IMPACT OF DIABETES ON THE TREATMENT OF TB PATIENTS IN KHOMAS REGION, NAMIBIA

By

Anita Beukes

(217076629)

Thesis presented in fulfilment of the requirements for the degree of Master of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia

Supervisor: Dr Munyaradzi Mukesi

Co-supervisor: Professor Sylvester Rodgers Moyo

October 2019
DECLARATION

I, Anita Beukes, hereby declare that the work contained in the thesis entitled “Impact of Diabetes on the treatment of TB patients in Khomas Region, Namibia” is my own original work and that I have not previously in its entirety or in part submitted it at any university or other higher education institution for the award of a degree.

Signature: ... Date:

Supervisor: ... Date:

Co-supervisor: ... Date:
RETENTION AND USE OF THESIS

I, Anita Beukes being a candidate for the degree of Master of Health Sciences accept the requirements of the Namibia University of Science and Technology relating to the retention and use of theses deposited in the Library and Information Services.

In terms of these conditions, I agree that the original copy of my thesis deposited in the Library and Information Services will be accessible for purposes of study and research, in accordance with the normal conditions established by the Librarian for the care, loan or reproduction of theses.

Signature: .. Date:
ACKNOWLEDGEMENTS

I hereby wish to give thanks to:

• Our heavenly Father who gave me strength, courage and perseverance to carry on in good and bad times to complete this thesis.

• Ms. Cornelia de Waal-Miller, the first main research supervisor, for her inspiration and faith in me to embark on this endeavor and for keeping a watchful eye to see me completing this thesis.

• Dr. Munyadzi Mukesi, the main research supervisor, for the guidance, manuscript proofreading and helpful suggestions. It was always done with enthusiasm and positive thinking.

• Prof. Sylvester Moyo for his valuable inputs and support during the time of our research.

• Ms. Ranie du Toit and the Genmed group for providing an instrument to do field testing.

• Mr. Petrus Katota and his team for assistance during sample collection.

• Dr. Drew Baughman and Dr. Clay Roscoe who gave valuable inputs during protocol development of this research study.

• Namibia Institute of Pathology (NIP) for providing access their testing facilities.

• The MoHSS (Khomas health directorate and facility staff) who supported with sample collection.

• All TB patients in the Khomas region who took part in this research project.

• The Namibia University of Science and Technology for their financial assistance towards reagent procurement for the research project.

• Dr. Nunurai Ruswa and Michael de Klerk for assisting with data analysis

• My family for their encouragement and support during the time spent in completion of this dissertation.
DEDICATIONS

To my husband, Jan Beukes and my children Jiaan and Jeandrè who supported me and often had to make sacrifices to allow me to complete my studies.

To my mother Danella and late father Hendrik Beukes for being my pillars of strength all my life.
ABSTRACT

Introduction

Tuberculosis and diabetes mellitus are public health challenges globally. The World Health Organization (WHO) Global report on diabetes reiterated that diabetes is a well-known risk factor for tuberculosis (TB) and that diabetes is associated with poor tuberculosis treatment outcomes, while tuberculosis is linked with deteriorating glycemic control. Namibia is among the top 30 high TB burden countries in the world (WHO, 2016) and added to that is the increasing prevalence of diabetes among women and men of about 6% and 7% respectively as reported by National Demographic Health Survey (MoHSS, 2013). The report further reiterated that the prevalence of diabetes differs among the geographical regions as well as according to gender. The same distribution is also noted on the prevalence of TB in Namibia. This may suggest a possible connection in the prevalence of diabetes among TB cases and vice versa, which will have implications on the management of both diseases. However, no current or past surveillance data is available on diabetes and TB comorbidities in Namibia to support policy and management strategies for comorbidities of these two diseases. This study therefore aimed to assess the prevalence of diabetes among TB patients in the Khomas region and established if diabetes and TB comorbidity influences the treatment outcomes of TB patients.

Methodology

This was a cross sectional study to determine the burden of Diabetes among active Tuberculosis patients in the Khomas region of Namibia and looked at the treatment regime, smear conversion and treatment outcomes of study participants.

The participants included in the study were active TB patients selected from public health facilities. Convenience sampling was done of TB patients visiting the facility according to the treatment follow-up dates. Only patients with drug susceptible TB, who consented for taking part in the study were included in the study. Each patient was assigned a study identification number for easy tracing of records recorded in the facility TB records. The targeted population for this study was TB patients within the Khomas region. This study population was sampled from 12 public health facilities. Data which was collected from patient files included demographics, TB classification, smear conversion at 2 and 5 months and HIV status. Patients were tested for diabetes using the HbA1c method as recommended by Clover Infopia,
Anyang-si, Gyeonggi-do, Korea) and Cobas/Roche, Mannheim, Germany. The methods were correlated before they were used on patient samples and quality control was processed as recommended by manufacturers. The results were interpreted according to the WHO criteria for diagnosis of diabetes using HbA1c. Data was analysed using Epi Info™ 7 and results presented as cross tabulations.

Results

In this study, the prevalence of Diabetes among TB patients in the Khomas region was 42% based on HbA1c testing and the WHO guideline of 6.5% as the cut-off for diabetes. This is higher than the pooled prevalence of 9.0% revealed by a meta-analysis of 16 studies conducted among tuberculosis patients in SSA. The study also revealed more men (65%) participated in the study and the prevalence of diabetes were higher among men (46%) than women (36%). In this study the prevalence of diabetes was the highest among the 65+ age group, followed by the >55 to ≤64 age group with 46%.

There was no statistical significance of being smear positive (p value = 0, 95), HIV positive (p value=0, 47) or being a new or previously treated patients (p value=0, 79) and testing positive for diabetes. There is also no statistical significance of smear conversion after 2 or 5 months of treatment and testing positive for diabetes with p values of 0, 89 and 0, 17 respectively.

The study participant’s results showed an association between being on first line or other treatment regimens and testing positive for diabetes (p value = 0,012).

Conclusion & Recommendations.

The results of this current study showed that diabetes among TB patients was high in the Khomas region and mostly men and older people were affected by this co-morbidity. There was an association between treatment regimens for TB patients and diabetes.

Based on the results of this study, it is recommended to expand this study nationally in order to get a true reflection of the national impact of diabetes on the TB burden in Namibia and adjust programs and policies accordingly to better TBDM co-morbidities outcomes.
Table of contents

DECLARATION .. i
RETENTION AND USE OF THESIS ... ii
ACKNOWLEDGEMENTS ... iii
DEDICATIONS ... iv
ABSTRACT ... v
List of figures .. ix
List of tables ... ix
ABBREVIATIONS .. x

Chapter 1: Introduction and Literature review .. 1

1.1 Introduction ... 1

1.2 Literature Review ... 3
 1.2.1 Tuberculosis disease ... 3
 1.2.2 Transmission of TB ... 5
 1.2.3 Types of TB ... 6
 1.2.4 Epidemiology of TB ... 6
 1.2.5 Management of TB ... 12
 1.2.6 Diabetes mellitus (DM) .. 22
 1.2.7 TB and DM Comorbidity .. 26
 1.2.8 Case definitions .. 31
 1.2.9 Statement of the problem .. 31

Chapter 2: Methodology ... 33

2.1 Study Design ... 33

2.2 Sampling frame .. 33

2.3 Study Population .. 33

2.4 Inclusion and exclusion criteria .. 33
 2.4.1 Inclusion criteria .. 33
 2.4.2 Exclusion criteria .. 34

2.5 Sample size .. 34

2.6 Data collection .. 34
2.7 Testing ... - 34 -
 2.7.1 Blood collection ... - 34 -
 2.7.2 Sample storage and transportation ... - 35 -
 2.7.3 Testing Methodologies .. - 35 -
 2.7.4 Quality Assurance ... - 36 -
2.8 Data confidentiality ... - 37 -
2.9 Data validation ... - 37 -
2.10 Data security .. - 37 -
2.11 Confidentiality .. - 37 -
2.12 Informed consent ... - 37 -
2.13 Ethical Clearance .. - 37 -
Chapter 3: Results ... - 39 -
 3.1 Descriptive results of study participants ... - 39 -
Chapter 4: Discussion and Conclusion .. - 45 -
 4.1 Discussion ... - 45 -
 4.2 Conclusion .. - 48 -
Chapter 5: Limitations of the Study ... - 50 -
Chapter 6: Research Significance ... - 51 -
Chapter 7: Recommendations .. - 52 -
References .. - 53 -
Annexure I- Participant Questionnaire ... - 65 -
Annexure II - Participant information and consent form ... - 70 -
Annexure III - Confidentiality Form ... - 72 -
Annexure IV- MoHSS approval letter ... - 73 -
Annexure V- NUST approval letter ... - 74 -
Annexure VI- NIP Approval Letter ... - 75 -
Annexure VII- Khomas Directorate Approval Letter ... - 76 -
Annexure VIII – Study Data file ... - 77 -
List of figures
Figure 1.1: Namibia age-sex distribution (MoHSS, 2019). .. - 2 -
Figure 1.2: Model for TB epidemiology (MoHSS, 2019). .. - 4 -
Figure 1.3: Latent vs TB disease (TBFACTS.ORG, 2019). .. - 6 -
Figure 1.4: Map of global estimated TB incident rates, 2017 (WHO, 2018). - 7 -
Figure 1.5: Top causes of death worldwide in 2016 (WHO, 2018). .. - 8 -
Figure 1.6: Trends in CNR 2007-2018 in Namibia (MoHSS, 2019). ... - 10 -
Figure 1.7: All forms of TB cases by Namibian regions in 2017-2018 (MoHSS, 2019). - 11 -
Figure 1.8: Diagnostic flow chart for TB (MoHSS, 2019). .. - 13 -
Figure 1.9: Assay procedure for the MTB/RIF test (Boehme, 2010). .. - 14 -
Figure 1.10: Classic active PTB case (Rabinovitch & Pai, 2018). .. - 16 -
Figure 1.11: The End TB strategy (World Health Assembly, 2014). ... - 17 -
Figure 1.12: Pillars and Principles of the End TB strategy (World Health Assembly, 2014). - 19 -
Figure 1.13: How Pillar 1 works (World Health Assembly, 2014). .. - 19 -
Figure 1.14: Diabetes prevalence rate in WHO African Region (WHO, 2017). - 24 -
Figure 1.15: Trends in age-standardized prevalence of diabetes (WHO, 2016)........................... - 25 -
Figure 1.16: Factors that affect glycaemic control for patients with diabetic during treatment for TB (Riza, 2014) ... - 29 -

List of tables
Table 1.1: Main risk factors for the spread and burden of TB (MoHSS, 2019) - 4 -
Table 1.2: TB patient’s contribution per facility in the Khomas region (MoHSS, 2016) - 12 -
Table 1.3: First-line anti-TB medicines used in Namibia (MoHSS, 2019) - 20 -
Table 1.4: Second-line anti-TB medicines available in Namibia (MoHSS, 2019) - 21 -
Table 1.5: Prevalence of diabetes and related risk factors (WHO, 2016) - 26 -
Table 3.1: Distribution of sample population by gender .. - 39 -
Table 3.2: Frequency distribution of participants according to age range - 40 -
Table 3.3: Frequency distribution of TB cases according to smear reactivity - 40 -
Table 3.4: Frequency distribution of participants according to WHO diabetes classification - 41 -
Table 3.5: A representation of the participant characteristics associated with the development of diabetes ... - 42 -
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>MoHSS</td>
<td>Ministry of Health and Social Services</td>
</tr>
<tr>
<td>NUST</td>
<td>Namibia University of Science and Technology</td>
</tr>
<tr>
<td>NIP</td>
<td>Namibia Institute of Pathology</td>
</tr>
<tr>
<td>NTLP</td>
<td>National TB and Leprosy Program</td>
</tr>
<tr>
<td>CNR</td>
<td>Case notification rate</td>
</tr>
<tr>
<td>WRD</td>
<td>WHO-approved rapid diagnostics</td>
</tr>
<tr>
<td>SSA</td>
<td>Sub-Saharan Africa</td>
</tr>
<tr>
<td>PLHIV</td>
<td>People Living with HIV</td>
</tr>
<tr>
<td>PTB</td>
<td>Pulmonary Tuberculosis</td>
</tr>
<tr>
<td>MTB</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>EPTB</td>
<td>Extra-pulmonary TB</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>MDR</td>
<td>Multi drug resistance</td>
</tr>
<tr>
<td>CNR</td>
<td>Case notification rate</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>NAAT</td>
<td>Nucleic Acid Amplification Test</td>
</tr>
</tbody>
</table>
RF Rifampin (RF)
DST drug sensitivity testing
LPA Line-probe assay
MOTT Mycobacterium other than tuberculosis
LAM lipo-arabinomannan
LF Lateral flow
FDC Fixed dose combination
PDR Poly-drug resistance
RR Rifampicin resistance
XDR Extensively drug-resistant
Hr Isoniazid resistance
FPG fasting plasma glucose
2-h PG 2-h plasma glucose
OGTT oral glucose tolerance test
HbA1c Glycated hemoglobin
EDTA Ethylene Diamine Tetra acetic Acid
psp pulmonary smear positive
psn pulmonary smear negative
CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction
Tuberculosis and diabetes mellitus are substantial public health challenges globally. The World Health Organization (WHO) Global report on diabetes reiterated that diabetes is a well-known risk factor for tuberculosis (TB) and that diabetes is associated with poor tuberculosis treatment outcomes, while tuberculosis is linked with deteriorating glycemic control (WHO, 2016).

