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Flood determination in Namibia, with its variable climate, erratic drought and flood events and poor hydrometric 
data coverage, must frequently refer to empirical and deterministic methods. For the deterministic methods, three 
co-axial diagrams are used, which were originally developed in 1979 and which have not since been updated. The 
purpose of this study was to investigate the accuracy of one of the co-axial diagrams, namely the depth-duration-
frequency (DDF) diagram, by using the latest available daily rainfall and following a similar methodology to that of 
the original publication. For most of the stations, the derived return levels of the individual stations were lower than 
the levels indicated in the 1979 co-axial diagram, indicating that the co-axial diagram is conservative, especially for 
higher return periods. The results highlight that the Namibian flood determination methods, with few exceptions, are 
in urgent need of updating and the derivation of new methods or approaches may even be warranted. 
 
1. Background 
Namibia’s variable climate and lack of good quality, long-term hydrometric data often limits flood designs to the 
use of deterministic and empirical flood determination methods. All deterministic methods recommended by the 
latest edition of the Namibian Drainage Manual require the derivation of a design rainfall to determine the design 
runoff value (Roads Authority, 2014).  
 
The determination of the design rainfall is dependent on the catchment area size and the location of the catchment 
area. Catchment areas are divided into 3 categories by size: small being less than 15 km2, medium areas being 
between 15 and 5 000 km2 and large being greater than 5 000 km2. The catchment location is also divided into three 
categories, namely the Coastal, Northern and Southern regions. Determining the design rainfall for small areas 
requires the use of the co-axial diagram referred to as the depth-duration-frequency (DDF) diagram (refer to 
Figure 1), while doing so for large areas requires the use of a depth-area-duration-frequency diagram for the 
Northern and Southern Regions, while Coastal Regions are to use the DDF diagram for smaller catchment areas, 
regardless of the catchment area size. Medium sized catchment areas require a weighted combination of the small 
and large catchment area design rainfall approaches (Roads Authority, 2014). Most catchment areas will fall in the 
medium category and will therefore make use of the DDF diagram (though in weighted form) along with smaller 
catchment areas (Roads Authority, 2014). The DDF diagram as published in the Namibian Drainage Manual (2014) 
will be the focus of this article. 
 
1.1 General Background to the Co-Axial DDF Diagram 
Flood determination methods for both Namibia and South Africa were generally developed and published by the 
South African Department of Water Affairs in the 1970s and 1980s and were then adopted in design guidelines by 
road and transportation authorities. After independence from South Africa in 1990, the Namibian Department of 
Transport published their own Drainage Manual in 1993, which was largely a localisation of the South African 
Drainage Manual. The Drainage Manual was updated in 2014 and published by the Roads Authority of Namibia, 
remaining largely dependent on the South African equivalent. Flood determination methods published in the 
Drainage Manual of 2014 remained largely unchanged from the 1993 publication, with the methods mostly 
receiving a visual update to the relevant graphs used (Department of Transport 1993; SANRAL 2013; Roads 
Authority 2014). 
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The log-Gumbel distribution as described in HRU 3/79 is as follows: 
 

F(x)=e -a+cy         (1) 
 
Where: 

c  = √6.σ/π 
a  = γc-μ 
σ  = standard deviation 
μ  = mean 
γ  = 0.57721 (Euler’s constant) 

 
Since its publication nearly 40 years ago, this diagram has remained unchanged. With longer and additional rainfall 
records available, it is only reasonable to re-assess the accuracy of this diagram.  
 
2. Methodology 
The purpose of this analysis is to assess if the DDF diagram (specifically the top right diagram used for maximum 
one-day precipitation) represents more recent maximum daily rainfall statistics. The premise of this analysis is that 
design rainfall derived from rainfall station(s) either within a catchment area or close to it would be more desirable 
than generalised relationships such as the DDF diagram. Stated differently: how would maximum one-day 
precipitation values derived from individual stations compare to the generalised DDF diagram? 
 
It must be stated clearly that this analysis does not attempt to update the existing DDF curves in Namibia, but rather 
evaluate of the accuracy of the diagram using current rainfall data. This study was originally conducted as a final 
year civil engineering project for Mr Solver Sinombe at the Namibia University of Science and Technology in 2017. 
 
2.1 Data acquisition 
Historic daily rainfall station data was requested from the Namibia Meteorological Services (NMS), who have the 
largest and longest rainfall database in Namibia. The desire was to obtain all daily rainfall station data available, 
specifically for stations with record lengths exceeding 30 years. Obtaining the necessary data proved to be 
challenging, as the NMS was reluctant to provide complete station records for this study and provided different 
datasets containing different station data on different occasions, with different record lengths. The final dataset used 
for this analysis contained rainfall data of 217 stations across Namibia, whose record length was restricted to a 
maximum of 50 years by the NMS. However, it is considered highly unlikely that all stations with a maximum of 50 
years data was submitted by the NMS, as data for known prominent and historic stations were not included. The 
analysed stations therefore do not represent the complete daily rainfall dataset available in Namibia. 
 
2.2 Data processing 
The selection of stations for further analysis was based on the following criteria. All stations that had a record length 
of less than 10 years were discarded from analysis. Secondly, if the record length of the individual station was more 
than 10 years but more than 15% of the record length was missing, that station was discarded. Similar to the 
approach followed for HRU Report No. 3/79, if critical rainfall data was missing, i.e. if the months between October 
through March during a particular year had little or no record, the entire year or that station was discarded.  
 
