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Brackish groundwater exists in the ground as part of a major stock of water on earth. This water can be consid-
ered as a source of drinking water in Namibia. Attempts have been made in north-central Namibia in recent 
years to produce safe drinking water from groundwater, using various technologies. These include the plant at 
Okashana trial which produced drinking water of good quality using solar-powered desalination systems (von 
Oertzen & Schultz, 2008). In spite of efforts to produce and supply drinking water countrywide, many rural 
communities in north-central Namibia are less likely to get access to safe drinking water. There are several fac-
tors that contribute to the shortage of drinking water; the issue of scarce surface waters, lack of alternative water 
supply technologies and the challenges related to the distribution of the rural population. Population in northern 
Namibia is around 922 065 people distributed sparsely in five regions (Namibia Statistics Agency, 2011). 
Around 8.59% of the northern population live in five towns, while 91.41% is scattered in rural areas.  
Namibia Water Corporation (Namwater) treats and distributes drinking water countywide including water sup-
ply in northern regions. Due to the scattered distribution of rural populations, some communities in remote set-
tlements are not supplied with water by the Namwater distribution network ( Liehr, Papangelou, Brenda, Urban, 
& Kluge, 2015). As a result, some communities rely heavily on brackish water of poor quality supplied from 
hand-dug wells and active boreholes with salinity around 2000mg TDS/l and beyond. Water with salt content 
greater than 2000 mg/L total dissolved solids (TDS) is too salty to drink (National Research Council, 2008). 
Perhaps, the greatest hindrance of water distribution in Namibia is the issue of limited perennial rivers in the 
interior. Non-perennial surface water bodies in north-central Namibia occur during rainy seasons in Oshana and 
drain toward the Etosha Pan where it evaporates completely before summer. Groundwater aquifers in north-
central Namibia are mostly brackish with salinity ranging between that of fresh and seawaters, making it unsuit-
able for human and livestock consumption.  
Although research is clear on the suitability of water desalination using solar stills, further studies are needed to 
explore the potential of small scale desalination technologies for the supply of safe drinking water in remote 
settlements. A passive solar still is a technology suitable for purification of brackish water in remote settlements. 
This article describes a study conducted with passive solar stills in order to produce drinking water from brack-
ish groundwater. The aim of the study was to determine the productivity and efficiency of passive solar desali-
nation units (SDU). Samples of brackish groundwater collected from remote settlements were distilled using 
passive solar stills. The results provided insights regarding the design, productivity and efficiency of passive 
solar desalination units in regions with high solar radiation. The findings revealed the efficiency, productivity, 
quantity, quality and capacity of the units to produce safe drinking water. Recommendations are made for the 
removal of all important contaminants, for post-treatment and mineral enrichment of distillate, and for im-
provement in the design of the condensing cover of the units. 
 

1. Background 

The rural populations of northern Namibia are the most affected by drinking water scarcity and is hampered 
from economic activities such as crop production. Such activities have economic potential (Alexandra & Cedric, 
2009). 59% of the rural population in northern  Namibia have no access to safe drinking water in the form of 
pipes inside or outside their dwelling whilst about 13% of the rural population depends on drinking water from 
unprotected wells (Namibia Statistics Agency, 2011). This lack of access to safe drinking water contributes to 
poverty which is high among those who drink from rivers, dams, Oshana and public taps (Namibia Statistics 
Agency, 2012). Moreover, 47,7% of the poor population in Namibia use drinking water from unsafe sources. 
Thus, additional water supply in northern Namibia has the potential to promote domestic food supply and the 
formation of an additional source of income (Alexandra & Cedric, 2009). The production of additional water 
can be achieved with water supply technology such as solar stills. In a recent study, (von Oertzen & Schultz, 
2008), summarised critical issues in relation to various desalination technologies in Namibia. The study found 
desalination with solar stills technology more favourable when factors such as capital costs, operating costs, 
maintenance cost, energy and technical requirements are combined. Other researchers also found desalination 



 

costs low enough to make it an attractive option for safe drinking water supply (National Research Council, 
2008). 
In contrast to earlier forms of desalination, recent water policies have been dominated by efforts to identify new, 
untapped sources of water supply. This resulted in the growth of the desalination capacity of approximately 37 
million m3/day both globally and nationally (National Research Council, 2008). Current studies have reported 
an estimated 90 million m3 of desalinated water per day, produced by around 18,500 desalination plants world-
wide. Saudi Arabia, the United States, the UAE and Kuwait share the globe's highest desalination capacities 
(B2B Connect UAE, 2018). Reverse osmosis and other membrane systems account for nearly 96% of online 
desalination capacity in the United States (National Research Council, 2008). In Namibia, operating desalination 
plants use Reverse Osmosis (RO) (von Oertzen & Schultz, 2008; Mansour, 2016). The earliest form of desalina-
tion was accomplished by boiling salt water, cooling and condensing it as fresh water (Mansour, 2016; von 
Oertzen & Schultz, 2008) This article, investigated desalination of brackish groundwater using solar stills. It 
focused on design, quality, capacity, productivity and efficiency of solar desalination units (SDU) used in the 
study.   
 