In the last two decades, the incidence of diabetes has shown an extensive upturned globally with an estimated 422 million adults living with Diabetes mellitus (DM); this number is predicted to virtually increase twofold by 2030 due to upsurge in type 2 DM risk factors, particularly overweight or obese (Asmelash, 2019). Another source estimated the prevalence of diabetes in adults aged 20–79 years to be 8.8% in 2015 and anticipated it to increase to 10.4% in 2040 (Ogurtsova, 2017).

Sub-Saharan Africa (SSA), like the international community, is facing a growing prevalence of diabetes together with other non-communicable diseases with an estimated 12.1 million people living with diabetes in Africa in 2010, anticipated to rise to 23.9 million by 2030 (Hall, 2011). In Sub-Saharan Africa this inclination is evolving in a region struggling with peak rates of communicable diseases - together with the highest global prevalence of HIV, Tuberculosis and Malaria (Hall, 2011).

A systematic review (Workneh, Bjune, & Yimer, 2017) showed that DM among TB patients causes big challenges on a global level. In countries like Asia, North America and Oceania, the highest prevalence of DM among TB patients were recorded and elements related with TBDM comorbidity encompassed gender, old age, city residence, illicit drug use, alcoholism, smoking, inactive lifestyle, obesity, People Living with HIV (PLHIV), hypertension, pre-existing DM, uncontrolled glycaemia, being a PTB patient, and family history of DM (Workneh, Bjune, & Yimer, 2017).

China accounts for nearly 1,5 million new TB cases annually, 17% of the global TB burden and also have 100 million people affected by DM whilst in 2011, India had 61.3 million diabetics and 1.98 million TB
cases; additionally Indonesia have 450,000 new TB cases every year and ranked 6th place in terms of DM cases globally (Zheng, Hu, & Gao, 2017).

In SSA, study outcomes concerning the prevalence of DM among TB patients vary by geographical region and the contextual features of the participants of the study as reported that the prevalence of DM among TB patients in SSA ranged from 1.9% in Benin to 38% in Nigeria (Alebel, 2019).

Namibia is among the top 30 high TB burden countries in the world (WHO, 2016) and added to that is the increasing prevalence of diabetes among women and men of about 6% and 7% respectively as reported by National Demographic Health Survey (MoHSS, 2013). The report further reiterated that the prevalence of diabetes differs among the geographical regions as well as according to gender. The same distribution is also noted on the prevalence of TB in Namibia as shown in figure 1.1 below (MoHSS, 2019). This phenomena may suggest a possible connection in the prevalence of Diabetes among TB cases and vice versa, which will have implications on the management of both diseases. However, no current or past surveillance data is available on diabetes and TB comorbidities in Namibia to support policy and management strategies for comorbidities of these two diseases.

![Figure 1.1: Namibia age-sex distribution (MoHSS, 2019).](image-url)
Pulmonary TB is the ninth most common problem in diabetes and due to an escalating prevalence of DM, the relative impact of DM on the TB epidemic is growing (Baghaei, 2013).

This study aims to assess the prevalence of diabetes among TB patients in the Khomas region and establish if diabetes and TB comorbidity influences the treatment outcomes of TB patients.

1.2 Literature Review

1.2.1 Tuberculosis disease

Tuberculosis (TB) is a communicable disease caused by *Mycobacterium tuberculosis (MTB)* that primarily affects the lungs causing pulmonary Tuberculosis (PTB). *Mycobacterium tuberculosis*, which is from the Mycobacteriaceae family is a rod shape, non-motile obligate aerobe bacterium; hence the bacilli are typically found in the well-aerated upper lobes of the lungs in classic MTB cases (Todar, 2019). Todar further explains that the virulence of MTB is extremely complex and multifaceted because the bacterium does not produce any toxins but it owns an enormous catalog of structural and physiological properties that impacts virulence and pathology of TB.

MTB has certain characteristics that add to its virulence. The TB bacillus gains entry into the cell by directly binding to mannose receptors on macrophages via the cell wall-associated mannosylated glycolipid, LAM. It can grow intracellularly which provides an effective way to escape the immune system (Todar, 2019). After MTB is phagocytosed, it can prevent phagosome-lysosome fusion by excretion of a protein that transforms the phagosome membrane. It may linger in the phagosome or leak from the phagosome, but in both cases it discovers a safe way to grow in the macrophage (Todar, 2019).

Todar, (2019) reported other characteristics like the slow generation time of MTB, causing the immune system not to easily distinguish the bacteria in order to trigger an elimination response. The high lipid concentration in cell wall causes impenetrability and resistance to antimicrobial agents, hampers killing by acidic and alkaline compounds in either the intracellular and extracellular locations, and confers resistance to osmotic lysis via complement deposition and attack by lysozyme (Todar, 2019).

Mycobacterium tuberculosis is an acid-fast bacilli and it causes PTB disease when the bacilli reach the pulmonary alveoli after inhalation. As a granulomatous inflammatory condition, TB triggers stages of tissue damage and necrosis followed by healing and fibrosis (Parvizi & Kim, 2010).

Tuberculous mycobacteria repel demolition by alveolar macrophages and reproduce, forming the major lesion or tubercle; they then move to regional lymph nodes, cross into the circulation, and re-enter the
TB bacteria can also attack other parts of the body such as the spine, lymph nodes, brain and kidneys; this is known as extra-pulmonary TB (EPTB) (Ismael, 2019).

Figure 1.2 below extracted from the national TB guidelines (MoHSS, 2019) shows the model for TB epidemiology, displaying the impact of the main risks factors at various stages from infection to disease.

![Figure 1.2: Model for TB epidemiology (MoHSS, 2019).](image)

The main drivers for TB disease are cited from the Namibia National TB guidelines, MoHSS in Table 1.1 below.

Table 1.1: Main risk factors for the spread and burden of TB (MoHSS, 2019)

<table>
<thead>
<tr>
<th>RISKS RELATED TO:</th>
<th>RISK FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exposure</td>
<td>Population density, Family size, Climatic conditions, Age of source of infection</td>
</tr>
<tr>
<td>2. Sub-clinical infection</td>
<td>Airborne transmission through infectious droplet nuclei, Characteristics of the infectious patient, Air circulation and ventilation, Reducing expulsion of infectious material from source case, Host immune response, Other modes of transmission: M. bovis</td>
</tr>
<tr>
<td>3. TB disease</td>
<td>HIV infection, Other medical conditions (e.g. diabetes mellitus), Age, Genetic factors, Environmental factors, Pregnancy, Re-infection</td>
</tr>
<tr>
<td>4. Death</td>
<td>Site of TB, Type of TB, Timeliness of diagnosis, HIV co-infection, Other comorbidities</td>
</tr>
</tbody>
</table>

The most commanding PTB symptoms according to the Namibia National TB guidelines are persistent cough for 2 weeks or more, hemoptysis (coughing up blood), chest pain, night sweats, dyspnea (shortness of breath), loss of appetite and loss of weight (MoHSS, 2019). However, when TB affects other body parts, signs and symptoms can vary based on the organ involved like TB of the spine can cause back pain (Fuentes Ferrer et al., 2012) while blood in urine can be a sign of kidney TB (Kapoor, 2008).
1.2.2 Transmission of TB

Transmission of TB takes place when individuals with infectious TB cough, sneeze, talk or spit propelling TB bacilli into the air. One cough can yield 3,000 infectious droplet nuclei and although direct sunlight destroys tubercle bacilli in minutes, they can stay alive in dark, stuffy locations for extended periods of time (Dye, 2006). The minute droplet nuclei sidestep the barricades of the bronchi and infiltrate into the terminal alveoli of the lungs, where duplication and infection starts (Dye, 2006). Transmission is more intense in crowded, poorly ventilated spaces with little ambient sunlight as it increases the likelihood of inhalation of infectious TB bacilli present in the air. If not treated, a person with active pulmonary TB disease will infect, on average, between 10 and 15 people every year (WHO, 2019). The possibility of becoming infected with TB is higher for people who have close contact with an individual with untreated TB (Association, 2018). America lung Association, 2018 further states that those at risk people include people with infectious TB disease friends and family and people living in countries with a high TB burden like some African and Asian countries. Other vulnerable groups at risk for TB transmission are immune-compromised people like PLHIV and diabetics, homeless persons, injection drug users, smokers and people living or working in congregate settings like correctional facilities, nursing homes and hospitals.

TB transmission can also happen through other avenues. A study published in Thorax (Classen et al, 1999) twenty years ago, already suggested that while in low incidence areas transmission of TB often takes place in small areas like the household, in high incidence areas contact outside the house plays a major role in the transmission of TB. The study revealed that in a low income area with social drinking as the major recreational activity, 74% of all the patients drank regularly in social groups and therefore outdoor contact in social groups can be very close and intimate which could easily have contributed to the transmission of TB (Classen et al, 1999).

A study done in Brazil (Dowdy et al, 2012), concluded that geographic heterogeneity in TB transmission results in hotspots that may play an unequal role in spreading TB epidemics. The Brazil study further alluded that under conceivable situations, a hotspot with 6% of a city’s inhabitants can attribute 35% or more of its ongoing TB transmission. It is therefore crucial to focus TB control efforts disproportionately on high transmission areas to have similar impact on long-term, community-wide TB incidence as achieving the same targets in the general community.
1.2.3 Types of TB
When people become infected with *M. tuberculosis* and the bacilli lies dormant in the body for many years without making one sick, it is called latent TB infection. In most cases, people inhale TB bacteria and they become infected; however, their immune system is capable of fighting the bacteria from growing into TB disease. People with latent TB infection do not feel sick, do not have any symptoms, and cannot spread TB bacteria to others (CDC, 2014).

In a person with a compromised immune system, the TB bacilli become active in the body and multiply. In such instances, the person will progress from having latent TB infection to being sick with TB disease. Factors that compromise the immune system and therefore stimulate the development of TB infection to TB disease are HIV infection, malnutrition, age, diabetes and cancer. WHO recommended that these high risk groups especially HIV infected persons receive isoniazid preventive therapy or similar treatment to prevent them from developing TB disease (WHO, 2011). The WHO guidelines further state that the chances of acquiring TB is between 20 and 37 times higher in people living with HIV than among those who do not have HIV infection. Figure 1.3 shows the differences between latent TB and TB disease.

![Figure 1.3: Latent vs TB disease](TBFACTS.ORG, 2019)

1.2.4 Epidemiology of TB
1.2.4.1 Global epidemiology of TB
Notwithstanding centuries of scientific action and social struggle, tuberculosis continues to claim more than 1·6 million lives each year and continues to kill more people than any other infectious disease (Cox & Nicol, 2018). Tuberculosis is the number nine cause of death worldwide; resistance to antibiotics is on
an upward trend which creates a key hurdle to effective tuberculosis control globally (Dara & Zachariah, 2018).

Tuberculosis was the primary reason of 1.3 million deaths among human immunodeficiency virus (HIV)-negative people in 2016, surpassing the overall number of HIV/acquired immune deficiency syndrome (AIDS) deaths and additionally was the causative agent of 374,000 HIV deaths (Glaziou, Floyd, & Riviglione, 2018). Even with the achievements gained with 90 years of vaccination (Bloom et al, 2017) and chemotherapy in the last seven decades, TB remains the top infectious killer worldwide (Glaziou, Floyd, & Riviglione, 2018).

Data from the Global TB Report indicated that in 2017, 6.4 million new cases of TB were notified, however it was only equivalent to 64% of the estimated 10.0 million new cases that occurred in 2017 (WHO, 2018). In 2017 WHO estimated that 90% of TB cases were adults (aged ≥15 years), 64% were male, and 9% were people living with HIV. The report further stated that 80% of the 3.6 million global shortfall comes from 10 countries, of which India (26%), Indonesia (11%) and Nigeria (9%) are on top of the list (WHO, 2018). Figure 1.4 below shows global estimated TB incidence rates of 2017.

