/2016	Oheuva	-17.1667	13.16667	Cheetah	Goat	1
08/10/2016	Oheuva	-17.1667	13.16667	Jackal	Goat	1
08/10/2016	Otjouva	-17.1	13.18333	Caracal	Goat	1
20/10/2016	Otjindingue	-17.35	12.95	Caracal	Goat	1
10/10/2016	Omutati	-17.2667	12.96667	Leopard	Cattle	1
16/10/2016	Orondumbu	-17.1	12.88333	Spotted hyena	Goat	7
17/10/2016	Okazenga	-17.2	12.96667	Caracal	sheep	9
18/10/2016	Ohungujovivera	-17.15	12.85	Spotted hyena	Goat	1
29/10/2016	Otjikoyo	-17.3167	13	Caracal	Goat	5
03/10/2016	Orute	-17.3833	13.06667	Jackal	Goat	2
05/10/2016	Ouakatiku	-17.0833	13.28333	Spotted hyena	Goat	1
08/10/2016	Eyao	-17	13.13333	Spotted hyena	Goat	2
29/10/2016	Oheuva	-17.1167	13.18333	Jackal	Goat	3
05/11/2016	Oheuva	-17.1667	13.16667	Jackal	sheep	1
09/11/2016	Otjindingue	-17.35	13.03333	Caracal	Goat	3
11/11/2016	Orombungu	-17.2333	12.81667	Caracal	Goat	1
04/11/2016	Ontjindingue	-17.35	13.03333	Cheetah	Goat	1
15/11/2016	Oheuva	-17.1167	13.1	Jackal	Goat	1
20/11/2016	Oheuva	-17.1167	13.1	Jackal	Goat	1
28/11/2016	Omuhonga	-17.4	13.1	Cheetah	Goat	2
12/12/2016	Ongondjanambari	-17.3167	13.03333	Jackal	Goat	1
07/12/2016	Ongomberondu	-17.1833	13.16667	Cheetah	Cattle	1
30/01/2017	Okanyandi	-17.2667	12.96667	Caracal	Sheep	1
06/08/2017	Okonyama	-17.2333	12.81667	Cheetah	Donkey	1
13/08/2017	Osemi	-17.25	12.8	Caracal	Goat	1

09/02/2017	Oheuva	-17.1833	13.25	Cheetah	Goat	1
25/02/2017	Orombepo	-17.0667	13.15	Caracal	Goat	1
09/11/2017	Oheuva	-17.15	13.18333	Caracal	Sheep	1
20/11/2017	Oheuva	-17.15	13.18333	Caracal	Sheep	1
23/11/2017	Oheuva	-17.15	13.16667	Cheetah	Goat	3
15/11/2017	Orokaue	-17	12.93333	Caracal	Goat	1
05/10/2017	omutati	-17.0167	13.46667	Cheetah	Sheep	3
06/02/2017	Omuramba	-17.2	13.26667	Cheetah	Goat	2
06/02/2017	Omuramba	-17.2	13.26667	Cheetah	Sheep	2
09/02/2017	Omuramba	-17.25	13.26667	Jackal	Goat	1
08/12/2017	Omuramba	-17.25	13.26667	Caracal	Goat	1
22/12/2017	Omuramba	-17.25	13.26667	Cheetah	Goat	1
24/04/2017	Oromina	-17.3667	13.03333	Leopard	Goat	1
29/05/2017	Orute	-17.3667	13.03333	Cheetah	Goat	1
25/11/2017	Orute	-17.3667	13.03333	Caracal	Goat	1
13/12/2017	Omuhonga	-17.3833	13.15	Caracal	Goat	1
10/11/2017	Ongukutu	-17.1167	12.98333	Leopard	Cattle	1
16/11/2017	Okozondjundju	-17	13.2	Leopard	Sheep	5
18/11/2017	Okozondjundju	-17	13.2	Leopard	Sheep	4
24/11/2017	Ondjindombondo	-17.05	13.08333	Leopard	Cattle	1
26/11/2017	Orukoko	-17	13.2	Leopard	Goat	2
26/11/2017	Orukoko	-17	13.2	Leopard	Sheep	4
30/11/2017	Okapare	-17.0333	13.16667	Cheetah	Sheep	1
30/11/2017	Okapare	-17.0333	13.16667	Cheetah	Goat	2
20/01/2017	Okuu	-17.3333	12.93333	Caracal	Goat	1
21/04/2017	Omuhonga	-17.3833	13.15	Cheetah	Goat	1
19/07/2017	Omao	-17.3	13	Spotted hyena	Goat	1
26/08/2017	Okavare	-17.1333	12.83333	Caracal	Cattle	2
20/09/2017	Okotayo	-17.3167	13.01667	Cheetah	Cattle	1
04/10/2017	Okongue	-17.25	12.95	Cheetah	Goat	4
31/10/2017	etunda	-17.2333	12.8	Leopard	Sheep	9
19/11/2017	Otjipemba	-17.3167	12.96667	Cheetah	Cattle	1
30/03/2018	Otjouva	-17.15	13.21667	Caracal	Goat	1
03/04/2018	Otjouva	-17.15	13.21667	Caracal	Goat	1
07/04/2018	Otjouva	-17.1833	13.18333	Cheetah	Goat	1
09/04/2018	Otjouva	-17.1833	13.18333	Cheetah	Goat	1
04/04/2018	Oheuva	-17.2333	13.16667	Jackal	Goat	1
20/06/2018	Oheuva	-17.1667	13.18333	Caracal	Goat	1
09/07/2018	Ohauatje	-17.3	13.05	Cheetah	Sheep	3
03/07/2018	Omuramba	-17.2167	13.23333	Cheetah	Sheep	2
03/07/2018	Omuramba	-17.2167	13.23333	Cheetah	Goat	2

03/09/2018	Omuramba	-17.2167	13.23333	Cheetah	Goat	2
10/09/2018	Okambanga	-17.2333	13.23333	Cheetah	Goat	1
11/12/2018	Erova	-17.2833	13.26667	Leopard	Goat	1
28/10/2018	Okandombo	-17.0667	13.46667	Jackal	Goat	1
03/11/2018	Oserundu	-17.1167	13.45	Jackal	Goat	1
23/10/2018	Eturo	-17.05	13.18333	Cheetah	Goat	1
28/10/2018	Oromupia	-17.0333	13.2	Caracal	Goat	1
18/02/2018	Otjipemba	-17.3167	12.96667	Cheetah	Goat	4
12/08/2018	Ongondjanambari	-17.3333	13	Jackal	Sheep	1
07/09/2018	omaheke	-17.1833	12.91667	Leopard	Cattle	1
16/09/2018	ondarua	-17.3	12.96667	Cheetah	Cattle	1
20/09/2018	Otjipemba	-17.2833	12.9	Cheetah	Sheep	1
28/09/2018	Orute	-17.2	13.08333	Cheetah	Sheep	1
10/10/2018	Otjipemba	-17.2667	12.88333	Cheetah	Sheep	2
15/11/2018	Otjomizo	-17.3833	13.1	Cheetah	Goat	12
07/12/2018	Okombambi	-17.2333	12.81667	Cheetah	Cattle	2
09/12/2018	Otjikoyo	-17.3167	13.03333	Caracal	Goat	1
18/12/2018	ouhotoue	-17.2833	12.85	Caracal	Sheep	2
30/12/2018	Otjikoyo	-17.3167	12.98333	Caracal	Goat	1
09/02/2018	Epupa	-17	13.23333	Caracal	Goat	2
21/02/2018	Epupa	-17	13.23333	Caracal	Sheep	1
11/03/2018	Orokatati	-17	13.21667	Caracal	Goat	1
14/04/2018	Ovizorobuku	-17	13.2	Brown hyena	Goat	1
14/06/2018	Ovizorobuku	-17	13.15	Caracal	Goat	1
25/08/2018	osemojozongo	-17	13.11667	Leopard	Sheep	2
23/09/2018	Orukoko	-17.0167	13.16667	Cheetah	Goat	1
22/11/2018	Onjokohe	-17.2	13.36667	Caracal	Goat	1
17/01/2018	Ombondo	-17.1667	13.35	Caracal	Goat	1
05/03/2018	Otjipemba	-17.2833	12.9	Caracal	Sheep	3
25/03/2018	Otjavininga	-17.2833	12.9	Caracal	Sheep	9
17/07/2018	orute	-17.35	13.1	Cheetah	Goat	1
25/10/2018	Okaokozondana	-17.35	13.05	Cheetah	Goat	1
13/11/2018	Otjipemba	-17.2667	12.93333	Caracal	Goat	1
03/06/2019	Omuramba	-17.2167	13.23333	Cheetah	Goat	4
27/07/2019	omikambo	-17.1167	13.16667	Cheetah	Sheep	5
09/09/2019	eyayona	-17.2667	13.3	Leopard	Cattle	1
28/11/2019	eyayona	-17.2667	13.3	Caracal	Goat	2
06/12/2019	omuramba	-17.2167	13.23333	Cheetah	Goat	4
17/12/2019	Omuramba	-17.2167	13.23333	Cheetah	Goat	2
21/12/2019	Omuramba	-17.2167	13.23333	Cheetah	Goat	1
20/06/2019	Okandombo	-17.0667	13.46667	Spotted hyena	Sheep	1