2. Desalination technologies in Namibia 

Commonly used desalination technologies in Namibia include reverse osmosis (RO), multistage flash, multiple 
effect distillation (MED), vapour compression (VC), the freezing method, submerged tube evaporator (STE), 
chemical desalination and solar stills (von Oertzen & Schultz, 2008; Mansour, 2016). Reverse osmosis is a 
membrane separation process in which pure water passes from the high-pressure water side of a semi-permeable 
membrane to the low-pressure permeate side of the membrane (von Oertzen & Schultz, 2008; Mansour, 2016; 
Salinas-Rodriguez, Schippers, & Kennedy, 2016).  
Multistage flash (MSF) and multiple-effect desalination (MED) are thermal processes suited to high salinity. 
The MSF process generates vapour in a multistage which is condensed and channelled into fresh water contain-
ment. The heat generated during the condensing process is used to pre-heat additional feed water resulting in 
enhanced efficiency (von Oertzen & Schultz, 2008). Multiple effect distillation uses the steam produced by 
boilers to successively feed water in a series of steps called effects. According to recent studies, thermal desali-
nation processes are energy intensive compared to membrane technologies, with MSF being more energy-
hungry requiring up to 80kWh of thermal energy for every cubic metre of water to be desalinated, followed by 
MED, using about 70kWh/m3. RO is reported as the most energy efficient membrane desalination technology in 
common, used today, with a total equivalent electricity 17.5kWh/m3, about one quarter that of MED and one-
fifth of that used by MSF (B2B Connect UAE, 2018).  Contrary to the energy requirement of most common 
used desalination technology, passive solar stills use only solar energy falling onto the unit. In active solar stills, 
an external thermal energy source can be added to the unit to aid heat addition to the salty or brackish water 
(Lienhard, Antar, Bilton, Blanco, & Zaragoza, 2017). Solar stills can also operate in hybrid mode, whereby solar 
radiation and other energy can be provided in combination for operation beyond the daily sun-shine periods 
(von Oertzen & Schultz, 2008).  
 

3. Procedures and methods  

3.1 Water sampling procedures and testing 

Rural communities in remote settlements with drinking water scarcity were identified for the study. Study areas 
were initially identified in 11 national demarcated water basins which were later reduced to only basin as a re-
sult of the selection criteria used to select the final study area and sampling points. Criteria used for the selection 
of suitable study areas included; population affected by water shortage in water basins, groundwater salinity and 
water supply, solar radiation, and accessibility of sample points (boreholes or hand dug-wells). The researchers 
sought to include only boreholes and hand dug-wells with water declared unfit for human consumption due to its 
salinity and thus they used a purposive sampling procedure to select boreholes and hand dug-wells identified 
within a sample location. This process resulted in the Etosha water basin being the only suitable study area due 
to its groundwater salinity level, see Figure 1. Four sampling locations were identified in the Etosha water basin 
for the study see Figure 1. Samples were collected from sample points using 25 litre sampling containers. Con-
tainers were transported to the Namibia University of Science and Technology (NUST) Laboratory in Wind-
hoek, and stored in laboratory controlled conditions. The water samples collected from boreholes in sample 
location K were the most reliable for the analysis. Apart from the reliability of samples from the rest of the sam-
ple points, access to these points was also an issue which could not be resolved during the research period. Wa-
ter analysis was carried out by an accredited water laboratory. A representative sample from each container was 
analysed using various methods to determine the physical and aesthetic quality of raw water and to assess its 
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The surface area was improved with mattress cubes placed on top of gravels at the bottom of the unit to enhance 
heat storage and improve the evaporation rate and the yield. 

4. Results and discussion  

Typical results of water quality test before and after desalination is shown in Table 1. The results show im-
provement in permeate quality, with significant purification achieved in the removal of salts. Raw water was 
classified in group D of drinking water category be purification. Group D indicates water which is bacteriologi-
cally unsuitable for human and livestock consumption. Purified water was found to meet the drinking water 
criteria of group B, and group A in some cases. Insignificant depletion in some minerals was observed. The 
permeate can be enriched with minerals using post-treatment or the simple addition of minerals. Further re-
search is needed to determine what post-treatment methods will increase mineral contents of permeate. A drastic 
improvement in the quality of the final water indicates the reliability of the passive solar desalination method. 
Although the permeate was not tested to determine inorganic constituents, it can be categorised in group B of 
drinking water in terms of its aesthetic and physical determinants. The results provided insights for desalination 
of brackish water using passive solar stills. The findings are a step toward better understanding what determi-
nants could be distilled and what quality of permeate can be achieved using passive solar stills. Research on the 
practical application of water desalination using passive solar stills in poor rural communities in Namibia is very 
limited. Further research is needed to determine the quality of brackish water at remote settlements affected by 
water scarcity in the Etosha water basin which is beyond the scope of the current study. 
 