Figure 1. 4: Map of global estimated TB incident rates, 2017 (WHO, 2018)

TB ranks among the top 10 leading causes of death and was the top cause of death by a single infectious agent in the world in 2016 (WHO, 2018) as portrayed in Figure 1.5 below.
The report further states that an estimated 1.3 million people died of TB, in addition to 300,000 TB deaths among HIV-positive co-infected people (WHO, 2018).

The TB burden is fueled by the increased public health crisis of Multi drug resistance (MDR-TB) to the most effective first line anti TB drugs. MDR TB accounted for 82% of the estimated 558,000 people that developed drug resistant TB in 2017 (WHO, 2018). However, tuberculosis death rates have dropped by 22% worldwide and an expected 49 million lives were saved between 2000 and 2015 through effective diagnosis and treatment (Onyebujoh, Thirumala, & Piatek, 2017).

Tuberculosis is a key source of causing pulmonary and extra-pulmonary TB disease, and death in children in high burden areas but is also seen in low prevalence settings because of movement of people through global travel, population immigration, and refugee relocation (Marais & Schaaf, 2019).

1.2.4.2 Epidemiology of TB in the African Region
Twenty six percent of the projected incidence of all tuberculosis cases comes from Africa and is double the worldwide estimated incidence rates (239/100,000 people) of new tuberculosis cases (Onyebujoh, Thirumala, & Piatek, 2017). Death rates due to TB in Africa are triple the global average and even though TB incidence rates are decreasing since 2000 in sub-Saharan Africa, the tuberculosis/HIV dual epidemic
complicates efforts to correctly diagnose and effectively treat both diseases (Onyebujoh, Thirumala, & Piatek, 2017).

On August 26, 2005, the WHO Regional Committee for Africa declared TB as an emergency in response to an epidemic that quadrupled in number. In 2016, 2.5 million people fell ill with TB in the African region, accounting for a quarter of new TB cases worldwide. An estimated 417,000 people died from the disease in the African region accounting for about 25% of TB deaths globally (WHO, 2018).

In 2017, WHO estimated that Africa accounted for 25% of the 10 million TB incident cases (WHO, 2018). In the WHO, global report it is further estimated that the 30 high TB burden countries account for 87% of all global incident cases and 16 of these countries are located on the African continent. In 2017, 9% of the global number of new TB cases were from people living with HIV and 72% of those were from the African region (WHO, 2018).

The incidence rates of the African countries mostly affected by TB and listed among the 30 high burden countries are Angola(359), DR Congo(322), Ethiopia(164), Kenya(319), Mozambique(551), Nigeria(219), South Africa(567), UR Tanzania(269), Central African Republic(423), Congo(376), Lesotho(665), Liberia(308), Namibia(423), Sierra Leone(301), Zambia(361) and Zimbabwe(221) (Kanabus, 2018).

1.2.4.3 Epidemiology of TB in Namibia

In 2004, Namibia reported 16,156 cases of all forms of tuberculosis but the reported TB cases have since been declining steadily to 8855 cases reported in 2017 (MoHSS, 2017). Even though the case notification rate (CNR) decreased from 822 in 2004 to 374 in 2017, Namibia’s CNR is still among the highest in the world.

The Deputy Health minister, Ms. Juliet Kavetuna disclosed in an interview held during the launch of the parliamentary TB caucus in Windhoek in 2018 that about 700 people died from tuberculosis-related infections in Namibia in 2017. She cited that “For our small population, 700 people is far too many deaths from one disease. This will have a devastating impact across the Southern African Development Community (SADC) region towards achieving the World Health Organization’s End TB Strategy by 2035” (Kavetuna, 2018).

Namibia conducted its first TB Disease Prevalence Survey in 2017 to 2018 and the final prevalence rate of bacteriologically confirmed TB determined in this survey was 465/100,000(95%CI: 340-590) (MOHSS,
2019). This outcome confirms WHO’s estimate range of 250-799/100,000 population and Namibia’s position among the 30 TB high burden countries globally. Namibia is currently rated as having the 11th highest incidence rate of TB in the world and drug resistance is a key risk, with 7% of all TB patients in Namibia presenting resistance to the main first line medicine which necessitates multifaceted and costly second line treatment (US Embassy Namibia, 2019).

Figure 1.6 below shows the trend of TB case notification rates of ‘All Forms’ TB from 2007 to 2018 in Namibia.

![Trends in case notification rates; 2007-2018](image)

Figure 1. 6: Trends in CNR 2007-2018 in Namibia (MoHSS, 2019)

The burden of TB disease differs from region to region in Namibia, with Khomas, Ohangwena and Erongo regions reporting the highest number of cases as indicated in Figure 1.7 below (MoHSS, 2019).
The burden of TB also differ from facility catchment population as indicated in table 1.2 of the Khomas facilities below.
Table 1.2: TB patient’s contribution per facility in the Khomas region (MoHSS, 2016)

<table>
<thead>
<tr>
<th>Facility</th>
<th>forms of facility (n)</th>
<th>TB per facility (%)</th>
<th>Contribution per facility (%)</th>
<th>Expected tested (n)</th>
<th>Patients to be tested (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katutura Hosp</td>
<td>251</td>
<td>16.1</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Katutura HC</td>
<td>176</td>
<td>11.3</td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Khomasdal HC</td>
<td>95</td>
<td>6.1</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Robert Mugabe</td>
<td>78</td>
<td>5.0</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Donkerhoek clinic</td>
<td>94</td>
<td>6.0</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Otjimuwse clinic</td>
<td>107</td>
<td>6.9</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Okuryangava HC</td>
<td>299</td>
<td>19.2</td>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Groot Aub clinic</td>
<td>23</td>
<td>1.5</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Dordabis clinic</td>
<td>8</td>
<td>0.5</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hakahanu clinic</td>
<td>212</td>
<td>13.6</td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Wanaheda clinic</td>
<td>214</td>
<td>13.8</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Baumgartsbrum</td>
<td>1</td>
<td>0,0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1558</td>
<td>100</td>
<td></td>
<td>382</td>
<td></td>
</tr>
</tbody>
</table>

1.2.5 Management of TB

1.2.5.1 Clinical Diagnosis of TB

Active TB case finding is defined as the systematic screening of people with signs and symptoms of active TB, in a predetermined target group, using tests, examinations or other procedures that can be applied rapidly (WHO, 2019).

Routine screening of presumptive TB cases in Namibia is done as reflected in the flowchart (Figure 1.8) below as guided by the Namibia National TB guidelines (MoHSS, 2019).
Figure 1.8: Diagnostic flow chart for TB (MoHSS, 2019)

1.2.5.2 Laboratory diagnosis of TB

Screening Tests

For more than 125 years smear microscopy was the most widely used test for TB diagnosis and efforts to improve techniques were non-existent, therefore TB tests were antiquated and inadequate (Small, 2010). TB diagnosis globally still depended on methods that are supposed to isolate the bacteria, which is a key drawback for low mycobacterial load. Hence, the reasons for delayed diagnosis of smear-negative TB or diagnosis made is centered on the clinical reaction to empiric anti-TB treatment without microbiological confirmation (Ryu, 2015).

A major milestone for TB diagnosis was reached on December 8, 2010 when WHO endorsed a new and novel rapid test for tuberculosis, especially in countries most affected by TB disease. Gene X-pert
MTB/RIF, a fully automated NAAT (nucleic acid amplification test) detects MTB and resistance to rifampin (RF) within 90 minutes, which is a revolution in TB care and control (WHO, 2019). Figure 1.9 outlines the step by step MTB/RIF test procedure on Gene X-pert.

Figure 1.9: Assay procedure for the MTB/RIF test (Boehme, 2010)

Line-probe assay (LPA)

Methods used for mycobacteriological culture, identification of and drug sensitivity testing (DST) take long and are cumbersome. Therefore, rapid DST of isoniazid and rifampicin or of rifampicin alone using molecular technologies is suggested over conservative testing in sputum smear-positive or culture confirmed cases at risk of multi-drug resistant (MDR)-TB, like in previously-treated patients (Ryu, 2015).

LPA is available as rapid DST and is a molecular test that permits explicit gene markers related with rifampicin resistance only or in combination with isoniazid to be detected (Ryu, 2015). Mutations in *katG*, followed by mutations at the *InhA* active sites are primarily responsible for Isoniazid resistance whilst *rpo B* region mutations is an indicator for about 96% of rifampicin -resistant *M. tuberculosis* isolates (Ryu, 2015).

LPA as a diagnostic tool is utilized in the following ways:

- Second line LPA is used as a follow-on test for rifampicin resistance. The tests use direct sputum for screening of resistance to fluoroquinolone (*gyrA* and *gyrB* mutations) and 2nd line injectables (*rrs* and *eis* mutations)
- First line LPA is used to confirm resistance to isoniazid and rifampicin
• LPA to detect Mycobacterium other than tuberculosis (MOTT) is useful when sputum smear tests positive but X-pert MTB/RIF tests negative, or to identify the species when culture grows MOTT (MoHSS, 2019)

Mycobacterial culture

Culture is the most sensitive diagnostic test for TB and continues to be the gold standard for the laboratory diagnosis of pulmonary tuberculosis (Asmar & Drancourt, 2015). Only 10 bacilli /ml are needed to get a growth (MoHSS, 2019). Culture of *M. tuberculosis* provides the advantage to microbiologists to differentiate between live versus dead organisms and define complex mixed infections when diagnosing TB in patients (Lagier, 2015).

Inoculation of decontaminated specimens is done on solid and liquid media with WHO promoting simultaneous inoculation on both media to enable the outcome as a combination result of the greater specificity of solid media with the greater sensitivity of liquid media (Asmar & Drancourt, 2015).

Customarily, solid culture media for mycobacteria are incubated at 37° Celsius for 8 weeks before a negative result is reported and although sound documentation is available that liquid media detects mycobacteria much sooner, most incubation procedures still need a maximum of 6 weeks before indicating a sample as negative (Pfyffer & Wittwer, 2012).

TB lateral flow (LF) urine lipo-arabinomannan (LAM) antigen test

The LF-LAM test is designed for use in urine samples as a point-of-care test. This test is only applicable in patients who have tested negative with a bacteriological method. TB LF-LAM can then be use to assist in the diagnosis of TB in HIV positive adult patients with signs and symptoms of TB (pulmonary and/or extra pulmonary) with a CD4 cell count of 100 cells/µl or less or seriously ill patients regardless of the CD4 count (MoHSS, 2019).

The test identifies lipo-arabinomannan (LAM), a lipopolysaccharide existing in mycobacterial cell walls, which is freed from metabolically live or deteriorating bacterial cells and seems to be available just in individuals with active TB disease (Shah, et al., 2016). The advantages of urine testing over sputum testing are that urine can be collect and stored easily and infection control threats are less compared with those related with sputum collection (Shah, et al., 2016).
LF-LAM has a collective sensitivity of 44%, but, this differs considerably depending on the health settings (54% in hospitalized patients and 21% in outpatients) and CD4 count (15%, 48% and 56% with >200, <200 and <100 cells/μL) (García-Basteiro et al., 2018). The article further suggests that WHO experts discouraged the use of LF-LAM as a screening tool (among HIV-positive patients irrespective of signs) due to a suboptimal specificity of 92%.

1.2.5.3 Radiological diagnosis of TB

Chest X-ray examination

Chest radiography in combination with clinical history of a patient is helpful in making a diagnosis of TB because many conditions can show TB-like changes on X-ray pictures. Radiological manifestations due to TB can be seen in lung parenchyma, interstitium, pleura, pericardium, lymph nodes and bones (Rabinovitch & Pai, 2018). HIV positive patients who have TB may have normal chest radiographs, thus a normal chest radiograph cannot reliably exclude TB in these patients (MoHSS, 2011).

The radiologic appearance of TB reflects the host response to infection. The most useful radiological marker of PTB is the manifestation of upper lobe opacities, cavities, a unilateral pleural effusion, and hilar or mediastinal lymphadenopathy. A typical radiographic appearance in TB patients is mostly seen in PLHIV due to their compromised immunity (Rabinovitch & Pai, 2018).

Figure 1.10 below is a classic picture of active PTB with multiple cavities in the right upper lobe.

![Figure 1.10: Classic active PTB case (Rabinovitch & Pai, 2018)](image)

The competency of radiographers is of utmost importance because films need to be read cautiously to limit inter- and intra-reader variations (Frieden, 2004). Treatment of TB solely based on radiological
appearance can lead to wrong treatment with adverse consequences for patients and therefore X-ray pictures indicative of TB should have bacteriological confirmation (Rabinovitch & Pai, 2018).

1.2.5.4 Treatment of TB patients
TB is a treatable and curable disease and TB patients should be placed on effective treatment immediately after a positive diagnosis is made to ensure the disease is cured and transmission is stopped. Patients should be treated, irrespective of age, sex, gender or type of TB disease, bacteriological status, co-morbidities or legal status (WHO, 2019)

To enforce this global endeavor to eliminate TB, the World Health Assembly approved the post-2015 End TB Strategy with its ambitious targets in May 2014. The post-2015 End TB Strategy aims to end the global TB epidemic as part of the newly adopted Sustainable Development Goals (World Health Assembly, 2014).