25/10/2019	Okandombo	-17.0667	13.46667	Caracal	Goat	1
18/12/2019	Otjouva-outiti	-17.15	13.21667	Cheetah	Goat	1
17/04/2019	Ominjandi	-17.3333	13.11667	Cheetah	Goat	4
10/01/2019	Ozongoko	-17.0667	13.35	Leopard	Cattle	1
13/01/2019	Ovipimbi	-17.0333	13.28333	Leopard	Cattle	1
16/01/2019	Okapare	-17	13.25	Caracal	Goat	2
16/01/2019	Okasemokoma	-17	13.25	Leopard	Goat	2
24/01/2019	Ongukutu	-17.0167	13.03333	Leopard	Cattle	1
13/02/2019	Eteyamgombo	-17.0167	13.16667	Caracal	Goat	2
07/04/2019	Omuhandja	-17.0167	13.2	Leopard	Goat	3
18/04/2019	ozongoko	-17.0667	13.35	Leopard	Sheep	3
20/04/2019	ovipimbi	-17	13.23333	Brown hyena	Goat	4
05/06/2019	Ejao	-16.9833	13.06667	Spotted hyena	Goat	3
27/08/2019	Ovizorobuku	-17.0167	13.16667	Leopard	Cattle	1
01/09/2019	okaobo	-17.0333	13.03333	Leopard	Sheep	4
07/09/2019	Ongongorondu	-17.0667	13.01667	Cheetah	Sheep	2
27/12/2019	Ondova	-17.2667	13.18333	Cheetah	Goat	5
27/12/2019	Ondova	-17.2667	13.18333	Cheetah	Sheep	1
04/01/2019	Otjpemba	-17.2833	12.9	Cheetah	Goat	2
09/04/2019	Otjipemba	-17.2833	12.91667	Cheetah	Goat	2
10/04/2019	Orovinguma	-17.3	12.9	Cheetah	Goat	3
18/04/2019	Otjikoyo	-17.3667	13.01667	Spotted hyena	Goat	1
13/05/2019	Otjozombinda	-17.3333	13.03333	Cheetah	Goat	3
13/05/2019	Otjozombinda	-17.3333	13.03333	Cheetah	Sheep	1
12/05/2019	Okombito	-17.3167	13.05	Spotted hyena	Goat	1
16/05/2019	Orotjizema	-17.25	13	Cheetah	Goat	1
20/05/2019	Ongotue	-17.35	13	Cheetah	Goat	1
08/06/2019	Ondimba	-17.1333	12.95	Leopard	Goat	1
14/06/2019	Otjipemba	-17.2833	12.9	Cheetah	Goat	2
07/09/2019	Omapa	-17.25	12.9	Cheetah	Sheep	2
07/09/2019	Omapa	-17.25	12.9	Cheetah	Goat	1
29/09/2019	Oratuwe	-17.2833	12.88333	Caracal	Goat	2
25/09/2019	Orongaka	-17.2333	13.05	Spotted hyena	Cattle	1
09/10/2019	Ondendu	-17.3333	12.93333	Caracal	Goat	3
21/10/2019	Ondova	-17.2667	13.26667	Leopard	Sheep	7
23/10/2019	Okasema	-17.3167	13.01667	Caracal	Goat	1
24/10/2019	Okasema	-17.3167	13.05	Spotted hyena	Goat	4
04/11/2019	Okanjandi	-17.35	12.9	Brown hyena	Goat	1
11/11/2019	Otjipemba	-17.2833	12.91667	Caracal	Goat	3
20/11/2019	Ovitemarundu	-17.2833	12.95	Caracal	Goat	1
21/11/2019	Otjipemba	-17.2833	12.95	Caracal	Goat	2

09/12/2019	Otjiparo	-17.25	12.95	Brown hyena	Goat	1
17/05/2019	Okanjandi	-16.9833	13.06667	Caracal	Goat	1
14/06/2019	Okapare	-17.0167	13.2	Jackal	Goat	1
07/08/2019	Omimire	-17.25	13.31667	Caracal	Goat	1
13/08/2019	Otukaravize	-16.9833	13.06667	Leopard	Sheep	2
22/08/2019	Omapa	-17.25	12.9	Caracal	Goat	5
13/10/2019	Okaruikozondu	-17	12.95	Caracal	Goat	4
16/10/2019	Otjiue	-17.0167	12.98333	Caracal	Goat	5
18/10/2019	Okomaere	-16.9833	13.05	Caracal	Goat	1
08/12/2019	Omuramba	-17.2167	13.23333	Cheetah	Goat	3
16/12/2019	Otjouva-outiti	-17.15	13.21667	Cheetah	Goat	1
12/03/2019	Otjouva	-17.1333	13.21667	Caracal	Goat	1
12/05/2019	Orukoko	-16.9833	13.18333	Brown hyena	Sheep	4
14/05/2019	Eyao	-16.9833	13.2	Brown hyena	Sheep	2
28/07/2019	Okotjikora	-17.0333	13.03333	Leopard	Cattle	1
30/10/2019	Otjikango	-17.2333	13.16667	Caracal	Goat	1
14/11/2019	Orotjivero	-17.2167	13	Spotted hyena	Cattle	1
16/11/2019	Orotjivero	-17.2167	13	Spotted hyena	Cattle	1
23/11/2019	engondo	-17.1333	13	Spotted hyena	Cattle	1
26/11/2019	Otjouva	-17.1167	13.21667	jackal	Goat	1
09/12/2019	Oheuva	-17.1833	13.18333	Cheetah	Goat	1
13/12/2019	ookatjunda	-17.2	13.16667	Cheetah	Goat	2
08/12/2019	Otjita	-17.1833	13.2	Cheetah	Goat	3
26/06/2019	Ombabazu	-17.3	13.05	Spotted hyena	Goat	1
04/11/2019	Onyanduuo	-17.3333	12.95	Brown hyena	Goat	5
05/11/2019	Okasema	-17.0333	13.2	Spotted hyena	Cattle	1
12/11/2019	Otjindingue	-17.35	13.01667	Caracal	Sheep	3
02/02/2020	Ongomberondu	-17.15	13.18333	cheetah	Goat	1
02/02/2020	Ongomberondu	-17.15	13.18333	cheetah	Goat	2
08/02/2020	Ongomberondu	-17.15	13.18333	cheetah	Goat	2
24/03/2020	Otjouva-outiti	-17.1333	13.16667	cheetah	Goat	1
28/03/2020	Ongomberondu	-17.1333	13.21667	cheetah	Goat	1
09/07/2020	Okovakaendu	-17.0667	13.18333	cheetah	Goat	5

Appendix 15. Epupa Conservancy GPS collected data used for modelling.

Date	Village	Conflict	ycoord	xcoord	Livestock	Predator	DEM	Slope	Field	WP	Stream	Roads	Houses	NDVI
25-Oct-19	Okandombo	yes	-17.0596	13.46439	Goat	Caracal	687.361	1.184233	7051.482	1480.136	1311.341	787.3585	1499.52	-0.06186
05-Jun-19	Epupa	yes	-17.0047	13.08968	Goat	Spotted hyena	642.0831	3.025747	11460.44	916.092	84.71552	713.8496	385.7537	0.253669
27-Aug-19	Epupa	yes	-17.0157	13.15736	Cattle	Leopard	757.9979	16.37279	4166.383	4894.319	765.9199	93.89725	2061.641	0.203501
07-Apr-19	Omuhandja	yes	-17.0596	13.21857	Goat	Leopard	814.5554	4.990808	2115.351	2137.898	602.036	1368.718	1186.245	0.112274
16-Jan-19	Orungunga	yes	-17.0335	13.21288	Goat	Caracal	798.5827	7.651052	365.364	1370.477	1043.828	97.70286	195.1192	0.196068
03-Jun-19	Omuramba	yes	-17.2185	13.2619	Goat	Cheetah	896.6111	1.393406	1705.842	2257.066	690.7349	1546.115	930.9559	0.175751
27-Jul-19	Omikambo	yes	-17.1082	13.19634	Sheep	Cheetah	961.6668	1.393406	5635.006	4463.091	179.1598	537.5288	49.92854	0.171913
21-Oct-19	Ondova	yes	-17.2976	13.22129	Sheep	Leopard	1231.417	15.081	8597.073	4154.437	1011.651	1124.859	1365.239	0.163877
14-Jun-19	Otjipemba	yes	-17.2759	12.90829	Goat	Leopard	1239.056	1.038675	4384.66	435.213	444.7316	579.6306	38.53563	0.234141
29-Sep-19	Otjipemba	yes	-17.2857	12.90568	Goat	Caracal	1269.25	9.505855	4784.25	739.0989	316.9573	489.4779	865.1213	0.160406
20-Nov-19	Otjipemba	yes	-17.3044	12.89575	Goat	Caracal	1296.667	5.401598	5917.106	2999.257	226.4387	14.83366	28.33484	0.20319
12-May-19	Okaparara	yes	-17.363	13.06475	Goat	Spotted hyena	1256.527	3.425489	3231.816	3550.599	188.8153	152.5722	28.34411	0.242268
13-May-19	Otjozombinda	yes	-17.352	13.01717	Goat	Cheetah	1297	6.034711	1694.729	3042.167	499.733	108.5374	1395.784	0.212971
09-Apr-19	Otjipemba	yes	-17.2723	12.88715	Goat	Cheetah	1213.194	0.32849	6628.17	474.6537	415.4359	27.68498	36.99854	0.282683
04-Nov-19	Euerakaunaune	yes	-17.3658	13.04389	Sheep	Caracal	1306.055	2.935566	1276.835	1456.976	1168.093	1282.331	1331.069	0.195271
23-Oct-19	Okasema	yes	-17.3295	13.03463	Goat	Caracal	1451.722	2.62611	3836.96	116.7345	462.0584	126.5945	272.0674	0.237574