Table 1: Typical water quality test before and after desalination 

Determinants  Units AKK26 Onalufipa BKK29 Ondjamba CKK22A Chamuchamu 
Before After Before After Before After 

Colour mg/l  Pt** 20 20 20 20 20 20 
pH pH-unit 8.66 8.1 8.91 8 7.9 8.1 

Turbidity N.T.U.*** 0.8 0.5 0.8 0.5 0.7 0.5 
Salinity mg/l   1541 0.05 7839 0.07 13400 0.08 

Conductivity mS/m 250C 2300 0.075 11700 0.01 20 000 0.119 
Alkalinity mg/l  CaCO3 >10 000 0.1 >10 000 0.09 >10 000 0.07 
Chloride mg/l  Cl 3523 8 3674 8 3703 9 

Total hardness mg/l  CaCO3 156 156 164 140 163 146 
Manganese µg/l  Mn 17 5.0 20 5.0 19 5.0 

Nitrate mg/l  N 0.5 0.4 0.5 0.3 0.5 0.3 
Iron µg/l  Fe 1280 50 1160 50 1290 40 

Fluoride mg/l  F 1.92 0.01 1.97 0.01 1.95 0.01 
Sulphate mg/l  SO3 >800 1.0 >800 1.0 >800 1.0 

        
** Pt = Platinum Units. 
*** Nephelometric Turbidity Units. 
 
The variation in the water level of the evaporation basin was studied to analyse the effect of still water depth and 
the depth of the SDU on its performance see Figure 3. Two prototypes were used; Prototype1- (80mm deep still 
with 50mm deep tray), Prototype2 - (150mm deep still with 100mm deep tray). The level of raw water in the 
evaporation basin was found to influence distillation efficiency and performance of the SDU. A good balance in 
the level of evaporation tray and depth of stills resulted in a good performance. Analysis revealed that evapora-
tion in the shallow stills is faster as compared to the deeper stills. Figure 3 shows the comparison of prototypes. 
Although both prototypes show comparable results, Prototype1 produced a high yield per day. The water basin 
level influences its yield, with water depth being inversely proportional to the still productivity. The effects of 
productivity studies (Abed, Kassim, & Rahi, 2017) using three water depths (5, 7.5, 10 mm) produced similar 
trends. Increase in the depth of stills has a direct influence on the evaporation rate. Additionally, as brine depth 
increases, the volumetric heat capacity of the stills is reduced resulting in a decrease in water temperature for a 
given solar irradiation. A summary of the effects of depth on productivity in a study conducted by (Ayoub & 
Malaeb, 2012) also revealed similar decreasing trends in productivity with increasing brine depth. Moreover, 
water depth was found to be inversely proportional to productivity during daylight but reverse for overnight  
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Figure 3: Effects of still depth on  performance 
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Figure 4: Effect of heat storage on still performance 

 
production. Additionally, more yield is obtained during off-shine hours as compared to daytime for higher water 
depths due to heat storage effects, this finding was also observed by (Ayoub & Malaeb, 2012; Badran & Abu-
Khader, 2007).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to the analysis of the effects of still depth on solar still performance, two approaches were taken to 
study the effects of surface area on solar still productivity. This analysis compared the productivity of a 
conversional solar still without mattress cubes, against a solar still with mattress cubes in the evaporation basin. 
Sponge cubes were used to increase the surface area. An increase in the yield of about 1.51Litres/m2/day was 
obtained. This is about 20% greater than the basin without sponges. The addition of sponges increased the sur-
face area in the desalination basin, which resulted in an increased evaporation area. The effect of absorbing 
materials on the productivity of solar stills have been studied by other researchers using various approaches. A  
15% increase in productivity of solar stills with sponges was also reported by (Ayoub & Malaeb, 2012; 
Lienhard, Antar, Bilton, Blanco, & Zaragoza, 2017) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The effect of heat storage materials on performance and productivity of solar still was studied using two proto-
types; a conventional solar still (Prototype1) and a prototype filled with 3kg 19mm gravels and mattress sponge 
cubes (Prototype2). As seen on the results shown in Figure 4, the addition of gravels combined with sponge cu-
bes enhanced the daily productivity to reach a value of 4.5 litres/m2/day with daily efficiency reaching 37.8%. 
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