Figure 1.11: The End TB strategy (World Health Assembly, 2014)

National governments are required to abide to 4 key principles in order to put the End TB strategy into operation:“(1) government stewardship and accountability with monitoring and evaluation; (2) strong coalition with civil society organizations and communities; (3) protection and promotion of human rights, ethics, and equity; and (4) adaptation of the strategy and targets at country level, with global collaboration” (Uplekar et al., 2015).

The WHO’s current strategic plan for TB control, the End TB Strategy is a multi-layered all-encompassing program compared to earlier iterations(Uplekar et al., 2015). Awareness of both the accomplishments of earlier programs in decreasing both mortality and prevalence and the gap of existing programs to
lessen incidence at a rate that will help countries to meet the SDG targets by 2035. It recommends a comprehensive and more aspiring program based on three pillars outlined below (Holmes et al, 2017).

a. Integrated, patient-centered care and prevention

- Early diagnosis of tuberculosis, including universal drug-susceptibility testing and systematic screening of contacts and high-risk groups;
- Treatment of all people with tuberculosis, including drug-resistant tuberculosis, and patient support;
- Collaborative tuberculosis and HIV/AIDS activities and management of comorbidities; and
- Preventive treatment of persons at high risk and vaccination against tuberculosis.

b. Bold policies and supportive systems

- Political commitment with adequate resources for tuberculosis care and prevention;
- Engagement of communities, civil society organizations, and public and private care providers;
- Universal health coverage policy and regulatory frameworks for case notification, vital registration, quality and rational use of medicines, and infection control; and
- Social protection, poverty alleviation, and actions on other determinants of tuberculosis.

c. Intensified research and innovation

- Discovery, development, and rapid uptake of new tools, interventions, and strategies.
- Research to optimize implementation and impact and to promote innovations (World Health Assembly, 2014).
Pillars and Principles

Figure 1. 1: Pillars and Principles of the End TB strategy (World Health Assembly, 2014).

The first pillar of the end TB strategy advocate for integrated, patient-centered care and prevention and the key actions is outlines in figure 1.13 below.

Figure 1. 2: How Pillar 1 works (World Health Assembly, 2014)

1.2.5.5 TB treatment regimes
Forty-three million individuals with TB were effectively cured by combination chemotherapy between 2000 and 2014 (Prasad, 2016).
Drug-sensitive TB disease is treated with a first line regime of 4 antimicrobial drugs over a period of 6 months. Effective treatment is only possible if patients are provided with information, supervision and support by health workers, otherwise treatment adherence leading to drug resistance can become a challenge. Most TB cases are curable with the completion of treatment regimes. The anti-TB medicines are provided as fixed-dose combinations (FDC’s) as recommended by WHO as anabler for preventing acquisition of drug resistance; minimize prescription and dispensing errors and improve adherence by reducing pill burden. Table 1.3 below shows the current first line anti TB medicine used in Namibia.

Table 1.3: First-line anti-TB medicines used in Namibia (MoHSS, 2019)

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Abbreviation</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampicin</td>
<td>R</td>
<td>Bactericidal</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>H</td>
<td>Bactericidal</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>Z</td>
<td>Bactericidal</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>S</td>
<td>Bactericidal</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>E</td>
<td>Bacteriostatic</td>
</tr>
</tbody>
</table>

Patients have drug resistant (DR) TB when they are infected with *M. tuberculosis* bacilli that are resistant to one or more anti-TB medicines. The categories of DR-TB that are of clinical significance as stated in the Namibia National TB guidelines are as follows:

- **Mono-resistance**: resistance to one first line anti-TB medicine.

- **Poly-drug resistance (PDR)**: resistance to more than one first line anti-TB medicine, other than both isoniazid and rifampicin.

- **Multidrug resistance (MDR)**: resistance to isoniazid and rifampicin with or without resistance to other medicines.

- **Rifampicin resistance (RR)**: resistance to rifampicin, with or without resistance to other medicines. This category includes MDR, rifampicin non-resistance, rifampicin poly-resistance and those with rifampicin resistance detected by molecular methods such as X-pert MTB/RIF (where susceptibility to other medicines may be unknown).
• **Extensively drug-resistance (XDR):** resistance to any fluoroquinolone, and at least one of three injectable second-line medicines (capreomycin, kanamycin and amikacin), in addition to MDR.

• **Isoniazid resistance (Hr):** resistance to isoniazid but confirmed rifampicin susceptible (MoHSS, 2019). Drug resistant TB is treated with limited options of second line anti-TB medicine. It is crucial that second line medicines are used stringently according to the provided procedures to avoid further resistance. Table 1.4 is a list of 2nd line anti-TB medicines available in Namibia.

Table 1.4: Second-line anti-TB medicines available in Namibia (MoHSS, 2019)

<table>
<thead>
<tr>
<th>Group</th>
<th>Name</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Levofoxacin OR Moxifloxacin</td>
<td>Lfx/Mfx</td>
</tr>
<tr>
<td></td>
<td>Bedaquiline</td>
<td>Bdq</td>
</tr>
<tr>
<td></td>
<td>Linezolid</td>
<td>Lzd</td>
</tr>
<tr>
<td>B.</td>
<td>Clofazimine</td>
<td>Cfz</td>
</tr>
<tr>
<td></td>
<td>Cycloserine OR Terizidone</td>
<td>Cs/Trd</td>
</tr>
<tr>
<td>C.</td>
<td>Ethambutol</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Delamanid</td>
<td>Dlm</td>
</tr>
<tr>
<td></td>
<td>Pyrazinamide</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>Imipenem-cilastatin OR Meropenem</td>
<td>Imp-cln/Mpm</td>
</tr>
<tr>
<td></td>
<td>Amikacin OR Streptomycin</td>
<td>Am/S</td>
</tr>
<tr>
<td></td>
<td>Ethionamide OR Prothionamide</td>
<td>Eto/Pto</td>
</tr>
<tr>
<td></td>
<td>p-amino salicylic acid</td>
<td>PAS</td>
</tr>
</tbody>
</table>

1.2.5.6 TB/HIV management

HIV-1 infection changes the progression of *M. tuberculosis* infection and considerably upsurges the risk of active tuberculosis (TB) (Bell & Noursadeghi, 2018). According to Bell et al, 2018, it is evident that TB raises levels of HIV-1 duplication, propagation and genetic variety and consequently co-infection offers reciprocal gains to both pathogens. Signs of clinical disease manifestations are largely reliant on the severity of immunosuppression, hence the latter individuals have a higher possibility to develop extra-pulmonary or disseminated forms of TB (Trinh et al., 2015).

All HIV-infected TB patients should start Antiretroviral therapy (ART) regardless of their CD4 count as per 2010 WHO recommendation (World Health Organization, 2016). ART has the possibility to reduce mortality when initiated within 8 weeks of starting anti-tuberculosis treatment. Additional evidence from the CAMELIA, SAPIT and STRIDE trials shows that further reduction in mortality is possible if TB patients with a CD4 count of less than 50 cells/mm3 are started on ART within 2 weeks after the onset of anti-tuberculosis treatment (WHO, 2019).
The ideal time to start ART in TB/HIV co-infected patients is quite difficult because the risk of morbidity and mortality in progressive HIV disease must be controlled with the possible incidence of additive toxicities, drug–drug interactions, and TB-associated immune reconstitution inflammatory syndrome (IRIS) (Manosuthi, Wiboonchutikul, & Sungkanuparph, 2016).

IRIS, which can appear in the initial months of ART initiation, is a commonly known phenomenon that can complicate ART as it is the result of a quick recovery of pathogen-specific immune responses to opportunistic infections, which bring about the worsening of a treated infection or the new appearance of an earlier subclinical infection (Meintjes et al., 2010). The general estimated incidence range of TB-IRIS among co-infected patients varying between 7% and 36% (Trinh et al., 2015).

Treatment of co-infected patients is further complicated due to interaction of certain anti-TB drugs with specific ART’s like the interaction of rifampin (RIF) with some protease inhibitors (PIs) and nonnucleoside reverse transcriptase inhibitors (NRTIs) (CDC, 2016). Experts recommend the use of Rifabutin, which have less challenging drug interactions as an alternative to RIF for HIV co-infected patients (Baciewicz et al., 2013).

The global treatment success rate for HIV-positive TB patients was 77% in 2017 (WHO, 2019), whilst Namibia had already treated 81% of the 2014 cohort of TB/HIV co-infected patients successfully (MoHSS, 2016).

1.2.6 Diabetes mellitus (DM)
Diabetes is a long-lasting, metabolic disease characterized by raised levels of blood glucose (or blood sugar), which leads over time to severe destruction of the heart, blood vessels, eyes, kidneys, and nerves (WHO, 2017). There are two common types of diabetes namely type 1 and type 2 diabetes. Type 2 diabetes, usually occurs in adults when the body becomes resistant to insulin or does not make enough insulin. In type 2 diabetes, the body continues to produce insulin, however the insulin does not trigger the body’s regulatory system on the use and storage of glucose and fat (Nall, 2019). Type 2 diabetes is defined by the National Institute of Diabetes and Digestive and Kidney Diseases as the most common type of diabetes and is strongly linked with obesity.

The prevalence of type 2 diabetes has increased dramatically in countries of all income levels in the past three decades mainly due to overweight and physical inactivity (WHO, 2016). Type 1 diabetes, also known as juvenile onset diabetes or insulin-dependent diabetes, is a chronic disorder in which the
pancreas produces little or no insulin by itself and therefore patients must use artificial insulin daily to control glucose levels (Nall, 2019). The immune system attacks and breaks down the cells in the pancreas that produce insulin (NIH, 2019).

1.2.6.1 Global Diabetes
The prevalence of Diabetes is on the increase globally due to the impact of population ageing, urbanization, variations in diet and limited physical activity patterns resulting in growing obesity numbers (Restrepo, 2016). Restrepo further states that 80% of the 415 million projected DM cases worldwide are from low and middle income countries and the prevalence is anticipated to rise in regions with high TB incidence over the next 30 years.

According to The WHO Global report on Diabetes (WHO, 2016) it was expected that 422 million adults were living with diabetes in 2014, compared to 108 million in 1980. This means that the global prevalence (age-standardized) of diabetes has increased two fold since 1980, from 4.7% to 8.5% in the adult population. This alarming rise in cases of diabetes poses a severe danger to global tuberculosis control. The number of people with Diabetes is expected to rise to at least 592 million by 2035 (Riza, 2014). This article further reported that 80% of the adults’ diabetic burden resides in low-income or middle-income countries. However, diabetes already develops at a younger age in these countries.

Worldwide, there has been a sharp upsurge in obesity among children a adolescence aged between 5-19 years old to 124 million in 2016 compared to 11 million in 1975 (Moeti, 2017). Current estimates shows that one in five children or adolescents are either overweight or obese. Overweight and obesity are risk factors for cardiovascular disease, diabetes and some cancers in later life (Moeti, 2017).

Diabetes increases the risk of developing tuberculosis 3 fold, and poor glycemic management undesirably impacts tuberculosis treatment results with effects such as extension of culture conversion, treatment failure, relapse, and death (Noubiap et al., 2019). Furthermore, diabetes was the cause of 10.6% of global tuberculosis deaths among HIV-negative persons in 2015 and with 425 million people distressed by diabetes globally in 2017, and an anticipated 48% rise to up to 629 million people diabetes cases expected in 2045, it is likely that this surge in the prevalence of diabetes will escalate the incidence of tuberculosis (Noubiap et al., 2019).
1.2.6.2 Diabetes Mellitus in Africa

In Africa, the number of children who are overweight or obese raised almost double from 5.4 million in 1990 to 10.3 million in 2016 (Moeti, 2017). Children who are overweight and obese are likely to become adults with the same challenges. The author (Moeti, 2017) iterated that estimations in 2014 showed that 22.9% of men and 38.6% of women above the age of 18 in the African Region were obese.

Sub-Saharan Africa is challenged by an increasing prevalence of diabetes together with other non-communicable diseases, like the rest of the global community (Hall et al, 2011). The article further stated that 90% of diabetes cases in Sub-Saharan Africa are type 2 Diabetes whilst type 1 diabetes and other variant forms constitute the remainder. Figure 1.14 below shows diabetic prevalence rates in Africa.