03-Nov-19	Okasema	yes	-17.3255	13.03788	Cattle	Spotted	1478.945	8.252758	4340.354	480.1628	332.2796	330.1502	272.2152	0.179449
						hyena								
18-Nov-19	Otjipemba	yes	-17.2794	12.9131	Goat	Caracal	1265.195	13.37896	3918.549	763.7202	587.1599	489.3659	376.7298	0.312469
09-Oct-19	Ondendu	yes	-17.3439	12.94889	Goat	Caracal	1366.528	2.563906	963.5776	2562.94	1869.985	524.5446	435.2343	0.256359
04-Nov-19	Oromurembue	yes	-17.3807	12.92877	Goat	Brown hyena	1282.333	3.378131	3540.777	221.2615	5271.863	3232.873	1424.637	0.326722
21-Oct-19	Otjipemba	yes	-17.275	12.90822	Goat	Caracal	1243.389	4.398545	4388.364	515.9291	505.0498	665.4065	137.9365	0.18524
18-Apr-19	Otjikoyo	yes	-17.3191	12.98332	Goat	Spotted hyena	1281.528	3.839165	309.3201	445.2459	193.8303	451.1654	224.1515	0.19957
10-Apr-19	Orovinguma	yes	-17.2613	12.85355	Goat	Cheetah	1138.083	3.095988	10291.62	3951.837	214.4116	200.9509	374.1128	0.208646
11-Nov-19	Otjipemba	yes	-17.2762	12.90726	Goat	Caracal	1251.694	8.000713	4496.453	350.1933	340.3013	495.187	121.2309	0.268505
04-Jan-19	Otjipemba	yes	-17.2716	12.88168	Goat	Cheetah	1216.805	2.80441	7211.021	921.5221	251.8433	56.24123	507.1573	0.270548
17-Apr-19	Omunjandi	yes	-17.3347	13.12385	Goat	Cheetah	1256.834	5.652275	2550.314	480.5121	322.3324	167.8396	176.49	0.315139
17-Apr-19	Omunjandi	yes	-17.3318	13.12531	Goat	Cheetah	1294.862	12.32778	2865.252	831.6921	592.7707	146.484	471.0545	0.31595
20-May-19	Okongotue	yes	-17.356	13.02716	Goat	Cheetah	1296.639	2.390084	2179.578	2152.683	1209.02	38.4446	1941.174	0.242004
24-Oct-19	Okasema	yes	-17.3315	13.05182	Cattle	Spotted hyena	1610.363	29.88739	5084.124	1730.332	1023.51	1662.143	1555.716	0.191043
24-Oct-19	Okasema	yes	-17.3307	13.0506	Cattle	Spotted hyena	1622.752	33.35817	5127.534	1590.96	864.1033	1516.835	1408.807	0.192982
09-Dec-19	Oheuva	yes	-17.1732	13.17735	Goat	Cheetah	968.7781	6.293273	6683.614	1689.693	647.8642	986.8148	174.7489	-0.00878
13-Dec-19	Ookatjiunda	yes	-17.2038	13.17483	Goat	Cheetah	1040.361	1.184233	6894.942	4438.78	1889.141	3226.002	1745.397	0.018831
13-Dec-19	Ookatjiunda	yes	-17.2035	13.17517	Goat	Cheetah	1041.972	1.642019	6867.762	4389.734	1842.037	3175.024	1712.822	0.052802

18-Dec-19	Otjitaa	yes	-17.1905	13.20103	Goat	Cheetah	978.7779	2.823523	4878.816	1289.024	1394.965	1028.73	1439.836	-0.00599
18-Dec-19	Otjitaa	yes	-17.1905	13.20133	Goat	Cheetah	978.6948	3.231857	4852.202	1262.19	1419.688	1028.245	1413.854	-0.00334
18-Dec-19	Otjitaa	yes	-17.1902	13.2013	Goat	Cheetah	980.4725	2.390084	4872.549	1248.851	1397.724	998.6083	1399.295	-0.00831
02-Feb-20	Ongomberondu	yes	-17.1712	13.14833	Goat	Cheetah	977.4441	3.5335	9453.911	1318.156	55.33518	238.1253	252.8131	0.040553
)2-Feb-20	Ongomberondu	yes	-17.172	13.152	Goat	Cheetah	976.6949	8.026948	9113.129	1104.65	361.3755	318.8796	101.8556	0.086948
04-Feb-20	Ongomberondu	yes	-17.1717	13.15215	Goat	Cheetah	980.1392	8.631441	9085.938	1065.996	357.3623	291.035	66.87462	0.090981
03-Feb-20	Ongomberondu	yes	-17.1748	13.1521	Goat	Cheetah	988.6948	3.297676	9210.432	1362.414	470.1896	625.1072	121.1404	0.091052
03-Feb-20	Ongomberondu	yes	-17.1748	13.15185	Goat	Cheetah	987.9169	2.646518	9234.836	1373.587	447.6686	618.4023	106.2833	0.121356
04-Feb-20	Okorumbo	yes	-17.1834	13.16934	Goat	Cheetah	994.1111	0.656959	7988.728	2446.525	384.471	2016.365	625.0996	0.235779
Oct-19		yes	-17.219	12.90372	Livestock	Cheetah	1309.39	25.79766	7765.621	5713.821	1022.374	5717.32	2291.942	0.200594
30-Oct-19	Jorukoro	yes	-17.0812	13.14157	Sheep	Cheetah	1008.447	22.19901	8351.176	8779.19	984.4734	4754.942	5206.07	0.237452
08-Nov-19	Otjikango	yes	-17.254	13.08238	Sheep	Caracal	1251.165	22.38777	3176.375	9696.601	495.6217	2024.927	2068.491	0.251248
08-Nov-19	Otjikango	yes	-17.2519	13.0801	Goat	Caracal	1218.444	5.595448	3230.029	9783.848	296.1085	2186.093	2211.759	0.203642
19-Jan-20	Omuramba	yes	-17.2303	13.22333	Goat	Cheetah	986.3614	3.425489	2222.345	2040.636	298.8664	648.0055	1040.163	0.124311
05-Jun-19	Еуао	yes	-17.0019	13.16667	Goat	Spotted hyena	839.1127	12.31544	4021.454	5820.148	906.2827	1721.945	553.6885	0.185109
Mar-19	Okapare	yes	-17.0225	13.29167	Goat	Jackal	664.0555	1.468747	7272.354	368.7022	366.6982	2948.119	2331.544	-0.06988
May-18	Oheyuva	yes	-17.1731	13.29167	Goat	Caracal	844.9999	1.914718	509.5641	5929.031	179.9585	206.0035	656.9849	0.165179
09-Apr-19	Otjipemba	yes	-17.2728	12.92222	Goat	Cheetah	1419.502	22.0679	2898.685	1867.499	1642.834	1500.115	1503.441	0.388446
26-Oct-19	Enjanduo	yes	-17.3533	13.01389	Goat	Brown hyena	1292.556	1.468747	1395.904	3139.287	170.4928	136.7931	1340.784	0.183349

17/04/2020	Otjiwe	yes	-17.0252	12.99191	Goat	Caracal	718.6663	15.23965	21626.54	10734.09	306.4886	1859.176	2085.675	0.231436
17/04/2020	Otjiwe	yes	-17.0239	12.99651	Goat	Caracal	724.6658	16.20653	21137.64	10224.14	175.2966	1972.386	2191.337	0.219569
17/04/2020	Otjiwe	yes	-17.024	12.99808	Goat	Caracal	750.5272	16.35803	20969.96	10067.11	293.6038	2035.361	2191.765	0.2237
17/04/2020	Ejao	yes	-16.9991	13.08946	Cattle	Cheetah	614.7775	3.711284	11626.9	313.3856	85.51783	95.04844	382.1505	0.141663
23/04/2020	Ondova	yes	-17.2916	13.18822	Goat	Cheetah	1109.694	3.487623	9692.164	1538.347	179.678	1197.947	267.0201	0.35213
23/04/2020	Ondova	yes	-17.2913	13.18819	Goat	Chetah	1106.916	4.871637	9670.801	1508.573	191.1158	1171.243	249.4469	0.32426
24/04/2020	Otjouva-outiti	yes	-17.289	13.18503	Goat	Caracal	1103.611	3.113298	9693.5	1296.253	225.3971	780.6925	21.4536	0.316551
22/04/2020	Ondova	yes	-17.2928	13.1958	Goat	Cheetah	1142.641	18.6087	9318.844	1860.814	966.0092	1833.662	174.3771	0.206006
22/04/2020	Ondova	yes	-17.293	13.19533	Goat	Cheetah	1130.667	5.576374	9366.049	1861.098	925.4914	1792.738	158.4176	0.198541
22/04/2020	Ondova	yes	-17.2929	13.19528	Goat	Cheetah	1130.667	6.293273	9352.922	1841.279	918.8357	1774.586	139.508	0.198697
05/05/2020	Omuramba	yes	-17.1988	13.24759	Goat	Cheetah	912.889	0.929039	1484.067	631.8249	753.7276	722.6387	43.20494	0.266267
11/03/2020	Omaraombua	yes	-17.0505	13.45188	Goat	Cheetah	689.7505	4.553967	8175.334	3104.693	1032.664	801.5084	1787.88	0.05
24/03/2020	Otjouva-outiti	yes	-17.1518	13.2323	Goat	Cheetah	889.6664	2.367454	752.095	4256.981	136.1348	126.0172	67.82117	0.096873
24/03/2020	Otjouva-outiti	yes	-17.1574	13.23339	Goat	Cheetah	891.4996	5.179785	1374.223	3778.024	256.9761	114.2869	580.2925	0.122337
28/03/2020	Ongomberondu	yes	-17.1842	13.14588	Goat	Cheetah	1009.722	3.82517	10225.84	2591.377	628.4726	1687.15	1283.742	0.227941
29/05/2020	Oheuva	yes	-17.1842	13.15778	Goat	Cheetah	1009.972	5.71784	9094.984	2232.433	515.6771	1801.291	822.6062	0.158475
		no	-17.4146	13.07897	None	None	1202.194	3.667655	2734.987	6557.211	326.0351	923.554	362.3467	0.225131
		no	-17.2326	13.11214	None	None	1141.167	3.989838	7043.461	9032.235	496.0646	1129.9	1901.412	0.215893
		no	-17.3429	13.18901	None	None	1290.082	11.78816	6947.178	6867.869	164.6116	757.3594	915.1447	0.236536
		no	-17.1762	13.2115	None	None	941.4722	2.646518	4133.479	865.8459	959.4453	748.9477	691.926	0.16025