Using these criteria, only 64 stations were considered for further analysis, shown in Figure 2. Of these stations, 18 
stations had usable record lengths of 20 to 30 years, 19 stations with record lengths of 30 to 40 years and 27 stations 
with record lengths exceeding 40 years. Unfortunately, due to the seemingly odd selection criteria used by the NMS 
for the provision of data and the selection criteria applied for this analysis, no stations located in the centre- to north 
and north east of Namibia were included in the analyses. Only data from stations located in the central and southern 
regions of Namibia could be analysed. 
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As the MAP increases, so the difference between the individual station’s return level and corresponding DDF return 
levels increase, especially for higher return periods. The exception to this occurs with stations with MAP values 
lower than 100 mm, which typically have return levels that exceed the DDF curves, the reasons for which are 
discussed above. 
 
Overall, return levels derived from individual stations are in most cases lower than those of the DDF curves, and 
become considerably lower as the return period increases. 
 
3. Discussion 
Due to the limited scope of this analysis, further investigations must be conducted to determine why the rainfall data 
used for this analysis generally produced return levels lower than the available DDF curves and if similar results are 
observed with a more complete and representative rainfall dataset, since only stations in the central to southern 
regions of Namibia were analysed. 
 
As shown in Figure 3, return levels generated for many individual stations did not even exceed the corresponding 
DDF values for a 20 year return period. This is true for all stations with a MAP > 300 mm. The implication here is 
that if the DDF diagram is used for a 20 year design rainfall, it would generate a design storm which exceeds return 
levels generated from individual rainfall stations as high as 100 year return periods. This indicates that the DDF 
curves are extremely conservative when compared to the analysed rainfall data. This will consequently result in the 
possible overestimation of design rainfall and consequent overdesign of related infrastructure (culverts, bridges, 
etc.). This was also acknowledged to a certain extent in HRU Report No. 3/79, which mentions that 20% of the 
maximum daily rainfall values for all stations were below the 20-year line, 74% were below the 50-year line and 
93% were below the 100-year line of the DDF diagram. Interestingly, 45%, 84% and 95% of the maximum daily 
rainfall values from this analysis were below the 20-, 50- and 100-year lines respectively. 
 
It must emphasised that this analysis does not represent an update of the method, but rather an initial and simplified 
assessment of the accuracy of the 1979 DDF diagram. The exact methodology detailed in Report No. HRU 3/79 was 
not followed, specifically regarding the relationships between MAP and the log-mean and log-standard deviation of 
all the analysed data. The establishment of these relationships in HRU Report No. 3/79 involved multiple attempts at 
curve fittings, especially regarding the MAP – log-standard deviation relationship, which is the most sensitive 
parameter in the log-Gumbel distribution. It is posited that the MAP – log-standard deviation relationship is the most 
likely explanation for the difference between the original DDF curves and the analysed data. However, this must be 
confirmed with further assessments. 
 
An additional factor to be investigated is the assumed relationship between MAP and maximum daily rainfall. This 
assumption is key to the derivation of the DDF diagram: Maximum one-day precipitation increases as the MAP 
increases. Whilst this may seem intuitive, it does not necessarily follow that higher mean annual rainfall corresponds 
with higher daily storm events. For example, it is possible that large storm events, including large daily rainfall 
totals, occur in unremarkable rainfall years (low MAP). These factors must be investigated and re-established, 
especially in the Namibian context with its highly variable rainfall conditions and tendency towards extremes. 
Confirming this assumption was unfortunately beyond the scope of this study. 
 
Ultimately, this study was aimed at assessing how the DDF curves, derived nearly 40 years ago, compare to current 
available rainfall data, in this case for the central and southern regions of Namibia. It was shown that there is reason 
to question the validity of the DDF curves as these seem overly-conservative from a design point of view. If 
anything, this study highlights that urgent reviews and updates of the Namibian flood determination methods and 
specifically the DDF diagram, are required. 
 
4. Recommendations 
The analysis was greatly limited by the data provision by the Namibia Meteorological Services, who struggled to 
process the data requests for this analysis and submitted a limited dataset that ended up only reflecting stations 
located in the centre to south of Namibia. Discussions around the value of data must be had with data providers, in 
this case the NMS, so that uncertainties and misunderstandings can be clarified. Data providers must also be more 
transparent with the data they have available, in order to assist the analyst with the better processing of data requests. 



This may include providing geographic coordinates of the stations; indicating what record length is available and 
how many errors and missing data readings the dataset contains. 
 
Further investigations into the validity of the DDF diagram and much needed updates are highly recommended. 
These investigations must include a more representative and complete dataset. Furthermore, the methodology of 
HRU Report No. 3/79 should be followed to produce new (updated) curves. Other extreme value distributions can 
also be incorporated in lieu of using only the log-Gumbel distribution. Even more critically, the relationship between 
MAP and maximum daily rainfall must be re-established for the DDF diagram to still be valid, otherwise other 
methods for generating design rainfall should be considered. For example, factors such as regional climatic zones 
and / or rainfall characteristics could be considered for the estimation of design rainfall.  
 
Namibia is indebted to the contribution of the hydrologists of the 1970s and 80s whose methods are still in use to 
this day, a generation later. Whilst their methods have proven to be enduring, it can certainly be agreed that they 
themselves would have recommended periodic updates and reviews into the methodology, as new information and 
more data became available. We hope this study will spark renewed interest and investigations into Namibian design 
flood methodologies. 
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