![Map showing diabetic prevalence rates in Africa](image)

Figure 1. 3: Diabetes prevalence rate in WHO African Region (WHO, 2017)

1.2.6.3 DM in Namibia

The prevalence of diabetes was estimated as 5.1% (95% confidence interval [CI]: 4.2–6.2), with no indication of gender variances ($P = 0.45$) in a recent study (Adekamnbi et al., 2018). The prediabetes
prevalence was 6.8% (95% CI 5.8–8.0) as per WHO criteria, ADA criteria estimate it as 20.1% (95% CI 18.4–21.9) whilst male sex, older age, higher body mass index (BMI), and occupation individually spiked the odds of diabetes in Namibia (Adekanmbi et al., 2018).

The 2013 Namibian Demographic Health survey (MoHSS, 2014) reported the prevalence of diabetes among people 35-65 years was 6% for women and 7% for men respectively. According to the WHO (WHO, 2016) the prevalence of diabetes in Namibia is on an increasing trajectory as seen in the Figure 1.15 below.

![Trends in age-standardized prevalence of diabetes](image)

Figure 1.4: Trends in age-standardized prevalence of diabetes (WHO, 2016)

This adds to the alarming prevalence of diabetic risk factors of 39.1 % for overweight and 29.7% for physical inactivity as shown in Table 1.5 below (WHO, 2016).
Table 1. Prevalence of diabetes and related risk factors (WHO, 2016)

<table>
<thead>
<tr>
<th>Prevalence of diabetes and related risk factors</th>
<th>males</th>
<th>females</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>5.0%</td>
<td>5.8%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Overweight</td>
<td>27.1%</td>
<td>50.4%</td>
<td>39.1%</td>
</tr>
<tr>
<td>Obesity</td>
<td>8.0%</td>
<td>25.2%</td>
<td>16.8%</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>23.9%</td>
<td>34.8%</td>
<td>29.7%</td>
</tr>
</tbody>
</table>

1.2.7 TB and DM Comorbidity

1.2.7.1 The burden of TB and DM

Documentation about the association between diabetes mellitus and tuberculosis is available for a long time (Dooley, 2009). In recent years, tuberculosis incidence has reduced in high-income countries, however there has been no change in incidence rates in countries with a high HIV burden, together with a high prevalence of malnutrition and overcrowded living conditions and poor tuberculosis control. In addition, obesity is driving the increase of diabetes mellitus prevalence globally (Hu, 2011).

There is growing confirmation that people with diabetes mellitus are at risk of developing tuberculosis and that might affect disease management and treatment response. The WHO report on TB comorbidities and risk factors (WHO, 2017) stated that diabetes increases the risk of TB by 3 fold. Subsequently the rates of TB are higher in people with diabetes than in the general population, and diabetes is a well-known comorbidity in people with TB. Diabetes can adversely affect the clinical course of TB, and TB can make glycemic control challenging in people with Diabetes (Siddiqui, Khayyam, & Sharma, 2016).

Over the last 10 years a fast growing epidemic of DM in low- and middle-income countries and a slower decline in global TB incidence rates have been reported which may lead to serious concerns about TB-DM comorbidity (Zheng, Hu, & Gao, 2017). According to Zheng et al., (2016), a systematic review done in 2015, identified 59 studies on DM and TB from 10 Middle East countries reveling that the prevalence of TB-DM comorbidity was varying among studies (from 4.2% in Iran to 60% in Yemen).

In 2012, an estimated of 371 million individuals had type 2 diabetes worldwide (Podell, 2014). The majority of these people (about 80%) lives in low and middle income countries where the possibility for \textit{M. tuberculosis} transmission is much higher. A further threat to this population is that up to 50% of
diabetic patients stay undiagnosed in the most inaccessible areas, where the necessary health care and diagnostic services are limited (Podell, 2014). Therefore, a large percentage of the diabetic population is unwittingly affected by uncontrolled hyperglycemia and increase the bar of contracting TB. Added to patients with indicative criteria consistent with diabetes, 70% of people having prediabetes also live in TB high burden countries (Podell, 2014).

In Africa, DM prevalence among TB patients also varies greatly between studies (3.35–16.4%). A study by Zheng et al (2017) reported that HIV co-infection, age (older than 45), being overweight, and being male as risk factors for diabetes among TB patients.

A study done in Uganda indicated that the prevalence of DM among TB patients of 8.5% is considerably higher than the overall population estimated prevalence of DM in Uganda (2.2%) and the prevalence of DM on the medical units in the hospital during the study period (6.4%) (Kibirige, 2013).

A study in Nigeria reported a DM prevalence of 9.4% among newly diagnosed TB patients. However, these results were higher than the general population prevalence as well a city pilot study but lower than the 12.3% prevalence observed in some health facilities (Ekeke et al., 2017).

Studies done in Ethiopia revealed similar high DM prevalence rates (8.3%) among TB patients and these were comparable with a study done in Jammu-India (8.2%) but lower than studies done in Taiwan (29.5%), Southern-Mexico (29.3%) and Kerela–India (44%). Prevalence dissimilarities are attributed to differences in background between population and screening methods used in DM diagnosis (Workneh, Bjune, & Yimer, 2016).

The diabetes and tuberculosis burden of disease in southern Africa is significant (Reid, McFadden, & Tsima, 2013). An incident rate of almost 400 000 cases was reported in South Africa in 2011 and 50% of the nearly two-million South Africans with diabetes are undiagnosed (Reid, McFadden, & Tsima, 2013).

In an interview on Health day in 2016, Ronacher from University of Stellenbosch stated that in South Africa about 12% of TB patients also have type 2 Diabetes and she elaborated that this number is anticipated to increase as the prevalence of Diabetes is alarmingly increasing due to the adoption a western lifestyle. An earlier South African study (Webb et al., 2009) reported an increased prevalence of TB in children and adolescents with DM1 in South Africa.
1.2.7.2 The pathogenesis of diabetes-tuberculosis comorbidity

Several studies have shown substantial biological evidence in backing of the causal relationship between DM and impaired host immunity to TB. Experimental study results done with human plasma cells showed that high levels of insulin promote a decrease in Th1 immunity, through a drop in the Th1 cell to Th2 cell ratio and IFN-c to IL-4 ratio (Viardot, Grey, Mackay, & Chisholm, 2007). Furthermore, an in-vitro assessment of production of Th1 cytokines revealed that nonspecific IFN-c levels were considerably reduced in people with diabetes compared to controls without diabetes (Stalenhoef, Alisjahbana, & Nelwan, 2008).

A dose–response relationship was evident in another study that showed IFN-c levels correlate negatively with levels of HbA1c (Tsukaguchi et al, 1997). In addition, studies showed that neutrophils from diabetics had lower chemotaxis and oxidative killing power than those of nondiabetics (Delamaire et al, 1997), and leukocyte bactericidal action was reduced in people with diabetes, especially those with uncontrolled glucose (Rayfield et al, 1982). DM directly impairs the innate and adaptive immune responses necessary to counter the proliferation of TB (Jeon & Murray, 2008). Data from these human studies are in line with evolving evidence on the biological mechanisms by which hyperglycemia may influence the host immune response to TB (Jeon & Murray, 2008).

Jeon and Murray (2008) reported consistent evidence of a bigger threat for TB among people with diabetes notwithstanding heterogeneity in study design, environment, and underlying burden of TB, valuation of contact and effect, and regulation of possible confounders. Information from these studies are consistent with developing evidence on the biological mechanisms by which hyperglycemia may impact immunity of the host to TB.

1.2.7.3 Diabetes and the risk of poor tuberculosis outcomes

Diabetes is a risk factor for active tuberculosis and increase the likelihood of poor treatment outcomes (Riza, 2014). A meta-analysis (Baker, 2011) point out that the mutual result of tuberculosis treatment failure and death was significantly higher in patients with diabetes than in those without diabetes (relative risk 1·69, 95% CI 1·36–2·12). Likewise, the mortality risk during tuberculosis treatment (1·89, 1·52–2·36) and relapse following treatment (3·89, 2·43–6·23) were greater in patients with diabetes in comparison with those without diabetes. Data from six of nine studies that assessed sputum conversion point out that there is a bigger likelihood of patients with tuberculosis and diabetes continuing to be sputum smear positive at 2–3 months after TB treatment initiation (Baker, 2011).
DM is often connected with prolonged mycobacterial clearance from sputum during treatment causing TB-DM having a bigger number of smear-positives after completion of the intensive phase of treatment, o than TB-no DM patients (Restrepo & Schlesinger, 2014). These outcomes show a possible treatment failure which is anticipated more in TB-DM than TB-no DM patients.

1.2.7.4 Clinical presentation
Data gathered through two systematic reviews done by (Tang et al, 2009) and (Ruslami et al, 2010), indicate there is no rock-hard evidence of differences in radiographic presentation of tuberculosis in patients with or without diabetes. On the other hand, in 2014, a large case series by (Chiang et al, 2014) revealed that TB patients with diabetes had more lung cavities and parenchymal lacerations than those without diabetes; amongst patients with diabetes, these radiographic deformities were more obvious in those with uncontrolled glycaemia. Indication of the clinical picture of TB in patients with diabetes is changing, however patients with tuberculosis and diabetes are classically older and heftier than the universal tuberculosis population and more likely to be male (Chiang et al, 2014). Figure 1.16 below shows the factors affecting glycemic control.

![Factors affecting glycemic control](image)

Figure 1. 5: Factors that affect glycaemic control for patients with diabetic during treatment for TB (Riza, 2014)

1.2.7.5 Methods for diagnosis of Diabetes
Diabetes is diagnosed using plasma glucose criteria, either the fasting plasma glucose (FPG) value or the 2-h plasma glucose (2-h PG) value during a 75-g oral glucose tolerance test (OGTT), or HbA1c criteria (American Diabetes Association, 2019)
Glycated hemoglobin (HbA1c) was originally recognized as an uncommon hemoglobin in diabetic patients more than 40 years ago (Rahbar et al, 1969) as cited in (WHO, 2011). Several studies were conducted correlating HbA1c to glucose measurement, hence the decision to use HbA1c as a tool for glycemic control monitoring. HbA1c is a measure of the average plasma glucose over the past eight to twelve weeks and has become the cornerstone of assessing glycemic control in people with diabetes. It can be done at any given time and does not involve any patient preparations such as fasting. Lately, there is considerable attention in using HbA1c as a diagnostic test for diabetes and as a screening test for persons at high risk of diabetes (International Diabetes Experts, 2009).

1.2.7.6 Diabetes screening for patients with tuberculosis

WHO extensively promotes the screening of diabetes in TB mainly where the prevalence of diabetes is high (WHO, 2011).

The most appropriate time and methods to diagnose diabetes in patients with tuberculosis are unclear (Lin, 2012). The prevalence of diabetes rises sharply with age, but the actual cut-off age for screening is also undefined and varies between populations. Screening of blood glucose levels at a specific time might give a false diagnosis of diabetes in patients with tuberculosis as they could have intermittent hyperglycemia through commencement of insulin resistance, mediated by inflammation, due to tuberculosis infection (Riza, 2014).

Additional testing could identify temporary hyperglycemia. Testing of HbA1c concentration is the only diabetes test that indicates average glycaemia over a period of time (Kumpatla et al, 2013). It was more reflective than fasting blood glucose when used as a screening test for newly diagnosed diabetes in patients with tuberculosis (Riza, 2014).

The point at which TB patients are tested for diabetes is important. In a systematic review Jeon et al, 2010 of four studies defined diabetes screening before tuberculosis treatment, seven studies after treatment introduction, four studies at numerous different follow-up times, and seven studies did not insist on the screening interims. If testing is done at treatment initiation then the next step would be to carry out a repeat test during tuberculosis treatment, or after completing treatment (Riza, 2014).
1.2.8 Case definitions

Active TB patient: The definition of a TB case in the study will be according to the WHO case definition (WHO, 2014) of bacteriologically confirmed or clinically diagnosed TB cases initiated or due be initiated on first line anti-TB drugs.

Diabetes case: Participants were classified as diabetic according to WHO classifications (WHO, 2011) of an HbA1c ≥ 6.5% is recommended as the cut-off point for diagnosing Diabetes and self-reported diabetic.

Final patient outcome is defined as treatment completed or cured as outlined in the National guidelines for management of TB (MoHSS, 2019).

Interim patient outcome is defined as smear conversion after 2 months of anti-TB treatment initiation (MoHSS, 2019).

1.2.9 Statement of the problem

Namibia is among the top 30 high TB burden countries in the world (WHO, 2016) and added to that is the increasing prevalence of diabetes among women and men of about 6% and 7% respectively as reported by National Demographic Health Survey (MoHSS, 2013). The report further reiterated that the prevalence of diabetes differs among the geographical regions as well as according to gender. The same distribution is also noted on the prevalence of TB in Namibia (MoHSS, 2019). This phenomena may suggest a possible connection in the prevalence of Diabetes among TB cases and vice versa, which will have implications on the management of both diseases. However, no current or past surveillance data is available on diabetes and TB comorbidities in Namibia to support policy and management strategies for comorbidities of these two diseases. Pulmonary TB is the ninth most common problem in diabetes and due to an escalating prevalence of DM, the relative impact of DM on the TB epidemic is growing (Baghaei, 2013).