no	-17.1432	12.79804	None	None	701.0547	16.99548	21630.49	16992.04	1539.104	5311.306	6572.495	0.2075
no	-17.3305	13.27137	None	None	1200.278	6.293273	7677.9	7054.979	893.5659	3277.195	3400.673	0.227349
no	-17.166	13.31276	None	None	811.4725	2.646518	573.1205	5447.67	96.95968	221.6061	815.5938	0.440303
no	-17.3662	13.13584	None	None	1204.167	1.970186	1406.109	2744.587	1299.627	425.4393	1493.094	0.106246
no	-17.1184	12.96036	None	None	1773.749	16.16764	17128.32	18267.51	1764.377	8880.75	6172.998	0.392272
no	-17.2079	12.83154	None	None	1228.029	18.68886	14498.46	9160.662	1437.751	3529.447	2194.154	0.455806
no	-17.0799	13.14432	None	None	1053.25	4.108957	8048.22	8756.382	949.3064	4447.724	5512.672	0.311768
no	-17.179	13.20354	None	None	954.2778	2.076667	4887.415	976.5746	849.6025	235.0274	983.8506	0.161609
no	-17.3334	13.08828	None	None	1554.691	34.9288	4718.979	3562.84	1165.167	1936.459	908.9642	0.159757
no	-17.1097	12.91552	None	None	1672.529	14.46674	18434.67	17821.5	650.628	5571.712	8138.551	0.502829
no	-17.0225	13.11382	None	None	725.0825	9.891299	8655.133	1719.761	406.8482	1555.448	1718.087	0.277576
no	-17.2338	13.37921	None	None	842.3335	1.468747	3734.867	3658.334	86.54805	3957.982	2263.408	0.16728
no	-17.0365	13.06855	None	None	1271.273	38.93005	13516	4892.969	796.0989	4229.292	1731.459	0.21393
no	-17.3278	13.11301	None	None	1293.583	5.128005	3537.541	1467.783	314.5486	328.433	734.5039	0.267348
no	-17.2521	12.8621	None	None	1223.694	6.926715	9591.083	3483.714	940.6516	1551.079	1547.862	0.270681
no	-17.0997	13.41986	None	None	733.5561	6.08733	5391.498	924.7491	545.1298	25.93808	1138.313	0.084656
no	-17.2183	13.07631	None	None	1137.555	5.179785	6573.41	10585.24	381.0887	3743.933	3920.556	0.325688
no	-17.184	13.45991	None	None	828.8334	1.468747	6737.581	4629.199	187.6604	6299.244	3865.155	0.246495
no	-17.1209	13.18086	None	None	1278.222	17.63954	6148.298	4110.864	1543.736	1807.609	2215.208	0.399878
no	-17.4081	13.08934	None	None	1205.417	5.371903	2008.421	6767.229	735.9283	180.2627	279.0431	0.273502

no	-17.1629	12.78609	None	None	769.8894	22.46187	21265.29	16102.39	185.5241	4513.95	4648.93	0.208431
no	-17.2552	12.91495	None	None	1280.944	6.426789	4203.075	2813.552	1313.703	2901.2	2428.69	0.317726
no	-17.0549	13.00444	None	None	1434.083	3.487623	20541.52	11010.6	1457.499	5299.971	3529.031	0.283743
no	-17.0683	12.8788	None	None	542.7491	10.88514	23890.27	22224.24	841.8988	2522.102	5901.615	0.199466
no	-17.1546	13.12103	None	None	1025.806	2.298223	11952.11	4096.821	248.8813	1558.896	1526.689	0.231253
no	-17.1542	13.46027	None	None	772.5558	3.281346	3452.864	1330.339	63.266	3225.275	594.0238	0.097394
no	-17.2237	13.1132	None	None	1155.167	1.970186	7851.658	8160.506	1217.926	2069.116	2763.744	0.242772
no	-17.2249	12.83957	None	None	1364.722	4.726852	12874.34	7231.685	1405.715	2365.636	1937.773	0.360757
no	-17.1038	13.3655	None	None	734.3053	1.99734	1105.961	3556.805	488.855	942.8501	897.0972	0.148976
no	-17.0345	13.24527	None	None	754.8611	0.32849	2340.612	1084.458	540.78	1775.198	1779.31	0.253231
no	-17.3769	13.17641	None	None	1235.473	4.458975	3427.575	3956.048	1426.227	2593.587	2619.009	0.204471
no	-17.3606	13.16582	None	None	1609.558	32.03171	4283.989	4774.064	2256.382	1971.116	1932.663	0.198679
no	-17.2939	12.96211	None	None	1376.723	9.489428	1572.216	3386.319	696.7126	751.4771	2830.512	0.272795
no	-17.3374	12.94117	None	None	1366.028	3.297676	177.9295	3575.558	1503.375	487.6715	658.671	0.280694
no	-17.1519	12.7983	None	None	835.3322	23.94952	20978.75	16197.25	1468.371	5397.603	6249.502	0.114922
no	-17.0818	13.24908	None	None	821.0555	8.214513	3870.717	3003.905	737.8999	905.1551	3127.388	0.114529
no	-17.2714	12.91566	None	None	1263.777	7.405947	3603.461	1335.77	1325.092	1397.154	934.3191	0.208006
no	-17.1082	13.35336	None	None	916.1103	8.059615	2128.301	3401.359	810.0679	1641.487	745.0681	0.076923
no	-17.0964	12.94003	None	None	1506.168	19.41244	19559.99	19260.33	1168.466	5633.497	5078.968	0.232837
no	-17.3009	13.22311	None	None	1299.585	16.39343	8891.309	4516.89	1394.899	919.8193	962.0402	0.148242
		1	1	1	<u> </u>	1	1	l	l	l	1	l

no	-17.1152	12.89858	None	None	1379.724	26.8258	18309.85	17036.2	1686.602	5989.311	7689.637	0.159939
no	-17.2155	13.37323	None	None	889.9155	9.056877	1958.959	1881.282	1091.004	1870.907	1278.607	0.136341
no	-17.0928	13.41541	None	None	733.6388	0.985384	4865.855	1645.497	1382.379	750.7527	1719.095	0.041578
no	-17.0401	13.29152	None	None	700.0006	4.374136	7141.056	1449.194	975.2061	3459.536	4272.005	0.064215
no	-17.1265	13.38706	None	None	762.9993	5.012164	3370.686	3626.496	386.9798	2444.39	2784.613	0.023109
no	-17.2795	13.05315	None	None	1495.917	0.985384	1175.023	5817.469	372.4158	425.0598	1301.735	0.340372
no	-17.3255	13.08564	None	None	1419.25	5.97272	5535.686	4056.398	794.1678	2359.415	952.3261	0.28781
no	-17.3523	12.98729	None	None	1305.861	1.184233	151.5032	1629.361	1290.589	14.01149	69.0108	0.133564
no	-17.2582	13.12172	None	None	1190.445	6.621851	6301.836	7388.527	1159.785	615.2367	1383.715	0.177459
no	-17.202	13.33221	None	None	856.8336	2.823523	2668.502	2742.781	519.7602	66.64019	1930.314	0.099243
no	-17.2237	12.94028	None	None	1130.08	34.76116	5546.711	7131.892	89.80441	7245.017	471.5557	0.127922
no	-17.0565	13.08061	None	None	1369.055	12.4789	12642.64	6436.34	1027.421	6045.917	1047.874	0.174049
no	-17.2869	13.29733	None	None	909.9171	12.61997	2227.41	1497.181	436.132	246.0324	768.265	0.139328
no	-17.1774	13.38227	None	None	843.9725	2.646518	2410.545	2093.136	36.13036	2342.737	1293.002	0.242909
no	-17.144	13.22023	None	None	901.9729	6.113464	1354.859	3844.36	278.3672	1293.179	201.2848	0.161653
no	-17.1413	13.16597	None	None	1544.281	35.45406	7135.748	2500.566	2177.886	2602.236	2091.91	0.229122
no	-17.0524	13.1776	None	None	926.6678	24.97827	3470.779	5415.767	628.1199	2298.451	3582.027	0.140371
no	-17.0704	13.38536	None	None	736.8602	6.352043	2206.303	2226.142	1868.605	1691.454	2037.622	0.085044
no	-17.2969	13.09608	None	None	1335.388	8.214513	3715.225	5312.309	69.6413	528.5835	831.9637	0.192093
no	-17.3602	13.07356	None	None	1248.417	3.231857	4212	4535.527	54.53177	246.038	466.0987	0.267646

	no	-17.2693	12.78866	None	None	1157.723	18.26551	17105.75	10760.98	456.1903	4489.067	4711.117	0.274725
	no	-17.1462	13.48831	None	None	831.1391	4.958596	3548.056	3045.129	1712.996	1587.731	2618.917	0.102907
	no	-17.2707	12.85992	None	None	1182.861	8.026948	9526.767	3189.724	364.0676	381.8077	266.6515	0.210526
	no	-17.2478	13.35916	None	None	842.1116	4.726852	3611.049	4349.819	65.0439	3614.34	1395.172	0.120451

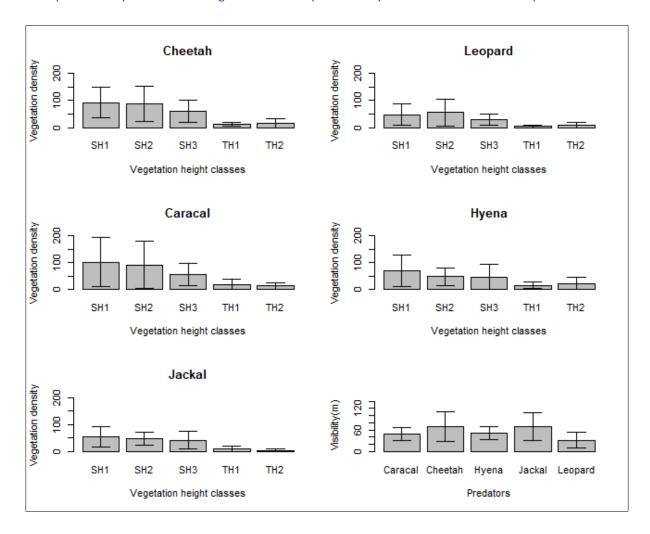
Appendix 16. Okanguati Conservancy GPS collected data used for modelling.