This study aims to assess the prevalence of diabetes among TB patients in the Khomas region and establish if diabetes and TB comorbidity influences the treatment outcomes of TB patients.

1.2.9.1 Research objectives

The main aim of this study is to establish the impact of Diabetes on TB treatment outcomes.
1.2.9.2 Specific objectives
(i) To measure the prevalence of diabetes among patients currently on TB treatment in the Khomas region,

(ii) To assess if the treatment duration and outcomes of TB patients with diabetes is any different than TB patients without diabetes,

(iii) To clarify if the TB treatment regimens of TB patients with diabetes is different than TB patients without diabetes.

1.2.9.3 Research Questions
• What is the prevalence of Diabetes among current TB patients in the Khomas region of Namibia?

• Does Diabetes have any impact on the duration and treatment outcome and treatment regime of TB patients?
Chapter 2

Methodology

2.1 Study Design

This was a cross sectional study to determine the burden of Diabetes among active Tuberculosis patients in the Khomas region of Namibia and looked at the treatment regime, smear conversion and treatment outcomes of study participants.

The participants included in the study were active TB patients selected from public health facilities. Convenience sampling was done of TB patients visiting the facility according to the treatment follow-up dates. Only patients with susceptible TB, which consented for taking part in the study were included in the study. Each patient were assigned a study identification number for easy tracing of records recorded in the facility TB records.

2.2 Sampling frame

Namibia is divided into 14 administrative regions and the study was done in the Khomas Region. Khomas region was selected based for convenience. Khomas region have 12 health facilities that provide primary health care services to the public including TB services.

2.3 Study Population

The targeted population for this study was TB patients within the Khomas region. This study population was from 12 public health facilities.

2.4 Inclusion and exclusion criteria

2.4.1 Inclusion criteria

The following subjects were included in the study: All active TB patients as per study case definition, 15 years and older visiting the public health facility within the Khomas region were legible for inclusion in the study.
2.4.2 Exclusion criteria

The following subjects were excluded from the study: MDR TB patients were excluded from the study due to the duration of their treatment and individuals who were unable to consent for participating in the study were also excluded. Individuals who had a mental disability that made them unable to consent or comprehend the questions and/or procedures were excluded.

2.5 Sample size

The sample size calculation for the study was done based on the following assumptions:

Prevalence of diabetes among TB patients is estimated at 10.9% (Ronacher et al., 2016).

Precision = ±5%, design effect = 2.0, Expected response rate = 85%

The calculation was done using a method adopted from Shiraishi, 2010.

The calculated sample size was 382.

2.6 Data collection

A survey team visited all Public Health-Care facilities in the Khomas region. TB patients visiting the public health facility were informed about the study and convenient sampling was done to select participants. When patients agreed to participate in the study, they gave written consent to participate in the study and permission for blood collection to do diabetes diagnosis.

A structured questionnaire was used to elicit demographic and clinical variables from patient records as well as interviews. (See Appendix I)

The assigned patient identification was used for tracking patient records in facility registers for smear conversion and final treatment outcomes records.

2.7 Testing

2.7.1 Blood collection

A trained Medical Laboratory scientist performed a finger prick on the first 121 participants that consented for measurement of HbA1c. Venous blood draw in an Ethylene Diamine Tetra acetic Acid (EDTA) tube for HbA1c testing was done for the rest of the study participants.
A study done by Keramati et.al, 2014 suggested that there is a high agreement between venous and capillary HbA1c levels and the use of capillary blood can be endorsed to be practical in diabetes clinical settings as a tool for diabetes control (Keramati, Razi, & Tootee, 2014).

Another study showed that Point-of-care capillary A1C did not do as good in the field as in the laboratory, however the bias can be corrected, and the error margin is ample that the test is clinically beneficial (Mackenzie-Feder & et.al, 2016).

2.7.2 Sample storage and transportation

No sample storage and transport was needed for finger prick blood collection which was done. Venous blood collected in EDTA tubes were transported to the Windhoek Central Reference laboratory in cooler boxes with ice and stored at 2-8°Celsius if testing could not be done immediately. Samples were tested within 7 days as indicated by manufacturers manual (Roche, 2018).

2.7.3 Testing Methodologies

2.7.3.1 HbA1c testing

The HbA1c testing of the first 121 samples was done using the CLOVER A1C point of care analyzer (Infopia, Anyang-si, Gyeonggi-do, Korea). The CLOVER A1C Self analyzer is an In Vitro Diagnostic Device (IVD) for measuring Hemoglobin A1c by the well-established method of boronate affinity (Clover Infopia, Anyang-si, Gyeonggi-do, Korea, 2011). It is able to analyze both capillary whole blood and venous blood. Anticoagulants such as EDTA or heparin may be used. This CLOVER A1C POCT system is designed to help controlling diabetes and it is intended to be used by patients and professionals at home, laboratories, clinics and hospitals (Clover Infopia Co., 2011).

A laboratory based correlation was done first, by comparing results from the CLOVER A1C point of care analyzer with those of the COBAS 6000 (Roche, Mannheim, Germany) analyzer used in the Windhoek Central Core laboratory according to NIP SOP QA 004 validation protocol. A correlation coefficient (R Squared) of 0, 95 or greater indicates acceptable correlation unless otherwise noted and the result of the correlation was R-square = 0.9504 indicating the correlation was acceptable.

The rest of the HbA1c testing was done using the COBAS 6000 analyzer due to challenges experienced with the availability of CLOVER A1C cartridges. It is good to give a breakdown of how many samples were tested by each method. The principle of HbA1c testing using COBAS 6000 is based on the turbidimetric
inhibition immunoassay (TINIA) for hemolyzed whole blood as outlined in the Cobas A1C package insert. HbA1c in the sample responds with anti-HbA1c antibody to form solvable antigen-antibody complexes. As the particular HbA1c antibody site is existing only once on the HbA1c molecule, formation of insoluble complexes does not take place. Adding buffer/polyhapten begins the reaction: The polyhaptens act in response with surplus anti-HbA1c antibodies to create an insoluble antibody-polyhapten complex which can be measured turbidimetrically (Roche, 2018). Results of both methods were reported in percentage (NGSP) and mmol/mol (IFCC)

Participants were classified as diabetic according to the WHO classification of an HbA1c ≥ 6.5% which is recommended as the cut off point for diagnosing diabetes (WHO, 2011). Results were recorded manually according to patient’s unique identifier and transferred to the electronic database.

2.7.3.2 HIV Testing
In Namibia HIV counselling and rapid testing (RT) services are available at most public health facilities and patients are offered these services routinely at the facility while being evaluated for TB. Namibia is using a serial testing algorithm and confirmations of all positive test is done using a second tests. A third tie-breaker test is used in cases of discordant results (MoHHS, 2018). The HIV status of the patients were retrieved from patient’s records and recorded on the questionnaire.

2.7.3.3 TB Testing
Two sputum specimens are collected for examination, within 24 hours for all presumptive TB cases and clinical staff attending to the patient will indicate “diagnostic test” when completing the Request for Bacteriological Examination for TB form. The laboratory will automatically perform Xpert MTB/RIF as the first diagnostic test for all presumptive TB cases in Namibia (MoHSS, 2019). All samples with a positive MTB/RIF results and extra-pulmonary samples are analyzed further according to the national laboratory diagnostic algorithm (NTLP, 2016).

2.7.4 Quality Assurance
The CLOVER A1C ® Check Cartridge is commercially available and was used to check that the optical and operating systems of the analyzer is intact. The checks were done daily before samples were tested as well as after the analyzer was moved to the next site and after an error message.

A laboratory based correlation was done first, by comparing results from the CLOVER A1C point of care analyzer with those of the COBAS 6000 (Roche, Mannheim, Germany) analyzer used in the Windhoek
Central Core laboratory according to NIP SOP QA 004 validation protocol. Quality control on the COBAS 6000 were done according to the NIP quality control procedures. Maintenance procedures for both instruments were done as per manufacturers procedures.

2.8 Data confidentiality
A unique identifier was allocated to each enrolled participant that facilitated tracking, reporting of results and data checking. No participant names were included in the analytic data set to protect confidentiality of patient data. Data was stored securely and access to electronic data was only possible through password protection that was limited to authorised study staff only.

2.9 Data validation
Data crosschecking was done through double data entry and comparing participant records from data collection tools with electronic TB registers to ensure data quality.

2.10 Data security
Questionnaires were kept in a secure place and electronic data was secured by a password. The existing NUST and MoHSS standard procedures are followed for archiving of electronic and paper data.

2.11 Confidentiality
Sensitive participant information collected, were delinked for data analysis. The unique identifiers system was used for all the data entries. However, names may still be used in the laboratory and NTLP for patient notification and linking patients to treatment. The study team signed a confidentiality declaration at the beginning of the study to ensure participant information confidentiality. (Annexure III)

2.12 Informed consent
All study participants or their guardians were informed about the study and were required to provide written informed consent prior to the screening. Each participant signed the informed consent form (Annexure II). Participants were allowed to opt-out of the process at any point during the process.

2.13 Ethical Clearance
The protocol was submitted for ethical approval to the Namibia University of Science and Technology (NUST) and Ministry of Health and Social Services (MoHSS). The protocol was further submitted to NIP
and Khomas Regional Health Directorate to gain permission for data collection and testing in these facilities. These documents is attached in Annexure IV- VII.
CHAPTER 3

RESULTS

3.1 Descriptive results of study participants

The participants in the study included patients with all forms of TB that was conveniently sampled at Khomas health facilities between April 1st and June 28th 2019. Study participants were selected from all patients coming for follow-up to the health facility, willing to participate and gave consent to be part of the study. In the study 171 participants had a known HIV status with 92 HIV positives and 79 HIV negative participants.

The total number of participants that took part take in the study was 181, about 47% of the initial estimated sample size. All 181 participants had an HbA1c tests done. The HbA1c tests were done as participants were recruited for participation, regardless of the treatment duration of the participants. The HbA1c testing of the first 121 participants was done using the CLOVER A1C point of care analyzer at the facility and 60 samples were done in the NIP Windhoek central laboratory using COBAS 6000 analyzer (Roche, Mannheim, Germany). Table 3.1 below depicts the distribution of the sample population by gender.

Table 3.1: Distribution of sample population by gender

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>1</td>
<td>0.55%</td>
</tr>
<tr>
<td>Male</td>
<td>118</td>
<td>65.19%</td>
</tr>
<tr>
<td>Female</td>
<td>62</td>
<td>34.25%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>181</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Table 3.1 shows most participants were male (65.19%).

Table 3.2 below show the age range frequency of study participants.
Table 3.2: Frequency distribution of participants according to age range

<table>
<thead>
<tr>
<th>Age range</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative percent</th>
<th>Exact 95% LCL</th>
<th>Exact 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 to ≤24</td>
<td>22</td>
<td>12.43</td>
<td>12.43</td>
<td>7.96</td>
<td>18.21</td>
</tr>
<tr>
<td>>25 to ≤54</td>
<td>139</td>
<td>78.53</td>
<td>90.96</td>
<td>71.74</td>
<td>84.34</td>
</tr>
<tr>
<td>>55 to ≤64</td>
<td>13</td>
<td>7.34</td>
<td>98.31</td>
<td>3.97</td>
<td>12.23</td>
</tr>
<tr>
<td>>65</td>
<td>3</td>
<td>1.69</td>
<td>100.00</td>
<td>0.35</td>
<td>4.87</td>
</tr>
<tr>
<td>TOTAL</td>
<td>177</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most of the participants (78, 5%) were between 25-54 years of age and 12, 4% of participants were between 15-24 years of age. Less than 2% of participants were 65 years and older.

The distribution of participants according to smear results is displayed in Table 3.3 below.

Table 3.3: Frequency distribution of TB cases according to smear reactivity

<table>
<thead>
<tr>
<th>Smear reactivity</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative percent</th>
<th>Exact 95% LCL</th>
<th>Exact 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSN</td>
<td>19</td>
<td>11.6</td>
<td>11.6</td>
<td>7.12</td>
<td>17.5</td>
</tr>
<tr>
<td>PSP</td>
<td>145</td>
<td>88.4</td>
<td>100.00</td>
<td>82.5</td>
<td>92.88</td>
</tr>
</tbody>
</table>

Key: PSN = Pulmonary smear negative
 PSP = Pulmonary smear Positive
 LCL = Lower control limit
 UCL = Upper control limit

Most of the participants were pulmonary smear positive TB cases.

Participants were classified as diabetic according to the WHO classification of an HbA1c ≥ 6.5% which is recommended as the cut off point for diagnosing diabetes (WHO, 2011). Table 3.4 below shows the frequency distribution of participants according to diabetes status.
Table 3.4: Frequency distribution of participants according to WHO diabetes classification

<table>
<thead>
<tr>
<th>Diabetes status</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic</td>
<td>76</td>
<td>42</td>
</tr>
<tr>
<td>Not diabetic</td>
<td>105</td>
<td>58</td>
</tr>
<tr>
<td>Total</td>
<td>181</td>
<td>100</td>
</tr>
</tbody>
</table>

The prevalence of diabetes among the participants in this study is 42%.
Table 3.5 below is a representation of the participant characteristics associated with the development of diabetes.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DM tested positive(n)</th>
<th>%</th>
<th>DM tested negative(n)</th>
<th>Odds Ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>76</td>
<td>42</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age(years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 to ≤24</td>
<td>8</td>
<td>36</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>25 to ≤54</td>
<td>58</td>
<td>42</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>55 to ≤64</td>
<td>6</td>
<td>46</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>65</td>
<td>2</td>
<td>67</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>54</td>
<td>46</td>
<td>64</td>
<td>1.53</td>
<td>0.18</td>
</tr>
<tr>
<td>F</td>
<td>22</td>
<td>35</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smear Reactivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSN</td>
<td>8</td>
<td>42</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSP</td>
<td>62</td>
<td>43</td>
<td>83</td>
<td>1.03</td>
<td>0.96</td>
</tr>
<tr>
<td>HIV status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>40</td>
<td>44</td>
<td>51</td>
<td>1.25</td>
<td>0.47</td>
</tr>
<tr>
<td>Negative</td>
<td>30</td>
<td>38</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New</td>
<td>62</td>
<td>42</td>
<td>84</td>
<td>1.11</td>
<td>0.79</td>
</tr>
<tr>
<td>Prev. treated</td>
<td>14</td>
<td>40</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currently smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>36</td>
<td>7</td>
<td>0.74</td>
<td>0.64</td>
</tr>
<tr>
<td>No</td>
<td>72</td>
<td>44</td>
<td>93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 42 -
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DM tested positive(n)</th>
<th>%</th>
<th>DM tested negative(n)</th>
<th>Odds Ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol consumption ever</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>28</td>
<td>52</td>
<td>0.32</td>
<td>0.001</td>
</tr>
<tr>
<td>No</td>
<td>56</td>
<td>54</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol use in last year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>17</td>
<td>38</td>
<td>28</td>
<td>0.74</td>
<td>0.4</td>
</tr>
<tr>
<td>No</td>
<td>59</td>
<td>45</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB Treatment Regime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup> line</td>
<td>74</td>
<td>45</td>
<td>91</td>
<td>5.6</td>
<td>0.012</td>
</tr>
<tr>
<td>other</td>
<td>2</td>
<td>12.5</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum Conversion month 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converted</td>
<td>28</td>
<td>35</td>
<td>52</td>
<td>1.08</td>
<td>0.95</td>
</tr>
<tr>
<td>Not converted</td>
<td>6</td>
<td>33</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum Conversion month 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Converted</td>
<td>5</td>
<td>19</td>
<td>22</td>
<td>0.23</td>
<td>0.17</td>
</tr>
<tr>
<td>Not converted</td>
<td>4</td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the results displayed in Table above 4.5 there is no statistical significance of being smear positive (p value = 0.96), HIV positive (p value = 0.47) or being a new or previously treated patients (p value = 0.79) and testing positive for diabetes.

There is also no statistical significance of smear conversion after 2 or 5 months of treatment and testing positive for diabetes with p values of 0.89 and 0.17 respectively.
The study participant’s results showed an association between being on first line or other treatment regimens and testing positive for diabetes with a p value of 0.012. This study results also show a relationship between alcohol consumption ever and testing positive for diabetes with a p value of 0.001.
CHAPTER 4

DISCUSSION AND CONCLUSION

4.1 Discussion

This study findings shows that most participants were male (65.19%) as shown in Table 3.1, indicating that in this study there were more men with TB who were sampled. This finding is supported by Namibian routine programme data that the prevalence of TB is higher among men (MoHSS, 2019) and the phenomenon is reported by other studies that TB prevalence is considerably higher among men than women in low- and middle-income countries (Horton, 2016). Horton’s study further claim that men are disadvantage in seeking or accessing TB care setting and therefore the higher TB prevalence among men in low- and middle-income countries. The worldwide detected dominance of tuberculosis among men has been ascribed to higher contact or modified susceptibility due to factors like greater lung volumes, sex hormones, and increase hepcidin levels (Saunders et al., 2019).

Most of the participant (78.5%) in this study were between 25-54 years of age, 12.4% were between 15-24 years of age and less than 2% of participants were 65 years and older as seen in Table 3.2. This finding indicates TB impacted the economically active people in the Khomas region. The same occurrence is evident in Namibian programme data (MoHSS, 2019). A study done in Zambia showed that the most affected by TB is between 18 to 47 years of age, the same age group with the highest HIV prevalence (Kapata, 2013). A study done in the Cape Town metropol, showed that the sexually active age group between 15-49 years had an increased incidence rates of TB disease and a higher co-infection with HIV (Nyabadza & Winkler, 2013). The conclusion derived from the above study findings indicate that HIV fuel the incidence of TB in the 25-54 age group.

Table 3.3 shows that 88.4% of the participants were pulmonary smear positive TB cases. These results show concordance with other TB studies were pulmonary smear positive TB is more prevalent (Nugussie, 2017). The high prevalence of psp TB suggest that the population is highly exposed to the major risk factors for PTB namely HIV, immunosuppressive therapy, alcohol intake, cigarette smoking and staying in congregate setting (Nwachukwu et al., 2016). Reduced glycemic control is related with a bigger risk of
progressive and more advance TB disease in the form of lung cavitations, positive sputum smear, and delayed smear conversion (Mahishale et al., 2017).

This study aimed to measure the prevalence of diabetes among patients currently on TB treatment in the Khomas region. In this study, the prevalence of Diabetes among TB patients in the Khomas region was 42% (as shown in Table 3.4) based on HbA1c testing and the WHO guideline of 6.5% as the cut-off for diabetes (WHO, 2011). This is significantly higher than the pooled prevalence of 9.0% revealed by a meta-analysis of 16 studies conducted among tuberculosis patients in SSA (Alebel, 2019). Another systematic review and meta-analysis on the worldwide prevalence of diabetes among patients with active tuberculosis used data from about 2·3 million patients with tuberculosis, and projected the diabetes prevalence to be 15·3% (95% prediction interval 2·5–36·1) (Noubiap et al., 2019). The latter review detected a wide-ranging inconsistency in the estimate prevalence of TBDM across countries, fluctuating from 0·1% in Latvia to 45·2% in Marshall Islands and the increase prevalence is driven by the diabetic epidemic in the general population (Noubiap et al., 2019). A study done in India also reported a 15.5% TBDM co-morbidity and that contribute to the existing knowledge about the relationship between DM and TB and identifying diabetes is an key risk element for developing TB(Agarwal, Agarwal, & Mahore, 2018).

The study also revealed more men (65%) participated in the study and the prevalence of diabetes was higher among men (46%) than women (36%). The findings from this study agree with a study done in Southern Nigeria by Ekeke et al (2017) who found that diabetes is higher in men with TB than women. However, the findings of this study do not agree with those of Gadallah et al (2018,) in Egypt who reported that diabetes was higher in women than men with TB. The development of diabetes can have a gender preponderance due to the impact of lethargy and obesity, inconsistencies in insulin tolerance and fat deposition (Gale & Gillespie, 2001).

In this study the prevalence of diabetes was highest among the 65+ age group. This is an age group which is prone to diabetes due to high glucose tolerance and the development of type 2 diabetes mellitus. A 2011 study done in India(Rawat, Biswas, & Sindhwani, 2011) showed patients in the PTB-DM group were much older (53.34 ± 14.06 years) than the PTB group (44.35 ± 18.14 years) (P < 0.001) with more severe lung lesions. Another study done in Egypt (Khalil & Ramadan, 2016) had similar findings with the mean
age of the DM-TB group was 52.90 ± 11.12 years. However, the results of this current study might not be a true reflection due to the small number (3) of participants in this group. The second highest prevalence of diabetes is among the >55 to ≤64 age group with 46%. This finding is in line with other studies that concluded that age >50 years was independently associated with an increase prevalence of diabetes in TB patients (Sharma, 2018).

The second objective of the study was to assess if the treatment duration and outcomes of TB patients with diabetes is any different than TB patients without diabetes. Treatment monitoring for TB patients is done by looking at smear conversion at 2 and 5 months after treatment initiation according to the Namibia TB Guidelines (MoHSS, 2019). In this current study there was no statistically significant difference between smear conversion after 2 or 5 months of treatment and testing positive for diabetes (p values of 0.89 and 0.17 respectively). The findings of this current study are in line with studies done Alisjahbana et al.,(2007) in Indonesia and Singla et al., (2006) in Saudi Arabia who reported that diabetes was not a risk factor for sputum smear conversion (Chaisson, 2009). However another study by Nurwidya et al, (2018) in Indonesia reported that notwithstanding all proof that exists at present, the likely association of DM and prolonged sputum conversion remains conflicting (Nurwidya, Ratnawati, Wijaya, Nazaruddin, & Burhan, 2018).

This study showed that the association between being HIV positive and developing diabetes was not statistically significant as shown in Table 3.5 (p value=0.47). A study done in Cape Town by Oni et al., (2017), that there was an association between TB, diabetes and only in participants with HIV-1 infection (Oni, 2017). Notwithstanding the contradicting study findings, another study identified the concept of multi-morbidity as an issue of public health significance where several studies report the increased prevalence of TB/HIV/DM concomitance resulting in complex disease patterns and health outcomes (Nwachukwu, 2016).

Further results from this study as displayed in table 3.5 show no association of being smear positive and testing positive for diabetes with a p value = 0.96. This outcome is contradicting with other studies that show diabetes is associated with a greater risk of severe TB disease manifested through lung cavitations, positive sputum smear, and slower smear conversion (Mahishale, 2017).
This current study revealed that there is an association between alcohol consumption and testing positive for diabetes (p value = 0.001). Alcohol use is a key contributor to the tuberculosis load of disease, with the most devastating impacts projected for the African Region (Imtiaz, 2017). Furthermore, studies have reported that increased alcohol use causes prolonged inflammation of the pancreas (pancreatitis), which can weaken its capability to produce insulin and possibly lead to diabetes (Zeratsky, 2019). Based on the impact of alcohol on both diseases, a conclusion can be derived that support the findings of this current study.

This study reported that there is no association between smoking tobacco and testing positive for diabetes (p value = 0.64) as shown in Table 3.5. Zeratsky an expert from a well-known clinic in the United states of America (USA) claims that tobacco consumption can raise blood sugar levels and cause insulin resistance and the more an individual smokes, the bigger the risk of developing diabetes (Zeratsky, 2019). Another source reported that smokers have a 30–40 percent more likelihood to acquire diabetes (Villines, 2019).

The third objective of the study was to clarify if the TB treatment regimens were associated with the development of diabetes. The results from this study showed treatment regimens were associated with the development of diabetes among TB patients (p-value = 0.012) as shown in Table 3.5. This means there is an association between being on first line treatment regimens of INH, PZA, Rif and E and testing positive for diabetes. The results of this study agree with the findings of a study done by Niazi et al.,(2012) in South Asia who found that anti-TB drugs (especially rifampicin and isoniazid) have interaction with oral anti-diabetic drugs causing suboptimal glycemic control (Niazi & Kalra, 2012). The latter study further claim that some of the latest oral anti-diabetic drugs react with anti-tuberculosis drugs and reduce their efficacy. This is because Rifampicin used for TB treatment is a compelling hepatic enzyme-inducer that fast-track the metabolism of several oral hypoglycemic agents and reduce their plasma levels causing hyperglycemia in diabetic patients. Isoniazid, in contrast, impedes the uptake of oral hypoglycaemic agents leading to poor glycemic control of diabetics on this medication (Niazi & Kalra, 2012).

4.2 Conclusion
This current study reported a high (42%) prevalence of diabetes among TB patients in the Khomas region implying that diabetes poses a threat to the TB burden in the region. The results of this study therefore
emphasis the need to screen TB patients routinely for diabetes. Males attributed 36% of the diabetes prevalence in the Khomas region and the older age groups of 65+ age in the study were more prone of testing positive for diabetes.