Date of in	Village	Conflict	ycoord	xcoord	Livestock	Predator	DEM	Slope	Stream	NDVI	Roads	WP	Houses	Fields
09/09/2019	Okozongoroka	Yes	-17.4263	13.52762	Sheep	Cheetah	1163	31.50078	1100.453	0.203772	8560.772	2175.085	1752.32	3043.85
09/09/2019	Okozongoroka	Yes	-17.4261	13.52774	Sheep	Leopard	1182	33.63621	1085.114	0.155112	8579.793	2180.738	1756.575	3033.337
09/09/2019	Okozongoroka	Yes	-17.4346	13.52258	Sheep	Leopard	1024	0.46455	1018.599	0.105285	7877.819	2114.523	1799.009	3405.311
04/02/2020	Okonduu	Yes	-17.4221	13.51168	Goat	Caracal	997	0.656959	399.2322	0.072931	7059.042	425.3136	7.531904	1653.306
01/01/2020	Otjomuru	Yes	-17.4149	13.48739	Goat	Caracal	1007	8.182497	300.879	0.03084	5142.441	1132.395	294.9065	823.1711
17/07/2019	Ombandaondu	Yes	-17.502	13.31107	Goat	Cheetah	1181	7.70593	794.4085	0.174242	1917.494	1623.65	1239.38	4032.46
17/07/2019	Ombandaondu	Yes	-17.502	13.31163	Goat	Cheetah	1182	4.374136	850.0656	0.249548	1929.846	1658.762	1277.525	4027.734
02/01/2020	Otjitanda	Yes	-17.441	13.43807	Goat	Cheetah	1014	3.5335	93.90295	0.109627	14886.45	392.9952	156.5654	1436.301
02/01/2020	Otjitanga	Yes	-17.4402	13.43753	Goat	Cheetah	1017	1.184233	194.4602	0.141243	14860.86	454.1604	153.4035	1371.008
01/09/2019	Ombandaondu	Yes	-17.5081	13.32225	Goat	Caracal	1231	11.45875	2028.008	0.148703	3055.734	2945.919	2596.103	3353.238
01/01/2020	Ombangu yatjuoo	Yes	-17.3839	13.28051	Goat	Caracal	1063	5.901052	263.4273	0.182609	2198.334	1197.303	74.95916	993.8158
10/11/2019	okahamona	Yes	-17.6013	13.25057	Sheep	Caracal	1287	2.823523	1245.588	0.208262	14095.57	6054.744	969.7035	4799.977
08/08/2019	oomiore	Yes	-17.5627	13.23367	Goat	Jackal	1246	3.548659	268.6285	0.149296	11481.36	1460.083	234.1451	177.2743
09/08/2019	oomiore	Yes	-17.5645	13.22714	Sheep	Caracal	1283	8.105116	421.8086	0.141844	12098.8	1382.477	303.7223	681.5817
12/10/2019	oomiore	Yes	-17.5496	13.25134	Goat	Cheetah	1236	5.332046	1864.929	0.18432	6128.635	2764.357	498.5874	1892.592
08/11/2019	oomiore	Yes	-17.5522	13.22235	Goat	Jackal	1253	8.416369	256.1017	0.201049	6773.47	329.0234	512.1102	1413.086
18/09/2019	oomiore	Yes	-17.534	13.23021	Goat	Jackal	1211	4.275084	39.68637	0.132695	2231.331	2068.4	468.772	431.3969
12/10/2019	Otjirunga	Yes	-17.4828	13.12952	Goat	Caracal	1237	1.184233	300.2087	0.253108	6529.534	1699.649	1684.467	8134.614

04/11/2019	Otjirunga	Yes	-17.4843	13.12961	Sheep	Brown	1229	2.80441	177.8327	0.150293	6556.615	1800.892	1830.79	8277.004
						hyena								
04/09/2019	Oruuru	Yes	-17.457	13.17734	Goat	Caracal	1196	6.034711	628.2039	0.137018	14001.49	3947.172	896.1993	4267.507
01/06/2019	okomuhama	Yes	-17.6512	13.31642	Cattle	Spotted	1247	8.9467	287.6792	0.218677	8082.773	612.2287	1406.177	3778.897
						hyena								
01/04/2019	Okomuhama	Yes	-17.6549	13.31627	Goat	Cheetah	1246	3.82517	516.3804	0.229938	8444.099	312.2361	1809.852	4133.829
01/07/2019	Ombaue	Yes	-17.7096	13.35478	Goat	Cheetah	1295	10.80929	542.5329	0.165766	7900.284	7031.384	6314.049	7078.607
01/07/2019	Ombaue	Yes	-17.7089	13.35508	Goat	Cheetah	1297	7.218233	489.6018	0.179191	7815.077	6982.199	6228.592	6993.727
09/01/2020	Etjandjandja	Yes	-17.5301	13.33072	Goat	Cheetah	1134	1.674519	821.4518	0.163258	3551.992	5355.35	2873.66	1152.898
28/02/2019	Ohamaremba	Yes	-17.4734	13.42263	Goat	Jackal	1047	2.367454	68.48577	0.139486	12480.59	1518.885	368.421	580.2021
08/11/2021	Etjandjandja	Yes	-17.5302	13.33061	Sheep	Cheetah	1136	3.297676	808.9512	0.128874	3572.61	5363.325	2873.161	1160.875
01/08/2019	Ondjirokaapa	Yes	-17.5998	13.39757	Cattle	Leopard	1414	27.57367	2754.38	0.193818	4527.059	3004.742	4019.432	3650.905
01/08/2019	Okandjirokaapa	Yes	-17.6001	13.39742	Cattle	Leopard	1427	19.04661	2724.272	0.141489	4520.904	2969.262	3983.22	3620.688
01/07/2019	Ombaue	Yes	-17.7084	13.35533	Goat	Cheetah	1302	3.095988	453.5522	0.169337	7751.722	6948.734	6164.803	6929.956
20/01/2020	Ombaue	Yes	-17.5704	13.37884	Goat	Leopard	1131	3.949322	319.7216	0.093741	3150.619	5567.804	2773.496	2445.796
16/07/2019	Oatupanda	Yes	-17.5383	13.26234	Goat	Jackal	1211	2.390084	290.2798	0.174226	5203.257	4206.093	66.65298	3012.189
08/11/2019	Oomiore	Yes	-17.5348	13.22007	Goat	Cheetah	1273	9.256174	522.9861	0.152242	5122.95	2006.711	787.8639	1503.448
12/10/2019	Oomiore	Yes	-17.4361	13.19824	Sheep	Caracal	1139	2.500146	1072.142	0.125196	12663.55	2625.913	1703.245	2180.642
22/01/2020	Oruuru	Yes	-17.4633	13.20893	Goat	Cheetah	1158	1.038675	190.0272	0.511022	2204.831	586.4216	306.4417	2245.703
01/12/2019	Oryomusati	Yes	-17.6341	13.32747	Goat	Cheetah	1220	5.179785	726.4369	0.054722	5858.509	2606.883	669.2698	1559.896
23/01/2020	Otjeme	Yes	-17.6118	13.34046	Goat	Cheetah	1166	3.025747	897.7417	0.138482	3033.647	1809.512	61.82215	382.3342
01/11/2019	Otjeme	Yes	-17.6239	13.33425	Goat	Cheetah	1178	3.711284	339.6074	0.187081	4514.399	2185.312	58.47799	257.5827
01/02/2019	Ombaue	Yes	-17.6912	13.35629	Cattle	Spotted	1245	2.62611	473.8179	0.214234	5926.731	5546.055	4400.117	5276.786
						hyena								
04/09/2019	Ookapauke	Yes	-17.4957	13.24008	Sheep	Cheetah	1153	2.97197	53.43132	0.174303	2674.348	3710.692	963.0106	3174.859
04/06/2019	Omusati	Yes	-17.5233	13.12099	Sheep	Caracal	1289	4.108957	183.5923	0.257465	9327.46	5966.743	5112.257	10749.9
27/12/2019	ouakarare	Yes	-17.6239	13.3339	Goat	Cheetah	1180	4.871637	373.9271	-0.02752	4534.67	2222.089	88.89639	292.6688
27/12/2019	not known	Yes	-17.633	13.33669	Sheep	Cheetah	1191	1.642019	222.8803	-0.00878	5296.094	2325.65	657.3483	1106.891
01/01/2020	ombandaondu	Yes	-17.4964	13.29915	Goat	Caracal	1147	2.076667	257.3813	0.146116	1398.641	630.5665	112.745	3609.731

07/01/2020	otjitunduua	Yes	-17.4964	13.29915	Goat	Spotted	1147	2.076667	256.357	0.133131	1399.703	631.6836	112.579	3610.846
						hyena								
19/01/2020	oryavikatjivare	Yes	-17.4895	13.30791	Goat	Cheetah	1133	2.202518	582.8267	0.124235	501.9188	748.7199	40.64835	2659.933
12/02/2020	Okaokomuzu	Yes	-17.6297	13.31666	Goat	Cheetah	1199	5.566812	96.23757	0.065872	6165.839	2945	643.8114	1783.14
12/02/2020	Okaokomuzu	Yes	-17.6295	13.31656	Goat	Cheetah	1200	6.669694	113.9701	0.085118	6159.658	2964.409	631.4703	1768.247
12/02/2020	Okaokomuzu	Yes	-17.633	13.32205	Goat	Cheetah	1222	12.92031	214.8808	0.10226	6075.74	2593.679	700.1179	1888.148
12/02/2020	ouakarare	Yes	-17.6266	13.33271	Goat	Cheetah	1182	2.367454	141.7067	0.056522	4862.748	2409.607	339.9811	570.01
12/02/2020	ouakarare	Yes	-17.6318	13.33472	Goat	Cheetah	1184	3.025747	73.93183	0.245684	5261.457	2430.465	531.8465	991.0304
13/11/2019	Omuhoro	Yes	-17.418	13.2316	Sheep	Jackal	1093	3.297676	339.9489	0.097887	10853.66	2808.808	354.6178	125.7119
23/11/2019	Otjitake	Yes	-17.493	13.40075	Cattle	Leopard	1072	0.32849	422.5894	0.191744	10120.46	1130.29	34.94422	1059.026
23/11/2019	Otjitake	Yes	-17.379	13.37554	Cattle	Leopard	1404	13.50196	768.1516	0.312242	13912.82	6654.15	2962.693	7565.529
01/02/2020	Okalaeke	Yes	-17.4406	13.4378	Goat	Cheetah	1019	1.914718	144.4245	0.205938	14872.99	422.2641	147.1302	1403.393
08/02/2020	Ovizerevo	Yes	-17.4405	13.43787	Goat	Cheetah	1019	1.914718	153.8172	0.18283	14885.57	416.0354	131.6902	1385.605
10/02/2020	Okonduu	Yes	-17.4213	13.51498	Goat	Caracal	996	4.915313	225.785	0.099334	7418.209	778.1327	353.7464	1737.044
10/02/2020	Otjomuru	Yes	-17.4109	13.49811	Goat	Caracal	979	5.71784	155.7711	0.068146	6329.139	248.4163	17.72602	320.4226
10/02/2020	Otjimuru	Yes	-17.4119	13.49535	Goat	Caracal	976	4.312499	272.5446	0.069369	6021.06	314.5535	47.4517	547.1411
01/11/2019	Ohamaremba	Yes	-17.5229	13.38114	Goat	Brown	1097	6.20832	97.36169	0.147494	1926.933	4879.506	0	219.3021
						hyena								
01/04/2019	Ovitumbua	Yes	-17.4745	13.33337	Sheep	Jackal	1126	3.025747	1672.498	0.190866	3169.53	809.6262	0	825.3769
01/08/2019	Ovitumbua	Yes	-17.4676	13.32589	Sheep	Cheetah	1110	2.823523	676.7513	0.217778	2907.065	836.2127	43.93942	423.1608
01/05/2019	Ovitumbua	Yes	-17.4675	13.32535	Goat	Jackal	1109	1.184233	659.6836	0.180638	2874.291	893.5992	74.5598	414.487
01/05/2019	Ovitumbua	Yes	-17.4674	13.32542	Goat	Jackal	1109	1.970186	647.9827	0.203184	2888.312	885.1661	63.04285	401.5505
02/01/2020	Otjomuru	Yes	-17.4117	13.49541	Goat	Caracal	975	4.692793	249.7691	0.075494	6040.546	289.8978	24.45217	531.3823
01/01/2020	Otjomuru	Yes	-17.4221	13.51174	Goat	Caracal	997	0.656959	406.5554	0.067316	7066.467	431.7069	0	1652.25
01/01/2020	Ombandaondu	Yes	-17.4967	13.29995	Goat	Caracal	1148	2.785167	202.1465	0.173977	1393.556	648.4851	21.26148	3620.645
24/02/2020	Ombaka	Yes	-17.6569	13.37642	Goat	Cheetah	1196	4.398545	397.747	0.05362	1710.147	2211.484	49.14519	1060.384
24/02/2020	Ombaka	Yes	-17.654	13.38214	Goat	Cheetah	1193	7.941352	886.6848	0.027169	1481.445	1994.934	10.10226	438.3598
01/06/2019	Otjeme	Yes	-17.6235	13.33464	Goat	Cheetah	1174	2.80441	321.7229	0.341048	4457.415	2138.952	0	205.5968
01/04/2019	Omuangete	Yes	-17.534	13.36332	Goat	Jackal	1110	4.275084	348.4751	0.271605	6141.766	6883.055	34.87846	709.6076
20/02/2020	Pomaseratundu	Yes	-17.4381	13.27944	Goat	Cheetah	1080	1.768431	593.3919	0.138509	5944.426	3242.739	385.2883	252.1077

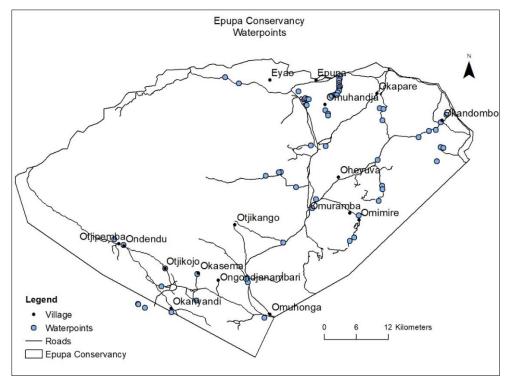
01/08/2020	Poruuru	Yes	-17.4361	13.27431	Goat	Cheetah	1078	5.901052	848.8119	0.086226	6400.994	3197.526	699.4932	525.6507
09/03/2020	Poruuru	Yes	-17.4663	13.22735	Goat	Caracal	1147	1.642019	250.7013	0.312724	8596.042	796.8255	641.2603	939.3378
24/03/2020	Okoruua	Yes	-17.4674	13.22972	Goat	Caracal	1143	2.646518	331.92	0.134629	8323.243	1072.088	485.4004	717.0477
30/04/2020	Omiore	Yes	-17.5509	13.23558	Goat	Caracal	1235	2.97197	305.909	0.311708	6291.819	1084.554	477.2879	765.6977
30/04/2020	Omiore	Yes	-17.5554	13.23709	Goat	Caracal	1247	2.202518	264.2243	0.183056	6769.599	1289.241	489.7737	301.0269
20/05/2020	Ombandaondu	Yes	-17.4999	13.33352	Goat	Cheetah	1146	11.78816	1834.633	0.227418	3353.053	3624.791	2263.247	1820.765
20/05/2020	Ombandaondu	Yes	-17.4998	13.33637	Goat	Cheetah	1136	3.623494	1531.495	0.283725	3612.564	3614.558	1975.421	1552.526
20/05/2020	Otjiuetjambungu	Yes	-17.5006	13.33716	Goat	Cheetah	1133	4.600717	1462.178	0.153201	3729.85	3715.931	1869.971	1524.823
25/02/2020	Oruru	Yes	-17.4742	13.22556	Goat	Cheetah	1174	5.71784	686.5627	0.277708	8612.874	1398.202	855.9357	1485.341
25/02/2020	Oruru	Yes	-17.4694	13.2125	Goat	Cheetah	1176	5.117584	812.8147	0.241433	2423.232	878.4807	213.8803	1523.192
25/02/2020	Oruru	Yes	-17.4722	13.215	Goat	Cheetah	1187	6.017067	953.0306	0.255892	9753.523	1170.749	384.544	1229.669
27/02/2020	Otjitanga	Yes	-17.4356	13.43554	Goat	Leopard	1015	2.62611	297.9601	0.101431	14843.58	859.1608	61.67138	1007.461
16/01/2020	Ohamaremba	Yes	-17.4758	13.41771	Goat	B.hyaena	1049	4.056453	169.8575	0.064599	11934.61	1250.704	206.6412	656.3242
23/01/2020	Ohamarmba	Yes	-17.4758	13.41772	Goat	Jackal	1049	4.056453	168.9732	0.064599	11936.45	1252.475	207.0099	657.5601
09/02/2020	Omuatjitara	Yes	-17.4105	13.31253	Goat	Cheetah	1081	3.346183	1531.133	0.154625	8327.746	2856.634	1185.318	2192.378
04/10/2019	Ovitongo	Yes	-17.4013	13.28403	Sheep	Caracal	1055	5.576374	107.1676	0.247642	802.0631	905.7683	500.0093	93.87402
04/10/2019	Ovitongo	Yes	-17.4006	13.28437	Sheep	Caracal	1056	4.958596	170.0447	0.119018	763.3332	979.3223	485.888	125.8285
04/10/2019	Ovitongo	Yes	-17.4003	13.2843	Sheep	Caracal	1050	7.137265	167.5379	0.237392	771.7123	1010.946	503.3788	157.1339
26/03/2020	Ovitongo	Yes	-17.38	13.30741	Goat	Cheetah	1034	2.646518	486.3989	0.121833	2842.768	797.3985	564.2479	1095.714
27/03/2020	Ovitongo	Yes	-17.3895	13.29846	Goat	Cheetah	1056	1.674519	835.4102	0.155536	1436.292	955.7003	97.4534	915.0491
01/01/2020	Ohamaremba	Yes	-17.4884	13.42507	Goat	Caracal	1071	5.179785	229.7978	0.115746	12672.01	2352.493	1489.747	2250.184
09/04/2020	Ombaka	Yes	-17.6392	13.37306	Goat	Cheetah	1177	0.929039	347.7319	0.211534	495.589	387.6948	776.6513	138.1282
09/04/2020	Ombaka	Yes	-17.6372	13.37333	Goat	Cheetah	1175	1.038675	276.6904	0.255663	615.132	272.6273	647.6278	174.4751
03/03/2020	Ombaka	Yes	-17.6465	13.37	Goat	Cheetah	1186	2.80441	501.2088	0.34065	6519.056	1227.664	112.9288	543.8582
16/02/2020	Otjivize	Yes	-17.6186	13.45111	Goat	Cheetah	1358	26.99838	1553.3	0.089465	21336.88	7609.83	1491.423	7888.565
07/02/2020	Otjivize	Yes	-17.6192	13.45639	Goat	Cheetah	1252	32.73994	1158.88	0.090265	21787.2	8168.2	1722.777	8172.845
10/04/2020	Otjivize	Yes	-17.6122	13.46889	Goat	Jackal	1127	3.740084	932.3569	0.177126	22287.5	9539.468	2010.906	7941.102
07/04/2020	Otjivize	Yes	-17.6558	13.45111	Goat	Cheetah	1166	6.426789	1239.69	0.121485	8017.683	8251.311	5554.844	6841.637
04/11/2019	Ondundu	Yes	-17.5981	13.25806	Goat	Cheetah	1291	2.706814	1064.444	0.217628	13454.75	6147.878	896.8602	4866.648
	yamungarva													