This study further revealed that there is no association of sputum conversion at 2 or 5 months of treatment and being diabetic. Lastly this study results indicate that the treatment regimen for TB is associated with the development of diabetes.
CHAPTER 5

LIMITATIONS OF THE STUDY

• The study was only conducted in Khomas region and therefore results may only apply to the specific region.
• A total number of 181 participants took part in the study. That is about 47% of the initial estimated sample size of 382.
• Drawing blood during sample collection was a challenge because we had to rely on nursing staff that already had a busy work schedule and therefore sample collection was slower than initially anticipated.
• Another challenge for sample collection was treatment supporters instead of TB patients visited clinics on scheduled follow-up dates to collect medicine which slowed down the pace of recruiting appropriate study participants.
CHAPTER 6
RESEARCH SIGNIFICANCE

This study provides baseline data on the prevalence of diabetics among TB patients in the Khomas region, which can serve as a yardstick of the magnitude of diabetes and TB comorbidity in the country.

This study results also provide guidance on the most suitable methods for creating a supportive policy and clinical environment for collaboration and integration of TB and diabetes comorbidity management.

Results of this study also give insight into operative clinical methods for bidirectional screening and coordinated management of tuberculosis and diabetes.

The research is important for capacity building in the area of TB and diabetes as one student will graduate with a Master of Health Science degree.

The research will be published in peer-reviewed Journals adding to the body of knowledge.
CHAPTER 7
RECOMMENDATIONS

Namibia is among the 30 high TB burden countries and the results of this study show that diabetes poses a threat to the TB burden in the Khomas region. The results of this study indicate the need to expand this study nationally to get a true reflection of the national impact of diabetes on the TB burden in Namibia and adjust programs and policies accordingly.

The national TB programme may benefit from a study that assess the impact and duration of diabetes on defaulter and mortality rates among DMTB patients.
References

Shiraiahi, R. (2010). Excel sample calculation tool Beta 1, 0. Ho Chi Minh City, Vietnam [PDF].

Annexure I- Participant Questionnaire

Study Name: Impact of Diabetes on the TB treatment outcomes among TB patients in Khomas Region

Facility Name:
Interviewer Name:

Participant Name:
Participant Unique Identifier:

Date of interview:

Step 1 Demographic Information

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (Record Male / Female as observed)</td>
<td>Male</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>2</td>
</tr>
<tr>
<td>What is your date of birth?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don't Know</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If known, Go to C4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dd mm year</td>
<td></td>
</tr>
<tr>
<td>How old are you?</td>
<td>Years</td>
<td></td>
</tr>
</tbody>
</table>

Step 1 Behavioral Measurements
CORE: Tobacco Use

Now I am going to ask you some questions about tobacco use.

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you currently smoke any tobacco products, such as cigarettes, cigars or pipes?</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Do you currently smoke tobacco products daily?</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

CORE: Alcohol Consumption

The next questions ask about the consumption of alcohol.

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you ever consumed any alcohol such as beer, wine, spirits or [add other local examples]?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Have you consumed any alcohol within the past 12 months?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Have you stopped drinking due to health reasons, such as a negative impact on your health or on the advice of your doctor or other health worker?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CORE: History of TB
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you on TB treatment right now and start date?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you been on TB treatment before?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If on treatment before; how long?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your current disease classification?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of TB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What treatment regime are you on?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you ever been tested for HIV in the last 3 months?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your HIV status?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum smear conversion End of intensive phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum smear conversion End of treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 67 -
<table>
<thead>
<tr>
<th>Final treatment outcomes</th>
<th>Cured</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTFU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Died</td>
<td></td>
</tr>
</tbody>
</table>

CORE: History of Diabetes

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>1</th>
<th>No</th>
<th>2</th>
<th>If No, go to H12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you ever had your blood sugar measured by a doctor or other health worker?</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>2</td>
<td>If No, go to H12</td>
</tr>
<tr>
<td>Have you ever been told by a doctor or other health worker that you have raised blood sugar or diabetes?</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>2</td>
<td>If No, go to H12</td>
</tr>
<tr>
<td>Have you been told in the past 12 months?</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>In the past two weeks, have you taken any drugs (medication) for diabetes prescribed by a doctor or other health worker?</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Are you currently taking insulin for diabetes prescribed by a doctor or other health worker?</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Have you ever seen a traditional healer for diabetes or raised blood sugar?</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Are you currently taking any herbal or traditional remedy for your diabetes?</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Step 3 Biochemical Measurements

<table>
<thead>
<tr>
<th>CORE: Blood Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
</tr>
</tbody>
</table>
| During the past 12 hours have you had anything to eat or drink, other than water? | Yes 1
No 2 |
| Time of day blood specimen taken (24 hour clock) | Hours : minutes
hrs mins |
| HbA1c result | |
| Today, have you taken insulin or other drugs (medication) that have been prescribed by a doctor or other health worker for raised blood glucose? | Yes 1
No 2 |
Dear participant:

My name is Anita Beukes, a Master student from the Namibia University of Science and Technology.

You are invited to take part in a study to find out how many tuberculosis (TB) patients in the Khomas Region also have diabetes. You are living in the area that has been selected to participate in the study, therefore you and all other adults TB patients in this area, have been selected.

If you agree to participate in the study, the following procedure will be taken:

- We will ask you to assist us to complete a questionnaire by answering a few questions regarding your TB, diabetes and HIV history.
- A phlebotomist will also ask you to draw blood for diabetes diagnosis.

The benefit for you to participate in the study, is that you will receive assistance for disease conditions you might have. Your participation will also provide information that will help the Ministry of Health and Social Services to improve health services for everyone in the country. The risks of participation are minimal.

All results will be kept confidential and your name will only be used to assist us to contact you regarding the care you might need. Participation in this study is voluntary. If you choose not to participate, it will not affect in any way the provision of health services to you. You can withdraw yourself from the study at any moment.

We will highly appreciate your participation in the study.

If you have any question please contact the Principal Investigator at this telephone number: +264 811223812

I have read/understood the Information Sheet concerning the study about the prevalence of diabetes among TB patients in the Khomas region and the impact of diabetes on TB treatment outcomes.

I have had the opportunity to ask questions about the study and the questions that I have asked have been answered to my satisfaction.

I now understand what will be required of me and what procedures I will have to go through during this study.

I understand that I may withdraw from this study at any time without giving a reason and withdrawal will not affect my usual care and treatment.
I consent voluntarily to participate in this study.

Signature / thumb impression: ...Date:

Name of participant: ...

Witness Signature / thumb impression:Date: ..

Name of witness: ...

For individuals aged less than 16 years, ask consent from the parent or other adult identified as responsible for the individual before asking the adolescent for his/her consent. Enroll into survey only if both the parent (or guardian) and the adolescent consent to participating
OATH/AFFIRMATION OF SECRECY BY THE STUDY STAFF MEMBERS

I (Block letters)……..

Do hereby make oath/solemnly affirm that I am conversant with the provision of the Protection of Information Act, 1982 (Act 84 of 1992) as amended by the Proclamation AG.29/1985 dated 15 June 1985 and unless duly authorized I will not at any time during my service as a staff member of the study or when I have left the said service, divulge in any way to the media, general public, or unauthorized person any form of classified or sensitive information or any other information and/or material that is or was within my knowledge or is or was in my possession relative of the Public Service or Government of Namibia.

……………………………………………………
Signature of Deponent

Sworn/Affirmed before me at…………………………………………this …………….day of…………………………20…..

………………………………..
Signature

NAME AND RANK

COMMISSIONER OF OATH
(Ex Officio)

SIGNATURE OF WITNESS

NAME AND RANK
Annexure IV- MoHSS approval letter

REPUBLIC OF NAMIBIA

Ministry of Health and Social Services

Private Bag 13198
Windhoek
Namibia

Ministerial Building
Harvey Street
Windhoek

Tel: 061-2032150
Fax: 061-222558
Email: shimenghipungelwa71@gmail.com

OFFICE OF THE PERMANENT SECRETARY

Ref: 17/3/3 AM
Enquiries: Mr. Nghipangelwa

Date: 19 October 2017

Ms. Anita Beukes
University of Science and Technology
Windhoek

Dear Ms. Beukes

Re: Impact of diabetes on Treatment of TB patients in Khomas Region

1. Reference is made to your application to conduct the above-mentioned study.

2. The proposal has been evaluated and found to have merit.

3. Kindly be informed that permission to conduct the study has been granted under the following conditions:

 3.1 The data to be collected must only be used for academic purposes;
 3.2 No other data should be collected other than the data stated in the proposal;
 3.3 Stipulated ethical considerations in the protocol related to the protection of Human Subjects' should be observed and adhered to, any violation thereof will lead to termination of the study at any stage;
 3.4 A quarterly report to be submitted to the Ministry's Research Unit;
 3.5 Preliminary findings to be submitted upon completion of the study;
 3.6 Final report to be submitted upon completion of the study;

- 73 -
Annexure V- NUST approval letter

Dear Prof/Dr/Mr./Mrs./Others:

Student No (if applicable): 217075629

Research Topic: Impact of Diabetes on the treatment of TB patients in Kavango Region, Namibia

Supervisor (if applicable): Mrs. C. Waiu-Otani

Co-supervisor(s) (if applicable): Prof. G. Motho-

Qualification registered for (if applicable): Master of Health Sciences

Re: Ethical screening application No: HEC- 00225/2017

The Research Ethics Screening Committee has reviewed your application for the above-mentioned research project. Based on the recommendation of the expert reviewer, the research as set out in the application is hereby:

(Approved provisionally, i.e. may proceed but subject to compliance with recommendation(s) listed below)

Not approved Not to proceed with the project until compliance with recommendation(s) listed below and assured ethics application for consideration.

Is MINISTRY OF HEALTH & SOCIAL SERVICES (MHSS) APPROVAL REQUIRED? YES X NO

It is important to note that as a researcher, you are expected to maintain ethical integrity of your research, strictly adhere to the ethical policy of NUST, and remain within the scope of your research proposal. Supporting evidence as submitted to the REC should be reported to the REC. In any case, you are expected to follow the ethical guidelines as submitted to the REC. Any change in the information as presented, which could have an impact on the study, should be reported to the REC. If any research participants are affected by the study, failure to report it may result in withdrawal of approval. Any change in the study protocol should be reported to the REC. If you need further clarification, please contact your supervisor or the REC.

We wish you success in your research and hope that the study will have positive impact on your career as well as the development of NUST and the society in general.

Ethical issues that require compliance

<table>
<thead>
<tr>
<th>No.</th>
<th>Ethical issues</th>
<th>Comment/recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Involves collection of identifiable information about people</td>
<td>To promote confidentiality strategy to PHAS-REC</td>
</tr>
<tr>
<td>2</td>
<td>Collection of information from TB patients through hospital records and databases</td>
<td>To obtain MHSS approval and submit copy to PHAS-REC secretary*</td>
</tr>
</tbody>
</table>

* May attach additional page as required

Full Name (reviewer): Dr. SYLVANUS O. OMETU... Signature...Date...

Full Name (approved): PROF. OMDTANDO AWOTOLU... Signature...Date...

Order: Ethics Screening Committee
Annexure VI- NIP Approval Letter

NAMIBIA INSTITUTE OF PATHOLOGY LIMITED

OFFICE OF THE CHIEF OPERATIONS OFFICER

Endurance M Boniface Makumbi, Tel: 061-205-4710

20 March 2019

Ms Anita Rebeca
University of Science and Technology
Windhoek

Dear Ms Rebeca,

NI: Impact of diabetes on Treatment of TB patients in Khomas Region

1. The above mentioned research proposal was referred to the Research Ethics Committee of the Namibia Institute of Pathology Limited for review.
2. After review, it is a pleasure to inform you that approval was granted for you to proceed with the research on condition that the following be complied with:
 3. Consent and adherence to ethical considerations and confidentiality to protect personal and Namibia Institute of Pathology Limited (NIP) Information.
 4. Adhere to all terms and conditions as stipulated by the Ministry of Health and Social Services.
5. Final report to be shared with the Namibia Institute of Pathology Limited.

Yours sincerely

Boniface Makumbi
Acting Chief Operations Officer
REPUBLIC OF NAMIBIA

Ministry of Health and Social Services

PH: 061 200572
Kuiseb
Windhoek
NAMIBIA

Fax: 061 200582
Email: Healthinfo@minhss.gov.na

OFFICE OF THE DIRECTOR

SUBJECT: CONFIDENTIAL

Ms. ANITA BEUKES
NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY
WINDHOEK
NAMIBIA

Dear Ms. Beukes,

I have the pleasure to inform you that the Executive Director’s approval permission to conduct a study on the prevalence of diabetes among TB patients in the Khomas Region has been extended from 17 May – 20 June 2019.

The office wishes you success with your research.

Yours sincerely,

Ms. ELIZABETH MIREMI
DIRECTOR: KHOMAS REGION

"Health for All"
Annexure VIII – Study Data file

Diabetes dataset
update 10 July.csv