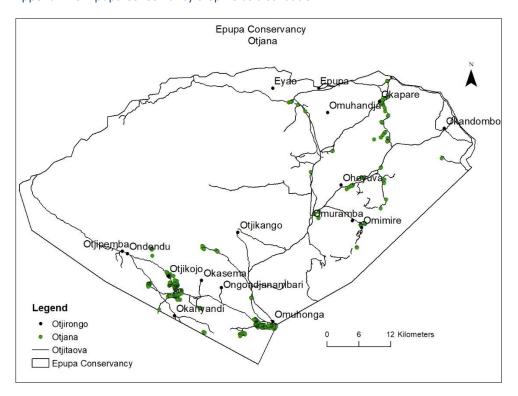

04/11/2019	Ondundu yamungarva	Yes	-17.5983	13.42472	Goat	Cheetah	1210	3.548659	1065.651	0.160048	17764.02	5405.866	1473.701	4958.365
04/11/2019	Ondundu yamungareva	Yes	-17.5975	13.425	Sheep	Cheetah	1203	7.254725	977.4602	0.158459	17720.35	5474.743	1433.147	4869.453
04/11/2019	Ondundu yamungareva	Yes	-17.5972	13.42528	Sheep	Cheetah	1200	8.478408	951.5894	0.120507	17719.96	5515.219	1401.234	4841.97
06/05/2020	Ovitongo	Yes	-17.4013	13.28403	Sheep	Caracal	1055	5.576374	107.1676	0.760234	802.0631	905.7683	500.0093	93.87402
		No	-17.5226	13.22708	None	None	1209	0.46455	369.1756	0.257594	3580.931	3279.664	1661.288	1532.447
		No	-17.4557	13.35442	None	None	1078	8.385167	158.2205	0.06289	6124.18	2536.244	605.9649	399.6006
		No	-17.4412	13.27702	None	None	1085	0.32849	734.4172	0.177636	5772.234	3639.631	410.2756	67.74278
		No	-17.4352	13.47279	None	None	1056	4.838617	1913.443	0.034505	2679.839	3306.36	2354.046	2618.597
		No	-17.4546	13.33307	None	None	1097	5.576374	85.96476	0.062417	4481.234	1400.022	498.7282	208.2103
		No	-17.4193	13.28752	None	None	1063	2.367454	124.9208	0.186074	7571.241	1118.264	303.5993	157.8134
		No	-17.5732	13.25391	None	None	1282	3.025747	1223.587	0.237306	11168.69	3817.126	405.3992	2576.06
		No	-17.387	13.3622	None	None	1365	17.14959	305.3084	0.095863	12433.01	6401.106	2518.111	6552.397
		No	-17.6348	13.31899	None	None	1205	4.871637	120.2383	0.103919	6434.437	2369.319	473.4813	2294.12
		No	-17.3815	13.21244	None	None	1439	34.29577	2118.201	0.62285	15184.65	2967.894	1552.191	3162.701
		No	-17.4685	13.2497	None	None	1119	3.231857	197.7802	0.27804	6245.386	844.5484	219.8131	275.3885
		No	-17.5926	13.25063	None	None	1278	2.076667	328.837	0.189134	13227.54	5215.053	126.3992	3941.425
		No	-17.4151	13.34478	None	None	1078	5.251402	966.9452	0.178044	8813.219	5877.164	1072.887	3915.022
		No	-17.3026	13.42528	None	None	1187	26.46598	404.8363	0.1409	23890.5	4274.121	303.7384	3996.856
		No	-17.6373	13.29276	None	None	1295	5.566812	1011.082	0.187768	8615.206	3469.746	411.078	3964.724
		No	-17.3913	13.25556	None	None	1183	16.97292	1565.871	0.42568	912.9882	1574.501	1660.847	2660.62
		No	-17.5091	13.17197	None	None	1254	3.667655	120.5704	0.249883	14450.5	5044.128	112.176	5228.671
		No	-17.2539	13.43359	None	None	1200	3.378131	2110.478	0.397653	14939.59	8722.489	3137.063	5442.736
		No	-17.4262	13.19393	None	None	1129	3.711284	160.2275	0.254537	13571.66	1879.961	773.6159	1213.435
		No	-17.4959	13.24499	None	None	1162	5.012164	279.466	0.218629	2602.421	3702.747	459.0038	3222.635
		No	-17.2412	13.42495	None	None	1036	23.84827	941.6769	0.566216	14479.28	9398.283	2286.053	7123.132
		No	-17.4728	13.27942	None	None	1132	4.003251	1236.169	0.143078	3133.601	3053.329	1616.623	3150.584
		No	-17.6031	13.32671	None	None	1162	6.443278	142.6493	0.130165	3515.948	3557.476	520.2473	379.9598

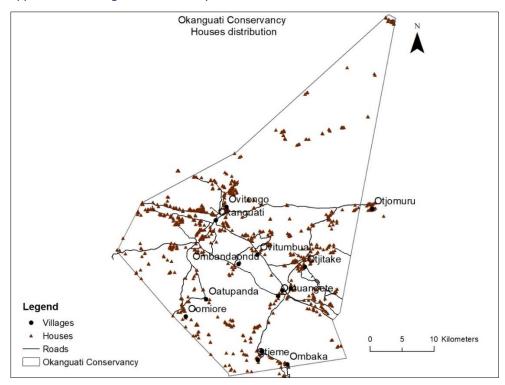
No	-17.6029	13.28814	None	None	1262	7.174187	760.7007	0.2525	13137.36	6737.936	1257.047	3727.46
No	-17.4233	13.24353	None	None	1086	6.669694	309.501	0.161254	9544.948	4174.018	268.3864	231.4631
No	-17.578	13.23175	None	None	1262	4.173645	113.7521	0.184211	12910.59	2934.624	202.7163	1832.982
No	-17.3984	13.37572	None	None	1120	10.80453	1088.449	0.082816	12162.26	8138.84	816.9418	5461.725
No	-17.4172	13.36269	None	None	1073	1.038675	744.1872	0.070533	9677.453	6333.505	1418.521	3216.287
No	-17.585	13.31594	None	None	1163	0.985384	90.40769	0.141031	11075.76	5710.335	469.7331	1777.713
No	-17.4185	13.23612	None	None	1091	2.367454	101.4533	0.211573	10470.06	3290.995	364.8354	81.27513
No	-17.3847	13.41696	None	None	1310	1.184233	232.1141	0.189655	16242.64	6697.417	4130.298	4822.821
No	-17.5119	13.45403	None	None	1088	3.095988	306.8187	0.061596	16012.16	5324.919	1610.033	4300.423
No	-17.5848	13.38432	None	None	1168	4.003251	1919.833	0.136496	2996.977	4002.945	3937.54	3436.89
No	-17.5997	13.40962	None	None	1414	19.34096	1925.546	0.144684	5767.4	3959.837	3081.523	4805.712
No	-17.2159	13.45761	None	None	940	19.9424	857.8225	0.658263	10066.33	13642.94	387.2712	8746.964
No	-17.4335	13.222	None	None	1112	0.32849	1152.045	0.258856	10595.23	2823.531	212.5689	1434.664
No	-17.4554	13.29976	None	None	1094	1.184233	51.65893	0.11587	3385.363	3935.929	1538.735	1443.047
No	-17.639	13.30519	None	None	1293	2.80441	1446.265	0.08928	7752.725	2396.167	292.3213	3232.024
No	-17.38	13.2766	None	None	1080	13.67862	274.6936	0.242273	2783.905	1788.316	538.0328	1567.161
No	-17.444	13.39532	None	None	1053	4.398545	196.6941	0.092292	10559.36	3880.675	144.8439	2343.402
No	-17.3749	13.4007	None	None	1405	13.02898	1389.89	0.030997	15852.18	6140.607	4340.052	6851.153
No	-17.5477	13.435	None	None	1122	2.646518	147.291	0.076111	2219.176	8071.167	208.1112	56.11003
No	-17.5923	13.29001	None	None	1254	1.768431	312.8871	0.301133	11947.3	7704.6	1879.499	4103.337
No	-17.4918	13.18001	None	None	1235	3.281346	941.1081	0.486529	13377.89	4472.276	374.2668	3649.539
No	-17.481	13.29357	None	None	1129	4.692793	871.1822	0.095279	1387.431	1355.695	818.391	2472.315
No	-17.4057	13.27076	None	None	1083	3.346183	1193.112	0.15589	9577.16	1634.988	1209.19	1269.625
No	-17.5723	13.2918	None	None	1195	3.667655	412.5238	0.167522	9728.753	7389.66	104.8622	4433.211
No	-17.4255	13.40843	None	None	1049	25.95638	924.1044	0.051251	12760.92	3927.065	912.9075	3505.936
No	-17.3049	13.34709	None	None	1197	25.69786	518.9482	0.232295	12128.5	1625.119	1486.044	5229.869
No	-17.4355	13.27351	None	None	1084	0.734494	747.1482	0.162417	6508.095	3163.788	646.9547	609.0346
No	-17.3731	13.36106	None	None	1189	25.25983	91.77259	0.12069	13751.14	6112.48	3935.033	6800.413
No	-17.5053	13.18163	None	None	1236	8.233659	90.51345	0.355145	13366.99	5452.375	1221.148	4144.754
No	-17.5488	13.27985	None	None	1278	5.332046	1280.611	0.149627	7531.241	5788.821	1588.365	4791.708

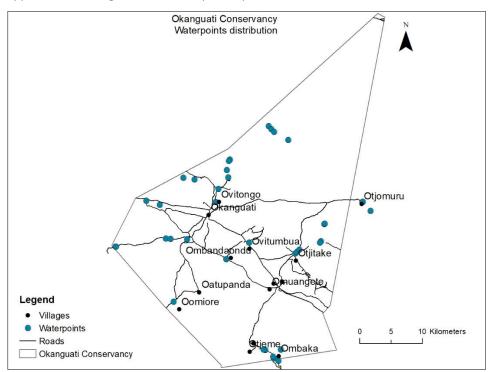

No	-17.327	13.45357	None	None	1168	1.914718	168.3477	0.053912	23538.3	6833.931	3226.86	3670.779
No	-17.3781	13.33267	None	None	1083	1.038675	119.4889	0.175309	12215.87	3131.002	2396.235	3757.316
No	-17.1994	13.45568	None	None	877	8.353843	452.1809	0.418719	8926.805	15125.6	1638.09	9429.074
No	-17.5102	13.35683	None	None	1103	1.642019	154.1281	0.154168	6072.482	5352.722	673.479	1585.292
No	-17.5689	13.29915	None	None	1186	0.656959	303.3788	0.200714	9267.765	8042.708	42.21801	3804.38
No	-17.2984	13.35962	None	None	962	8.15679	113.8421	0.144231	13434.46	313.1137	305.4671	6718.371
No	-17.3638	13.48496	None	None	1419	14.65691	571.7842	0.091003	9582.777	5158.135	4486.1	4708.123
No	-17.4033	13.3498	None	None	1080	2.500146	87.49304	0.103814	10222.38	5898.841	962.1805	4934.649
No	-17.2517	13.45954	None	None	1186	29.33767	490.5127	0.649254	13213.28	10635.15	4226.775	4778.029
No	-17.603	13.44222	None	None	1188	7.848073	1452.088	0.139745	19473.09	6943.407	564.9872	5930.686
No	-17.5018	13.1871	None	None	1237	1.184233	135.8476	0.445	12734.98	5293.303	1511.135	3451.608
No	-17.4345	13.40219	None	None	1046	1.99734	388.8837	0.110127	11687.61	4262.366	587.7678	3162.674
No	-17.4898	13.20924	None	None	1155	9.47846	77.00148	0.504627	10265.89	3154.371	699.6925	839.6003
No	-17.2056	13.4821	None	None	1277	14.10557	1226.665	0.678996	7593.525	16071.35	2481.236	7924.144
No	-17.5623	13.4004	None	None	1139	5.489699	895.422	0.121667	13165.41	6832.565	1271.49	1639.375
No	-17.5174	13.41375	None	None	1104	3.425489	389.4641	0.093958	547.9546	4087.404	616.6759	3019.53
No	-17.4284	13.17934	None	None	1141	3.949322	844.1574	0.279037	14843.76	2417.919	1266.163	1493.13
No	-17.3295	13.37089	None	None	1047	24.5337	96.01597	0.09136	18590.79	2284.594	1725.879	6510.051
No	-17.1558	13.50776	None	None	946	11.49439	1851.833	0.679082	1582.638	22132.86	1334.091	2157.762
No	-17.4445	13.35744	None	None	1083	3.667655	778.3439	0.062283	7116.929	3556.366	278.5282	560.7006
No	-17.3631	13.32059	None	None	1326	10.88514	1194.465	0.170644	5179.795	1991.405	2003.375	2973.687
No	-17.2664	13.40844	None	None	952	15.275	610.8798	0.144414	26581.26	6306.177	1880.181	6504.41
No	-17.3932	13.28824	None	None	1056	8.775692	333.7741	0.159478	897.2603	341.448	70.50766	328.3342
No	-17.2851	13.36201	None	None	896	5.97272	1480.983	0.21553	14825.19	1702.886	1774.423	7895.348
No	-17.3608	13.4529	None	None	1323	2.367454	445.2613	0.078859	9127.226	7062.498	5414.191	5496.917
No	-17.3498	13.44387	None	None	1356	2.102443	1965.384	0.050683	20991.5	6614.204	5185.675	6379.22
No	-17.3683	13.37993	None	None	1247	6.284831	52.56872	0.035936	15171.79	5391.326	4180.251	8242.345
No	-17.4295	13.19173	None	None	1132	5.371903	186.3406	0.166478	13606.41	2310.009	1206.461	1645.792
No	-17.3567	13.34892	None	None	1375	17.72802	504.4888	0.221577	7804.124	4634.76	4508.803	4722.69
No	-17.6263	13.3676	None	None	1166	4.692793	101.9097	0.03416	4292.341	516.6384	222.0707	18.71324

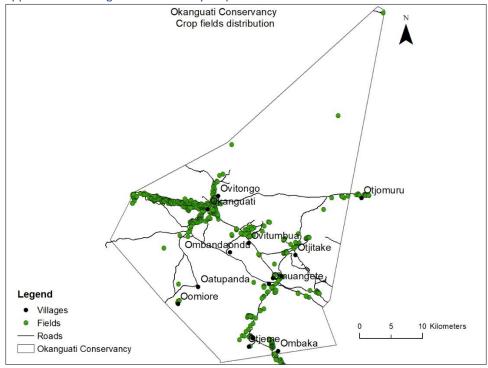
No	-17.2959	13.45856	None	None	1088	4.692793	78.80105	0.083159	26527.83	7815.929	332.0237	383.104
No	-17.4124	13.23664	None	None	1103	3.548659	400.1465	0.289549	10918.78	3300.213	152.5357	573.785
No	-17.3773	13.47116	None	None	1314	20.70474	116.6602	0.161045	7662.591	4421.565	3216.09	3499.446
No	-17.3808	13.22624	None	None	1463	31.52869	1240.767	0.40054	4232.736	1564.458	2414.029	3791.968
No	-17.3256	13.46585	None	None	1284	16.66176	328.6348	0.065463	13143.74	8120.839	3264.351	3425.06
No	-17.2694	13.50249	None	None	1143	5.576374	340.3771	0.063994	13636.16	13264.55	1981.535	5146.649
No	-17.3943	13.3108	None	None	1053	2.97197	169.6099	0.172233	2163.857	2302.815	852.796	2303.27
No	-17.4253	13.45805	None	None	1017	13.96731	1328.181	0.142395	2200.639	2360.259	1337.125	1615.751
No	-17.4911	13.17497	None	None	1244	4.056453	1326.139	0.141805	13907.81	3962.663	737.444	4149.238
No	-17.4807	13.2487	None	None	1181	5.001497	1551.702	0.385075	6086.187	2064.487	813.2129	1534.235
No	-17.4583	13.25011	None	None	1105	6.426789	206.1846	0.185333	6634.498	725.7808	326.1641	58.31587
No	-17.5432	13.32887	None	None	1136	4.374136	516.0746	0.173491	6850.523	6499.175	2476.814	1799.947
No	-17.632	13.34661	None	None	1210	11.2423	1122.502	0.068541	4864.481	1491.322	1260.458	1462.037
No	-17.2603	13.44848	None	None	1086	10.18023	646.9398	0.585483	14625.3	9135.337	4084.101	4082.196
No	-17.4541	13.44452	None	None	1025	3.623494	511.5597	0.058232	1290.844	1490.758	937.466	2860.627
No	-17.5202	13.34661	None	None	1123	1.313745	204.1419	0.112183	2547.271	5821.909	1902.679	1446.871
No	-17.5669	13.40262	None	None	1160	3.281346	876.9047	0.133169	13677.11	6438.808	1711.701	2096.24
No	-17.3319	13.30831	None	None	1082	27.03503	333.8184	0.133576	7820.798	1842.81	657.1928	494.1407
No	-17.3108	13.45457	None	None	1463	22.14948	1193.62	0.094056	24971.53	6985.315	1439.408	1934.009
No	-17.2026	13.49722	None	None	1333	22.28188	1377.738	0.725007	6570.338	17353.23	2181.393	6787.906
No	-17.5932	13.41966	None	None	1219	6.987545	652.4302	0.154315	16979.12	5245.758	2023.841	4363.833
No	-17.2153	13.45959	None	None	931	12.4789	1048.381	0.693311	9874.205	13816.43	204.2658	8810.115


Appendix 17. Vegetation structure summary: shrub density, tree density and visibility. Shrubs heights classes are represented by SH and trees height classes are represented by TH. Standard deviation boxplots.


Appendix 18. Epupa Conservancy houses distribution.


Appendix 19. Epupa Conservancy waterpoints distribution.


Appendix 20. Epupa Conservancy crop fields distribution.


Appendix 21. Okanguati Conservancy houses distribution.

Appendix 22. Okanguati Conservancy waterpoints distribution.

Appendix 23. Okanguati Conservancy crop fields distribution.

Appendix 24. Vegetation structure at predator livestock killing site. Shrubs heights are represented by SH and tree heights by TH.

Predators	SH1	SH2	SH3	TH1	TH2	Ν	Ε	S	W
Cheetah	50	13	10	2	7	25	10	10	20
Leopard	54	11	5	1	0	15	10	10	5
Leopard	54	121	71	11	4	43	34	38	50
Caracal	65	211	65	8	5	34	38	36	34
Caracal	80	219	76	1	0	45	38	105	50
Cheetah	25	13	17	5	3	42	40	15	35
Cheetah	11	14	28	0	5	15	12	40	30
Cheetah	73	91	45	12	28	60	35	30	62
Cheetah	123	204	34	4	4	22	40	70	48
Caracal	11	6	23	8	23	10	80	15	60
Caracal	170	78	73	9	7	25	70	86	58
Caracal	126	76	61	34	19	62	89	75	60
Jackal	96	66	70	23	11	71	56	58	49
Caracal	54	12	14	7	2	38	29	21	41
Cheetah	141	91	89	19	24	38	40	41	37
Jackal	12	10	6	3	0	10	25	18	10
Jackal	33	71	77	17	5	68	88	58	50
Caracal	65	86	115	11	9	22	30	33	37
Brown hyena	101	67	52	20	19	52	49	80	87
Caracal	61	29	7	8	3	39	52	35	44
Spotted hyena	24	28	1	4	5	10	15	15	35
Cheetah	121	81	97	6	9	82	63	55	68
Cheetah	110	112	117	13	8	68	70	64	78
Cheetah	80	72	118	12	4	59	70	75	68
Cheetah	135	145	61	4	2	48	54	110	82

Jackal	94	55	43	3	1	125	86	134	145
Cheetah	111	139	52	6	0	66	50	62	73
Leopard	1	7	24	1	1	10	15	5	10
Leopard	34	16	28	0	0	18	5	15	10
Cheetah	87	101	110	8	5	76	68	67	78
Leopard	50	86	27	3	1	69	68	128	41
Jackal	37	42	14	0	5	115	66	68	68
Cheetah	4	5	7	4	3	20	10	20	15
Caracal	171	112	87	23	3	33	38	21	34
Cheetah	18	65	90	12	24	50	64	90	54
Cheetah	23	17	13	5	8	72	78	38	74
Cheetah	160	0	0	27	1	100	200	200	200
Cheetah	56	1	0	9	2	200	110	95	100
Spotted hyena	134	79	104	15	9	63	46	72	64
Cheetah	60	81	114	12	2	78	72	92	73
Caracal	131	57	63	8	1	88	48	61	59
Cheetah	76	198	165	10	4	98	75	85	85
Caracal	10	50	98	47	0	150	80	90	110
Cheetah	69	66	54	17	0	180	200	200	180
Caracal	15	18	12	3	7	70	40	90	30
Cheetah	56	123	73	8	3	118	137	128	130
Caracal	1	9	23	0	15	30	55	40	50